
Efficient Computation of Algebraic Operations over Dynamically
Reconfigurable Systems Specified by Rewriting-Logic Environments

M. Ayala-Rincón1,4, R. B. Nogueira2,4, C. Llanos2,4 R. P. Jacobi3,4, and R. W. Hartenstein5,6
1 Departamentos de Matemática, 2 Engenharia Mecânica e 3 Ciência da Computação,

4 Universidade de Brasília ayala@mat.unb.br llanos@unb.br rjacobi@cic.unb.br
5 Fachbereich Informatik, 6 Kaiserslautern University of Technology hartenst@rhhk.uni-kl.de

Abstract

Several algebraic operations can be efficiently
implement by arrays of functional units such as systolic
arrays. Systolic arrays provide a large amount of
parallelism. However, their applicability is restricted to
a small set of computational problems due to their lack
of flexibility. This limitation can be circumvented by
using reconfigurable systolic arrays, where the node
operations and interconnections can be redefined even
at run time. In this context, several alternative systolic
architectures can be explored and powerful tools are
needed to model and evaluate them. Well-Known
rewriting-logic environments such as ELAN and Maude
can be used to specify, simulate and even synthesize
complex application specific digital systems. In this
paper we propose the use of rewriting-logic to model
and evaluate reconfigurable systolic architectures
which are applied to the efficient treatment of algebraic
operations such as matrix multiplication and the FFT.

Keywords: Term Rewriting Systems, Rewriting-Logic,
Reconfigurable Systolic Arrays, Fast Fourier Transform.

1. Introduction
The widespread popularization of mobile computing
and wireless communication systems fostered the
research on new architectures to efficiently deal with
communications issues in hardware constrained
platforms like PDAs, mobile phones and pagers, for
instance. Some tasks such as data compression,
encoding and decoding are better implemented through
dedicated hardware modules than using standard general
purpose processors (GPP). However, the exploding
costs of integrated circuits fabrics associated with
shorter devices lifetimes makes the design of ASIC
(Application Specific Integrated Circuit) a very
expensive alternative. The growing capacity of Field
Programmable Gate Arrays (FPGA) and the possibility
of reconfiguring them to implement different hardware
architectures makes it a good solution to this rapid
changing wireless market. Its flexibility opens a wide
range of architectural alternatives to implement
algorithms directly in hardware. In this context, it is
very important to provide methods and tools to rapidly

model and evaluate different hardware architectures to
implement a given algorithm.

In this paper we propose the use of rewriting-logic to
specify and evaluate dynamically reconfigurable
systolic hardware architectures. We show how the
conceived architectures are adapted for the efficient
implementation of algebraic operations such as matrix
multiplication and the Fast Fourier Transform - FFT.

After the seminal work of Knuth-Bendix about the
completion of algebraic equational specifications [17],
rewriting has been successfully applied into different
areas of computer science as an abstract formalism for
assisting the simulation, verification and deduction of
complex computational objects and processes. In the
context of computer architectures, rewriting theory has
been applied as a tool for reasoning about hardware
design. To review only a reduced set of different
approaches in this direction, we mention the work of
Kapur who has used his well-known Rewriting Rule
Laboratory - RRL for verifying arithmetic circuits
[15,14,16] as well as Arvind’s group that treated the
specification of processors over simple architectures
[2,24,25], the rewrite-based description and synthesis of
simple logical digital circuits [27] and the description of
cache protocols over memory systems [26]. Also we
have contributed in this field by showing how rewriting
theory can be applied for the specification of processors
over simple architectures (as Arvind’s group does) as
well as for the purely rewrite based simulation,
verification and analysis of the specified processors [3].
To achieve this we applied rewriting-logic that extends
the pure rewriting paradigm allowing for a logical
control of the application of the rewriting rules by
strategies [21,7]. Important programming environments
based on the rewriting-logic paradigm are ELAN [9,7],
Maude [21,8] and Cafe-OBJ [12]. The impact of
rewriting-logic as a successful programming paradigm
in computer science as well as of the applicability of the
related programming environments is witnessed by [20].
All our experiments were implemented in ELAN
because of its great flexibility and easy manipulation of
strategies. This can be done also in Maude with a bit of

additional effort. However, for effects of model
checking, which can be useful for verification, Maude
has been proved to be more adequate.

Section 2 provides basic concepts. Section 3 presents
the rewrite based specification and simulation of
systolic arrays used for simple algebraic operations such
as vector and matrix multiplication. Section 4 discusses
the use of rewriting-logic for specifying a dynamically
reconfigurable system and efficiently implementing the
FFT and section 5 is the conclusion.

2. Background

We include the minimal needed notions on rewriting
and, specifically, on rewriting-logic and systolic arrays.
For detailed presentations see [5] and [18,19], respectively.

2.1. Rewriting theory
A Term Rewriting System, TRS for short, is defined as
a triple � R, S, S0 �, where S and R are respectively sets
of terms and of rewrite rules of the form l � r if p(l)
being l and r terms and p a predicate and where S0 is the
subset of initial terms of S. l and r are called the left-
hand and right-hand sides of the rule and p its condition.

In the architectural context of [25], terms and rules
represent states and state transitions, respectively.

A term s can be rewritten or reduced to the term t,
denoted by s � t, whenever there exists a subterm s' of s
that can be transformed according to some rewrite rule
into the term s'' such that replacing the occurrence of s'
in s with s'' gives t. A term that cannot be rewritten is
said to be in normal form. The relation over S given by
the previous rewrite mechanism is called the rewrite
relation of R and is denoted by �. Its inverse is
denoted by ← and its reflexive-transitive closure by �*
and its equivalence closure by ↔*.

