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Abstract 

 
Several algebraic operations can be efficiently 
implement by arrays of  functional units such as systolic 
arrays. Systolic arrays provide a large amount of 
parallelism. However, their applicability is restricted to 
a small set of computational problems due to their lack 
of flexibility.  This limitation can be circumvented by 
using reconfigurable systolic arrays, where the node 
operations and interconnections can be redefined even 
at run time. In this context, several alternative systolic 
architectures can be explored and powerful tools are 
needed to model and evaluate them. Well-Known 
rewriting-logic environments such as ELAN and Maude 
can be used to specify, simulate and even synthesize 
complex application specific digital systems. In this 
paper we propose the use of rewriting-logic to model 
and evaluate reconfigurable systolic architectures 
which are applied to the efficient treatment of algebraic 
operations such as matrix multiplication and the FFT. 
 
Keywords: Term Rewriting Systems, Rewriting-Logic,  
Reconfigurable Systolic Arrays, Fast Fourier Transform.  
 
1. Introduction 
The widespread popularization of mobile computing 
and wireless communication systems fostered the 
research on new architectures to efficiently deal with 
communications issues in hardware constrained 
platforms like PDAs, mobile phones and pagers, for 
instance. Some tasks such as data compression, 
encoding and decoding are better implemented through 
dedicated hardware modules than using standard general 
purpose processors (GPP). However, the exploding 
costs of integrated circuits fabrics associated with 
shorter devices lifetimes makes the design of ASIC 
(Application Specific Integrated Circuit) a very 
expensive alternative. The growing capacity of Field 
Programmable Gate Arrays (FPGA) and the possibility 
of reconfiguring them to implement different hardware 
architectures makes it a good solution to this rapid 
changing wireless market. Its flexibility opens a wide 
range of architectural alternatives to implement 
algorithms directly in hardware. In this context, it is 
very important to provide methods and tools to rapidly 

model and evaluate different hardware architectures to 
implement a given algorithm.   

In this paper we propose the use of rewriting-logic to 
specify and evaluate dynamically reconfigurable 
systolic hardware architectures. We show how the 
conceived architectures are adapted for the efficient 
implementation of algebraic operations such as matrix 
multiplication and the Fast Fourier Transform - FFT. 

After the seminal work of Knuth-Bendix about the 
completion of algebraic equational specifications [17], 
rewriting has been successfully applied into different 
areas of  computer science as an abstract formalism for 
assisting the simulation, verification and deduction of 
complex computational objects and processes. In the 
context of computer architectures, rewriting theory has 
been applied as a tool for reasoning about hardware 
design. To review only a reduced set of different 
approaches in this direction, we mention the work of 
Kapur who has used his well-known Rewriting Rule 
Laboratory - RRL for verifying arithmetic circuits 
[15,14,16] as well as Arvind’s group that treated the 
specification of processors over simple architectures 
[2,24,25], the rewrite-based description and synthesis of 
simple logical digital circuits [27] and the description of 
cache protocols over memory systems [26]. Also we 
have contributed in this field by showing how rewriting 
theory can be applied for the specification of processors 
over simple architectures (as Arvind’s group does) as 
well as for the purely rewrite based simulation, 
verification and analysis of the specified processors [3]. 
To achieve this we applied rewriting-logic that extends 
the pure rewriting paradigm allowing for a logical 
control of the application of the rewriting rules by 
strategies [21,7]. Important programming environments 
based on the rewriting-logic paradigm are ELAN [9,7], 
Maude [21,8] and Cafe-OBJ [12]. The impact of 
rewriting-logic as a successful  programming paradigm 
in computer science as well as of the applicability of the 
related programming environments is witnessed by [20]. 
All our experiments were implemented in ELAN 
because of its great flexibility and easy manipulation of 
strategies.  This can be done also in Maude with a bit of 



additional effort. However, for effects of model 
checking, which can be useful for  verification, Maude 
has been proved to be more adequate.  

Section 2 provides basic concepts. Section 3 presents 
the rewrite based specification and simulation of  
systolic arrays used for simple algebraic operations such 
as vector and matrix multiplication. Section 4 discusses 
the use of rewriting-logic for specifying a dynamically  
reconfigurable system and efficiently implementing the 
FFT and section 5 is the conclusion. 
 

2. Background  
 

We include the minimal needed notions on rewriting 
and, specifically, on  rewriting-logic and systolic arrays.  
For detailed presentations see [5] and [18,19], respectively.  

2.1. Rewriting theory 
A  Term Rewriting System, TRS for short,  is defined as 
a triple � R, S, S0 �, where S and R are respectively sets 
of terms and of rewrite rules of the form l � r  if p(l) 
being l and r terms and p a predicate and where S0 is the 
subset of initial terms of S.  l and r are called the left-
hand and right-hand sides of the rule and p its condition. 

In the architectural context of [25], terms and rules 
represent states and state transitions, respectively.  

A term s can be rewritten or reduced to the term t, 
denoted by s � t, whenever there exists a subterm s' of s 
that can be transformed according to some rewrite rule 
into the term s'' such that replacing the occurrence of  s' 
in s with s'' gives t. A term that cannot be rewritten is 
said to be in normal form.  The relation over S given by 
the previous rewrite mechanism is called the rewrite 
relation of R and is denoted by �. Its inverse  is 
denoted by ← and its reflexive-transitive closure  by �* 
and its equivalence closure by  ↔*. 

The important notions of terminating and confluence 
properties are defined as usual. These notions 
correspond to the practical computational aspects as the 
determinism of processes and their finiteness. 

• a TRS is said to be terminating if there are no infinite 
sequences of the form  s0 � s1 � ... 

• a TRS is said to be confluent if for all divergence of 
the form  s �* t1,  s �* t2  there exists a term u  such 
that  t1 �

* u  and  t2 �
* u . 

The use of the subset of initial terms S0, representing 
possible initial states in the architectural context (which 
is not standard in rewriting theory), is simply to define 
what is a "legal" state according to the set of rewrite 

rules  R; i.e.,  t  is a legal term (or state) whenever there 
exists an initial state  s ∈ S0  such that  s �* t. 

Using these notions of rewriting one can model the 
operational semantics of algebraic operators and 
functions.  Although in the pure rewriting context rules 
are applied in a truly non deterministic manner, in the 
practice it is necessary to have the control of the 
ordering in which rules are  applied. Thus, rewriting 
jointly with logic, that is known as rewriting-logic, has 
been showed of practical applicability in this context of 
specification of processors since they may be adapted 
for discriminately representing in the necessary detail 
many hardware elements involved in processors.   
 

2.2. Systolic arrays and reconfigurable systems 
 
A systolic array is a mesh-connected pipe network of 
DPUs (datapath units), using only nearest neighbor 
(NN) interconnect.  DPU functional units operate 
synchronously, processing streams of data that traverse 
the network. Systolic arrays provide a large amount of 
parallelism and are well adapted to a restrict set of 
computational problems, i.e., those which can be 
efficiently mapped to a regular network of operators. 
 
 
 
 
 
 
 

 

 

 

Figure 1 shows a simple systolic example of a matrix-
vector multiplication. The vector elements are stored in 
the cells and are multiplied by the matrix elements that 
are shifted bottom-up. On the first cycle,  the first cell 
(DPU1) computes x1*a11, while the second and third 
cells (DPU2 and DPU3) multiply their values by 0. On 
the