The important notions of terminating and confluence
properties are defined as usual. These notions
correspond to the practical computational aspects as the
determinism of processes and their finiteness.

• a TRS is said to be terminating if there are no infinite
sequences of the form s0 � s1 � ...

• a TRS is said to be confluent if for all divergence of
the form s �* t1, s �* t2 there exists a term u such
that t1 �

* u and t2 �
* u .

The use of the subset of initial terms S0, representing
possible initial states in the architectural context (which
is not standard in rewriting theory), is simply to define
what is a "legal" state according to the set of rewrite

rules R; i.e., t is a legal term (or state) whenever there
exists an initial state s ∈ S0 such that s �* t.

Using these notions of rewriting one can model the
operational semantics of algebraic operators and
functions. Although in the pure rewriting context rules
are applied in a truly non deterministic manner, in the
practice it is necessary to have the control of the
ordering in which rules are applied. Thus, rewriting
jointly with logic, that is known as rewriting-logic, has
been showed of practical applicability in this context of
specification of processors since they may be adapted
for discriminately representing in the necessary detail
many hardware elements involved in processors.

2.2. Systolic arrays and reconfigurable systems

A systolic array is a mesh-connected pipe network of
DPUs (datapath units), using only nearest neighbor
(NN) interconnect. DPU functional units operate
synchronously, processing streams of data that traverse
the network. Systolic arrays provide a large amount of
parallelism and are well adapted to a restrict set of
computational problems, i.e., those which can be
efficiently mapped to a regular network of operators.

Figure 1 shows a simple systolic example of a matrix-
vector multiplication. The vector elements are stored in
the cells and are multiplied by the matrix elements that
are shifted bottom-up. On the first cycle, the first cell
(DPU1) computes x1*a11, while the second and third
cells (DPU2 and DPU3) multiply their values by 0. On
the second cycle, the first cell computes x1*a21, while
the second cell computes x1*a11 + x2*a12, where the first
term is taken from the first cell and added to the product
produced in second cell. In the third cycle, the third cell
produces the first result: y1 = x1*a11 + x2*a12 + x3*a13.
In the following two cycles y2 and y3 will be output by
the third cell. Thus, by the end of the third cycle the
first result is produced and the remaining values are
produced in the following cycles.

a11
a21
a31

a12
a22
a32

0

a13
a23
a33

0
0

y1 = a11x1+a12x2+a13x3

y2 = a21x1+a22x2+a23x3

y3 = a31x1+a32x2+a33x3

DPU1
(X1)

DPU2
(X2)

DPU3
(X3)

Figure 1: Vector – matrix computation

There are several alternative configurations of
functional cells, each one tailored to a particular class of
computing problems. However, one of the main critics
to systolic arrays is its restriction to applications with
strictly regular data dependencies, as well as its lack of
flexibility. Once designed, it is suitable to support only
one particular application problem.

The limitations of systolic arrays may be circumvented
by using reconfigurable circuits, the most representative
of them being the FPGAs (Field Programmable Gate
Arrays). Figure 2 shows the internal structure of a
RAM-based FPGA. The small boxes represent the logic
cells and the larger blocks, with the letter S, are
programmable switch boxes. An FPGA can have its
behavior redefined in such a way that it can implement
completely different digital systems on the same chip.
Fine grain FPGAs allow the user to define a circuit at
gate level, working with bit wide operators. This kind of
architecture provides a lot of flexibility, but takes more
time to reconfigure than coarse grain reconfigurable
platforms (rDPAs: reconfigurable data path arrays:
arrays of rDPUs). In those ones, the user does not
provide details at gate level but specify the
configuration in terms of word wide operations, i.e., a
funcional unit is configured to operate over n-bit data,
and the configuration just specify one among a set of
avaliable operations. The amount of configuration bits
in this case is much less than in the fine grain FPGAs.

Figure 2: FPGA architecture

The design of reconfigurable systolic architectures [13,
23] aims to overcome the restriction of pure systolic
circuits while keeping the benefits of a large degree of
parallelism. In this approach, the operations performed
by each functional unit as well as their interconnections
may be reconfigured in order to be adapted to different
applications. Moreover, it is possible to change the
configuration of the circuit during run time, what is

called dynamic reconfiguration, which broadens even
more the architectural alternatives. A dynamically
reconfigurable system, in a given instant of time t,
process data d(t) using a configuration cfg(t). Instead of
referring to an instruction stream and a data stream,
according to Flynn taxonomy, one could describe a
reconfigurable system by its configuration stream and
its data stream. Optimization of such systems relies on a
choice of a reconfigurable hardware structure and a
corresponding reconfiguration scheme for a given
application under a set of constraints. It is a complex
task, since there are no commercial tools available that
are well adapted to this kind of problem. Prototyping
alternatives in VHDL or even SystemC, in a first
approach, may be too cumbersome.

The variety of implementations that arise from the
combination of systolic architectures and dynamically
reconfigurable computing requires adequate tools for
modeling and simulation of design decisions, providing
a framework for design space exploration.

3. Systolic Arrays via Rewriting-Logic

Rewriting-logic based specifications of simple systolic
arrays for vector and matrix multiplication are
presented. In these systems each component - DPU as in
the Figure 1- is called a MAC (Multiplier/Adder).

Initially, we will explain the modeling of the matrix/
vector multiplier, presented in the Figure 1. The type
definition for each MAC is shown in Table 1 and the
structure of the systolic array in the Figure 3.

Table 1: MAC types in ELAN

operators global
 @ : (int) Const;
 port(@) : (int) Port;
 reg(@) : (int) Reg;
 [@@@@@@] : (int Port Port Reg Reg Const) MAC;
 <@@@@> : (MAC MAC MAC DataStream) Proc;
 (@@@) : (list[Data] list[Data] list[Data])
 DataStream;
 @ : (int) Data;
end

Type definition in ELAN has the following syntax
(Table 1): the keyword operators indicates the start of
the type definitions, which may be global or local. Each
definition is written as a rule using “:” as a separator. Its
left side contains the lexical structure of a operator
where the ‘@’ sign is a place holder. In the right side of
the rule the types associated to the place holders as well
as the name of the type are given. For instance, Port
type is defined by port(@), where the parameter
between parenthesis is an integer. Each MAC consists of
six elements: the identifier, of type int; two Ports;
two Regs and one Const for the respective constant

S S

S S

L

L L

L L

L

L L L

component of the multiplier vector. The systolic
processor consists of four components: three MAC’s and
one DataStream. The DataStream is an object with
three components of type list[Data].

Table 2: ELAN Description of the Sole Rule
rules for Proc
 d1,d2,d3 : int; // input data variables
 l1,l2,l3 : list[Data]; // input data list
 p11,p21,p22,p31,p32:int; //ports
 r11,r12,r21,r22,r31,r32:int; //regs
 c1,c2,c3 : int; // constants
global
 [sole]
<[1,port(p11),port(0),reg(r11),reg(r12),c1]
 [2,port(p21),port(p22),reg(r21),reg(r22),c2]
 [3,port(p31),port(p32),reg(r31),reg(r32),c3]
 (d1.l1 d2.l2 d3.l3) >
=>
 <[1,port(d1),port(0),
 reg(p11*c1),reg(0+r11),c1]
 [2, port(d2),port(r12),reg(p21*c2),
 reg(p22+r21),c2]
 [3, port(d3),port(r22),reg(p31*c3),
 reg(p32+r31),c3]
 (l1 l2 l3) >
 end
end

The rule sole given in the Table 2 describes the
behavior of the processor during one cycle of the
execution: after one-step of reduction, applying this
rule, all necessary changes in the specified processor are
done. Firstly, notice that d1, d2 and d3 at the top of
the DataStream, are removed from the three lists of
data and placed into the first ports of the three MACs.

Figure 3: MAC Systolic Array Architecture.

Afterwards, notice that the multiplications between the
contents of each first port pi1 and the corresponding
constant ci are placed in the first register of each MAC,
for i=1,2 and 3 and the additions between the first
register ri1 and the second port pi2 are placed in the
second port of each MAC, for i=1,2 and 3.

Finally, note that the transfer of data from the second
register ri2 of each MAC to the second port of the next
component p(i+1)2 is done, for i=1, 2. This is done by
only one application of the rewriting rule sole

simultaneously. Notice the necessity of the extra zeros
with respect to the original proposal in the Figure 1.

A simple mechanism of reconfiguration is the
possibility of changing the constants in each MAC. Then
a computation with our systolic array consists of two
phases: a reconfiguration phase, where the constants are
set and the subsequent processor execution phase with
the previously defined rule sole.

Table 3: conf Rule for Reconfiguration
[conf]
<[1,port(p11),port(0),reg(r11),reg(r12),c1]
 [2,port(p21),port(p22),
 reg(r21),reg(r22),c2]
 [3,port(p31),port(p32),
 reg(r31),reg(r32),c3]
 (d1.l1 d2.l2 d3.l3) >
=>
<[1,port(p11),port(0),reg(r11),reg(r12),1]

[2,port(p21),port(p22),reg(r21),reg(r22),0]
[3,port(p31),port(p32),reg(r31),reg(r32),0]
 (d1.l1 d2.l2 d3.l3) >

end
strategies for Proc
implicit
 [] withconf => conf; normalise(sole) end
 [] simple => normalise(sole) end

end

The Table 3 shows one additional rule created for the
reconfiguration of a processor called conf. It simply
changes the contents of the constant part of each MAC
(by the vector (1,0,0)). Note that with the pure rewriting
based paradigm this rule applies infinitely. Thus for
controlling its application, we define a logical strategy,
called withconf, which allows for the execution of
one-step of reduction with the rule conf (the first
reconfiguration stage) and a normalization with the rule
sole (the second processor execution stage).

The Figure 4 shows the structure of a systolic array for
4x4 matrix multiplication. Its description is given in the
Table 4. The approach adopted here is different from the
previous one in order to reduce the number of variables
needed for its description. One solution is to split the
cycle defining independent rewriting rules, to be applied
under a reasonable strategy, to simulate the internal
process into each MAC component and the propagation
of data between each component to their North and
East connected MACs.

We define a rule for each of the sixteen components,
which propagates the contents into their registers two
and three to their North and East connected
components, respectively.

To complete a whole cycle of execution, as
consequence of the direction in which data is transferred
between the MACs, these sixteen rules should be applied
right-left and top-down.

Figure 4: Systolic for matrix multiplication

Table 4: a 4××××4 Systolic array Description
operators global
 @ : (int) Const;
 p(@) : (int) Port;
 r(@) : (int) Reg;
 [@,@,@,@,@,@,@] : (int Port Port Reg Reg Reg
Const) MAC;
 < @
 @ @ @ @
 @ @ @ @
 @ @ @ @
 @ @ @ @
 @ >
 : (DataString
 MAC MAC MAC MAC // MACs 13 14 15 16
 MAC MAC MAC MAC // MACs 09 10 11 11
 MAC MAC MAC MAC // MACs 05 06 07 08
 MAC MAC MAC MAC // MACs 01 02 03 04
 DataString) Proc;
 (@@@@) : (list[Data] list[Data]
 list[Data] list[Data])DataString;
 @ : (int) Data;
end

All these rules are very similar and one of them is
presented in the Table 5. Observe that the rules for the
South (mac01, mac02, mac03, mac04) and West
(mac01, mac05, mac09, mac13) boundary components
of the processor load the data (dS and dW) from the
head of the corresponding list of the data stream (lS1,

lS2, lS3, lS4 and lW1, lW2, lW3 and lW4). Also
observe that the rules for MACs in the North (mac13,

mac14, mac15, mac16) and East (mac04, mac08,

mac12, mac16) boundaries of the processor only
transfer data to the East and North neighbor MACs,
respectively; except, of course, for mac16. Thus, to
complete a cycle of the processor, different orderings of
application of these rules are possible. In the Table 6 we
present a possible strategy called onecycle which
defines an(other) ordering of application for completing

a cycle of the processor. For completing the simulation
of execution with this simple processor, one should
define a normalization based on this strategy:
normalise(onecycle). The built-in strategy normalise
applies onecycle until a normal form is reached.

Table 5: a set of rules for matrix-vector multiplier
rules for Proc
 m01,m02,m03,m04,m05,m06,m07,m08: MAC; // 1-8 MACs
 m09,m10,m11,m12,m13,m14,m15,m16:MAC; //9-16 MACs
 dW, dS : int; // data East and South
 lW1,lW2,lW3,lW4,lS1,lS2,lS3,lS4:list[Data]; // West and South
 r1,r2, r3,rN1,rN2,rN3 : int; // Central North and
 rE1,rE2,rE3 : int; // East registers 1,2,3
 p1,p2,pN1,pN2,pE1,pE2: int; //Central,North and East ports
 c,cE,cN : int;
global
 [mac16]
 < (lW1 lW2 lW3 lW4)
 m13 m14 m15 [16,p(p1),p(p2),r(r1),r(r2),r(r3),c]
 m09 m10 m11 m12
 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) > =>
 < (lW1 lW2 lW3 lW4)
 m13 m14 m15 [16,p(p1),p(p2),r(p1*c),r(r1+p2),r(p1),c]
 m09 m10 m11 m12
 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) >
 end ...
end

In this rewriting-logic setting our specification could be
easily modified to allow the interpretation of parts of the
processors as reconfigurable components. At first
glance, one could look at the constants of the 16 MACs
as a reconfigurable component. In this way the
processor can be adapted to be either a 4-vector versus
4x4-matrix multiplier or vice-versa and the 4x4-matrix
may be modified to represent, for example, either the
identity or the F4 matrix of the Discrete Fourier
Transform - DFT, which is discussed in next section.

Table 6: onecycle strategy for rule application
Strategies for Proc
 implicit
 [] onecycle =>
 mac16;mac15;mac14;mac13;
 mac12;mac11;mac10;mac09;
 mac08;mac07;mac06;mac05;
 mac04;mac03;mac02;mac01
 end
 end

4. Run time efficient FFT Modeling

The FFT is an implementation of the DFT, which is
widely used in signal processing. Given an n-array of
complex numbers a = (a0, …, an-1), its DFT, Fn × a, is
the n-array (b0, …, bn-1), where

b
j
= ak ⋅ωn

kj

k= 0

n−1

� for j = 0,1,...,n −1
 and

ωn = e
i
2π
n

 is a primitive nth complex root of the unity.
The basic operations are multiply-accumulate, executed
over complex numbers.

P2

P1

R1 + x

C

R2

R3

C13 C13 C15 C16

C9 C10 C11 C12

C5 C6 C7 C8

C1 C2 C3 C4

�� ��������������

�� �����������

�� �����

���

��

��

��

��

��

��

��

��

��

��

��

��

� �

The FFT is an O(n ln n) run time implementation of
DFT based on a recursive algorithm proposed by
Cooley-Tukey. This algorithm can be implemented in
dataflow hardware as presented in classical text books
on algorithms [10,6,1]. The number of data points is a
power of 2. The network of nodes is a butterfly circuit.
Each node implements a complex number multiplies-
accumulate operation on its inputs: bj = uj + z vj.

The two 8-array architecture that we use for computing
F8 is based on these circuits and its (operational
semantics and) correctness is founded on the adequate
application of dynamic reconfiguration of the operators,
constants and data selection registers. Reconfiguration
and execution steps run simultaneously alternated on the
two 8-array of MACs. The structure of each MAC is
presented in the Figure 5. We distinguish between
reconfigurable (shadowed) and fixed components. The
formers are: data selection registers, Ar1 and Ar2;
operators, Op1 and Op2; and constant, C1. The latter are
the ports and registers: P1, P2 and R1 and R2.

The registers, ports and the constant store complex
numbers and consist of two components: real and
imaginary. The operators can be reconfigured as any
operation over complex numbers. In particular, for
implementing FFT we will use only addition (+),
subtraction (-) and multiplication (×). The two data
selection registers, Ar1 and Ar2, are used to indicate in
each of the eight MACs of one of the two 8-arrays the
origin of the data that should be loaded into the
respective ports, P1 and P2. The options for
configuration of these address registers are either the
input (I) (as input we will supply the coefficients of a
given polynomial permuted adequately) or the output
(second register R2) of one of the eight nodes of the
opposite 8-array of MACs (indexed by 0,1,...,7). In any
reconfiguration the constant is set with arbitrary
complex numbers. For computing FFT, we will set these
constants with the adequate complex roots of the unity.

4.1 The two 8-array of MACs system

The Figure 6 shows the basic idea behind the two 8-
array system. The North and South rows are composed
by 8 nodes with the architecture depicted in the Figure
5. The node outputs of a row are feedback to the inputs
of the other row through a reconfigurable
interconnection network (RIN). The RIN can provide to
the MAC ports any MAC output or an external input. The
configuration of data selection registers Ar1 and Ar2 will
select from the RIN the specific node inputs in a given
iteration of the algorithm. In the first step, one of the 8-
array receives as input zeros and coefficients of an input
polynomial a0+a1·x+...+a7·x

7 in the adequate ordering
(bit-reversal permutation), taken from the primary
(external) inputs. Then, at each step the interconnections
and the node operations are reconfigured in order to
implement the corresponding butterfly slice alternating
from a row to the other. In this way while the MACs in
one row are executing the others are being reconfigured,
which eliminates from the run time analysis the time
spent for reconfiguration except for the time spent for
the initial reconfiguration. The initial reconfiguration
parameters are given by the sequence:

0 0: I,I,+,1, ×; 1: I,I,+,1, ×; 2: I,I,+,1, ×; 3: I,I,+,1, ×;
 4: I,I,+,1, ×; 5: I,I,+,1, ×; 6: I,I,+,1, ×; 7: I,I,+,1, ×;

The first zero stands for indicating that the North row is
being reconfigured while the South row is executing
vacuous operations. The other parameters of
reconfiguration indicate that the node 0 receives its
inputs from the corresponding external inputs; its first
operator is configured as addition; its constant
component as 1; and its second operator as
multiplication. Similarly for the remaining seven nodes.
After this reconfiguration, the operations in the north
row are executed while the system is being reconfigured
according to the parameters:

1 0: 0,1,+,1, ×; 1: 0,1,-,1, ×;
 2: 2,3,+,1, ×; 3: 2,3,-, i, ×;

R2

Op2

R1 C1

Op1

Ar1 Ar2

P1 P2

Figure 5: node architecture for FFT

Figure 6. Two 8-array system

Reconfigurable Interconnection Network

Reconfigurable Interconnection Network

 4: 4,5,+,1, ×; 5: 4,5,-,1, ×;
 6: 6,7,+,1, ×; 7: 6,7,-, i, ×;

Execution in the North row gives in the output register
(R2) of each node the coefficients: a0, a4, a2, a6, a1, a5, a3
and a7, respectively. Observe that this second step
provides again the same input, but now, adjusted to be
processed in the South row that is being simultaneously
reconfigured according to the above parameters. The
first "1" in the above reconfiguration parameters means
that the South row is being reconfigured while the North
row is executing as it has been explained. The other
reconfiguration parameters mean that the first and
second data selection registers of the nodes 0 and 1
should be loaded with 0 and 1. Thus, the outputs of
nodes 0 and 1 are loaded in the associated ports, and
these are added in the first node and subtracted in the
second node. All nodes are configured with the constant
1 in this iteration except for the fourth and eighth where
the constant is the complex i. The second operator
remains as multiplication. After this second
reconfiguration and the third execution over the South
row (while the North row is being reconfigured) we will
obtain as respective outputs the values: a0+a4, a0-a4,
a2+i·a6, a2-i·a6, a1+a3, a1-a3, a5+i·a7 and a5-i·a7.
The third reconfiguration is given by the sequence:

0 0: 0, 2, +,1, ×; 1: 1,3,+, 1, ×;
 2: 0, 2, -, 1, ×; 3: 1,3, -, 1, ×;
 4: 4, 6, +,1, ×; 5: 5,7,+, (1+i)/, ×;
 6: 4, 6, -, i, ×; 7: 5,7, -, (-1+i)/, ×;

Finally, simultaneously to the fourth execution phase,
the 8-array is reconfigured with the following sequence:

1 0: 0,4,+,1, ×; 1: 1,5,+,1, ×;

 2: 2,6,+,1, ×; 3: 3,7,+,1, ×;
 4: 0,4,-,1, ×; 5: 1,5,-,1, ×;
 6: 2,6,-,1, ×; 7: 3,7,-,1, ×;

This gives as output F8×(a0, ..., a7), that is the DFT of
the polynomial a0 + a1·x +...+ a7·x

7.

4.2 Specification of the two 8-array in ELAN

The key operators of our ELAN specification of this
system have the type description given in the Table 7.
Notation “<@ @> : (num num) complexUnit;”
means that “< >” is a binary operator of type
complexUnit with two parameters of type num.

Our system is described as the operator:

< @ @ @ @ > : (int list[ReconfParameter]

 MACsArray MACsArray) Proc;

whose last two parameters are the two 8-arrays of MACs
of type MACsArray, the first parameter of type int
identifies the 8-array being reconfigured and the second
parameter is a list of reconfiguration parameters. Each
MACsArray consists of eight MACs being the operator
MAC defined by "[@ # @] : (fixMAC recMAC)",
where fixMAC and recMAC are the types of the
operators for its fixed and reconfigurable parts, as
described in the Figure 5.

Each simultaneous execution-reconfiguration step of
this system is specified by rewriting rules as the one
presented in the Table 8. This rule changes the first
(North) 8-array MACsArray1 to MACsArray1Res by
applying the EXECUTE strategy:

MACsArray1Res :=(EXECUTE) MACsArray1

Table 7: Description of the Operators of the Two 8-array Architecture
operators global
 + : Op; - : Op; * : Op;
 < @ > : (Op) OpUnit;
 < @ @ > : (num num) complexUnit;
 const(@) : (complexUnit) Const;
 port(@) : (complexUnit) Port;
 reg(@) : (complexUnit) Reg;
 addr(@) : (int) Addr;
 @,@,@,@,@ : (int Port Port Reg Reg) fixMAC;
 @,@,@,@,@ : (Addr Addr Const OpUnit OpUnit) recMAC;
 [@ # @] : (fixMAC recMAC) MAC;
 MACsArray(@ @ @ @ @ @ @ @) : (MAC MAC MAC MAC MAC MAC MAC MAC) MACsArray;
 reconfigure(@,@) : (MACsArray ReconfParameter) MACsArray;
 propagateRegsValuesFromTo(@,@) : (MACsArray MACsArray) MACsArray;
 operate(@,@,@) : (complexUnit complexUnit OpUnit) complexUnit;
 getRecMAC(@) : (MAConfig) recMAC;
 getMACInit(@,@,@) : (int complexUnit complexUnit) MAC;
 getMAC(@,@) : (MAC MACsArray) MAC;
 extractRegValue (@) : (MAC) complexUnit;
 (@ @ @ @ @ @) : (int int num num Op Op) MAConfig;
 < @ @ @ @ @ @ @ @ > : (MAConfig MAConfig MAConfig MAConfig
 MAConfig MAConfig MAConfig MAConfig)ReconfParameter;
 continue : ReconfParameter; // vacuous reconfiguration
 < @ @ @ @ > : (int list[ReconfParameter] MACsArray MACsArray) Proc;
end

while the second (South) 8-array MACsArray2 is being
reconfigured according to the head parameter of
reconfiguration recfpar in the reconfiguration stream
recfpar.streamrecf:

MACsArrayAux:=()reconfigure(MACsArray2,recfpar)

The second 8-array finishes this step loading their ports
according to the address selection registers of its MACs
with the corresponding output registers of the first 8-
array. The last is done by means of the operator
propagateRegsValuesFromTo. All operators are
defined by rewriting rules.

Table 9: Rule of Execution in the MACs
[MAC01] // Execution over the first and second
 // MACs (MAC0 and MAC1) of one 8-array
 MACsArray(
 [0,port(cPort1),port(cPort2),
 reg(cReg1),reg(cReg2)#
 addr1,addr2,const(cConst1),op1,op2
]
 [1,port(cPort3),port(cPort4),
 reg(cReg3),reg(cReg4) #
 addr3,addr4,const(cConst2),op3,op4
]
 [fix2#rec2] [fix3#rec3] [fix4#rec4]
 [fix5#rec5] [fix6#rec6] [fix7#rec7])
=>
 MACsArray(
 [0,port(cPort1),port(cPort2),
 reg(cRegRes1),reg(cRegRes2) #
 addr1,addr2,const(cConst1),op1,op2]
 [1,port(cPort3),port(cPort4),
 reg(cRegRes3),reg(cRegRes4) #
 addr3,addr4,const(cConst2),op3,op4]
 [fix2#rec2] [fix3#rec3] [fix4#rec4]
 [fix5#rec5] [fix6#rec6] [fix7#rec7])
where cRegRes1 :=() operate(cPort1,cPort2,op1)
where cRegRes2 :=()
 operate(cRegRes1,cConst1,op2)
where cRegRes3 :=() operate(cPort3,cPort4,op3)
where cRegRes4 :=()
 operate(cRegRes3,cConst2,op4)

end

The execution cycle is split in four rewriting rules
(MAC01, MAC23, MAC45, MAC67) for pairs of MACs.
The specification of the rule MAC01 for the first pairs of
MACs of one 8-array is presented in the Table 9. In this
rule the values in the ports of the first two MACs are
operated according to the configuration of the first
operator in each MAC (cRegRes1 := ()

operate(cPort1,cPort2,op1) and cRegRes3 := ()

operate(cPort3,cPort4,op3)); then these results,
which are loaded in the first register of the
corresponding MACs, are operated, according to the
configuration of the second operator, with the

configured constants (cRegRes2:=()
operate(cRegRes1,cConst1,op2) and cRegRes4:= ()
operate(cRegRes3,cConst2,op4)) and the results
are loaded in the second register of each MAC.

The execution over an 8-array of MACs is implemented
via the logical strategy EXECUTE => MAC01; MAC23;
MAC45; MAC07. In fact, in theory a unique rule is
necessary for the execution, but it is done in this way
because of a restriction in ELAN in the maximum
number of different variables that one can use in the
description of a rewriting rule.

Table 10: Rule of Dynamical Reconfiguration
 [] reconfigure(MACsArray(
 [fix0 # rec0] [fix1 # rec1]
 [fix2 # rec2] [fix3 # rec3]
 [fix4 # rec4] [fix5 # rec5]
 [fix6 # rec6] [fix7 # rec7]),
 < MAConfig0 MAConfig1 MAConfig2 MAConfig3
 MAConfig4 MAConfig5 MAConfig6 MAConfig7 >)
=>
 MACsArray([fix0 # getRecMAC(MAConfig0)]
 [fix1 # getRecMAC(MAConfig1)]
 [fix2 # getRecMAC(MAConfig2)]
 [fix3 # getRecMAC(MAConfig3)]
 [fix4 # getRecMAC(MAConfig4)]
 [fix5 # getRecMAC(MAConfig5)]
 [fix6 # getRecMAC(MAConfig6)]
 [fix7 # getRecMAC(MAConfig7)])

 end

The reconfiguration over an 8-array (which is applied
simultaneously to the previously described execution
over the other 8-array) is guided by the rewriting rule in
the Table 10. The first argument of the operator
reconfigure is an 8-array of MACs whose MACs are
reconfigured according to the reconfiguration
parameters given by eight arguments of type MAConfig
(see the Table 7). Each of these arguments include two
values for the address selection registers, two numbers
for the reconfigurable constant (real and complex part)
and two values for the reconfiguration of the operations.

As input of this system both data and a reconfiguration
stream are given. When no reconfiguration is necessary
one can use a reconfiguration called continue with
vacuous effect over the reconfigurable part of each MAC.

Now we explain how we use logical strategies for
simulating the desired execution with the simultaneous
dynamic reconfigurations. The key for a correct
simulation of our processor is in fact a very simple
logical strategy, which simulates the execution-
reconfiguration steps. The former corresponds to the use
of the strategy EXECUTE and the latter to the execution
of the rewriting rules of reconfiguration (see the
Table 8). The logical strategy PROCESS for controlling
the execution-reconfiguration of the process is specified
as:

 Table 8: Rule of Execution-Reconfiguration
[oneCycle]// Execution-reconfiguration in
 // the first and secd 8-array,resp.
< 0 recfpar.streamrecf MACsArray1 MACsArray2 >
=>
 < 1 streamrecf MACsArray1Res MACsArray2Res >
 where MACsArray1Res :=(EXECUTE) MACsArray1
 where MACsArrayAux :=()
 reconfigure(MACsArray2,recfpar)
 where MACsArray2Res :=()
 propagateRegsValuesFromTo(MACsArray1Res,
 MACsArrayAux)

End

 strategies for Proc

 implicit

 [] PROCESS => input; repeat*(oneCycle);

 output

 end

 end

PROCESS basically organizes the application of rules for
propagating the input data and reconfiguration stream,
repeating the The oneCycle rules (see the Table 8) as
long as possible and then giving the output (i.e., the
contents of the register 2 of the MACs belonging to the
8-array in execution during the last cycle). The use of
logical strategies for guiding the application of rules in
ELAN allows for a natural separation between the
execution and reconfiguration steps in our proposed
processors. We believe that this is a clean way to
specify and simulate this kind of (dynamically)
reconfigurable architectures. By clean we mean in a
realistically manner in relation to eventual physical
implementations of the conceived hardware.

By providing appropriate reconfiguration streams this
two 8-array system can be adapted to solve other
operations, like matrix multiplication, inverse of the
DFT, string matching, etc.

It should be stressed here that one of the main
advantages of this rewriting formalism is the direct
reduction of the correctness proof of our specification of
the FFT to the usual algebraic proof as presented in [6].

3.3 A physical in-place implementation of FFT

Our system has used two 8-arrays in order to alternate
execution-reconfiguration steps which are alternatively
executed simultaneously during each cycle. In this way
time for reconfiguration is discarded from the run time
complexity. This makes as efficient our implementation
of the FFT as the usual software implementations. This
is possible since computing of operations with complex
numbers takes longer time than reconfiguration time
eliminating the reconfiguration overhead. But our
system is not space optimal for implementing the FFT.
In fact, in a system consisting of a sole 8-array of
MACs, steps of reconfiguration and execution can be
alternated. In this approach, the data processing must be
interrupted while reconfiguration takes place. And over
this one 8-array system it is possible to implement the
FFT alternating reconfigurations and steps of the
computation of the FFT. The use of a unique array of
MACs makes this proposed physical system optimal in
the use of space such as the well-known in place
algorithmic solutions of the FFT [4]. Of course, in this
one 8-array system we have to take in count, for
computing the run time complexity, the time required

for reconfiguration. For both proposed systems, the
number of necessary reconfigurations and execution
steps for computing F8 is four (and in the general case
ln(n)+1).

The one 8-array architecture was modeled and
simulated in ELAN, using a similar approach.
Descriptions of the implementations are not presented
here due to space limitations, but they are available in
our web site: www.mat.unb.br/~ayala/TCgroup.

Although our specifications were proved correct, we
have verified their correct functionality, even for
complex polynomials, by comparing our outputs with
the ones given by the algebraic system Maple.

5. Conclusions

The examples in the paper describe reconfiguration
using rewriting-logic strategies. Representing the
reconfiguration in this way, outside of the rewrite rules,
seem unnecessary: one can argue that this can be
expressed as rules using conditions on appropriate state
variables - functional approaches for describing digital
circuits is nothing new [11] -. But in our rewriting-logic
based setting, we showed how one can naturally profit
from the discrimination between rewriting and logical
strategies to simplify the purely rewrite based
specification, experimentation, simulation (and even
verification [3]) of reconfigurable systems. By
rewriting-logic even the sophisticated dynamical
reconfiguration appears a very natural mechanism to be
simulated via logical strategies.

Since digital systems get more and more complex,
modeling the various architectural trade offs in the
context of reconfigurable systems may benefit from the
high abstraction level provided by rewriting-logic
environments. Our experiments with ELAN targeted
reconfigurable systolic arrays and their use for the
efficient implementation of algebraic operators. For the
implementation of complex operators such as the FFT,
we have conceived physical systems, which are run time
efficient (O(n ln n)) as well as space efficient (in place).

Hardware description languages like VHDL, Verilog,
and SystemC, do not provide the degree of abstraction
and flexibility found in rewriting(-logic) systems. In
fact, they do not compete in this field, since the detailed
hardware design still must pass through a hardware
description language (VHDL is the “assembly
language” in this context). We do not need their
architectural and circuit details for mapping an
application onto a rDPA, nor design space exploration
to optimize, for instance, KressArray platforms [22].

Currently, to study the possibilities of dynamical
reconfiguration more sophisticated models are under
development. Additionally, as future work we propose
the automatic generation of synthesizable VHDL
models from the ELAN descriptions.

6. References

[1] S. G. Akl. Parallel Computation: Models and Methods.
Prentice-Hall, 1997.

[2] Arvind and X. Shen, Using Term Rewriting Systems to
Design and Verify Processors, Technical Report 419,
Laboratory for Computer Science - MIT, 1999. Also in IEEE
Micro Special Issue on Modeling and Validation of
Microprocessors, 1999.

[3] M. Ayala-Rincón, R. M. Neto, R.P. Jacobi, C. H. Llanos
and R. W. Hartenstein, Applying ELAN Strategies in
Simulating Processors over Simple Architectures. In B.
Gramlich and S. Lucas Eds., Reduction Strategies in
Rewriting and Programming, ENTCS 70(6):20 pages, 2002.

[4] M. Ayala-Rincón, R. B. Nogueira, R.P. Jacobi, C. H.
Llanos and R. W. Hartenstein, Modeling a Reconfigurable
System for Computing the FFT in Place via Rewriting-Logic.
To appear in Proc. SBCCI 2003.

[5] F. Baader and T. Nipkow, Term Rewriting and all That,
Cambridge University Press, 1998.

[6] S. Baase and A. van Gelder, Computer Algorithms:
Introduction to Design and Analysis, Addison-Wesley, 1999.

[7] P. Borovanský, C. Kirchner, H. Kirchner and P.-E.
Moreau, ELAN from a rewriting logic point of view, pages
155-185 of [20].

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer and J. F. Quesada, Maude: specification and
programming in rewriting logic, pages 187-243 of [20].

[9] H. Cirstea and C. Kirchner, Combining Higher-Order and
First-Order Computation Using rho-Calculus: Towards a
Semantics of ELAN, Chapter 6 in D. M. Gabbay and M. de
Rijke, Eds., Frontiers of Combining Systems 2, Studies on
Logic and Computation, 7, pages 95-121, Research Studies
Press/Wiley, 1999.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, The MIT Press, 2001.

[11] K. Claessen, P. Bjesse, M. Sheeran and S. Singh,
Lava: Hardware Design in Haskell, in Proc. ICFP,
pages 174-184, 1998.

[12] R. Diaconescu and K. Futatsugi, Logical foundations of
CafeOBJ, pages 289-318 of [20].

[13] R. Hartenstein, R. Kress and H. Reinig. A Scalable,
Parallel and Reconfigurable Datapath Architecture. Sixth
International Symposium on IC Technology, Systems and
Applications - ISIC’95, Singapore, 1995. Available at
www.kressarray.de.

 [14] D. Kapur. Theorem Proving Support for Hardware
Verification, invited talk Third Int. Workshop on First-Order
Theorem Proving, St. Andrews, Scotland, 2000.

[15] D. Kapur and M. Subramaniam. Using and Induction
Prover for Verifying Arithmetic Circuits. Journal of Software
Tools for Technology Transfer. 3(1):32-65, Springer Verlag,
2000.

 [16] D. Kapur and M. Subramaniam, Mechanizing
Verification of Arithmetic Circuits: SRT Division. In Proc. 7th
Conf. on Foundations of Software Technology and Theoretical
Computer Science. Vol. 1346 of LNCS, Springer, 1997.

[17] D. E. Knuth and P. B. Bendix. Computational Problems
in Abstract Algebra, chapter Simple Word Problems in
Universal Algebras, pages 263-297. J. Leech, ed., Pergamon
Press, Oxford, 1970.

[18] H.T. Kung, C. E. Leiserson, Systolic Arrays for VLSI;
Sparse Matrix Proc. 1978, Society for Industrial and Applied
Mathematics, 1979, pages 256-282.

[19] S. Y. Kung. VLSI Array Processors. Prentice-Hall, 1987.

[20] N. Martí-Oliet and J. Meseguer, eds., Special issue on
Rewriting Logic and its Applications, Theoretical Computer
Science 285(2): 119-564, 2002.

[21] J. Meseguer. Rewriting Logic and Maude: Concepts and
Applications, In L. Bachmair Ed., Eleventh Int. Conf. on
Rewriting Techniques and Applications RTA 2000, LNCS,
Vol. 1833, pages 1-26, Springer, 2000.

[22] U. Nageldinger. Coarse-Grained Reconfigurable
Architecture DesignSpace Exploration. Dissertation,
Univ.Kaiserslautern, June 1, 2001.

[23] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger.
Kress Array Explorer: A New CAD Environment to Optimize
Reconfigurable Datapath Array Architectures. 5th Asia and
South Pacific Design Automation Conference - ASP-DAC
2000, Yodohama, Japan, 2000. Available at
www.kressarray.de.

[24] X. Shen and Arvind, Design and Verification of
Speculative Processors, Technical Report 400A, Laboratory
for Computer Science - MIT, 1998. Also in Proc. of the
Workshop on Formal Techniques for Hardware and
Hardware-like Systems, Marstrand, Sweden, 1998.

[25] X. Shen and Arvind, Modeling and Verification of ISA
Implementations, Technical Report 400B, Laboratory for
Computer Science - MIT, 1998. Also in Proc. of the
Australasian Computer Architecture Conference, Perth,
Australia, 1998.
[26] X. Shen, Arvind and L. Rudolph, CACHET: an adaptive
cache coherence protocol for distributed shared-memory
systems, ACM International Conference on Supercomputing,
pages 135-144, 1999.

[27] J.C. Hoe and Arvind, Hardware Synthesis from Term
Rewriting Systems, Laboratory for Computer Science - MIT,
421 A, 1999. Also in Proc. of the Tenth IFIP International
Conference on VLSI - VLSI 1999.

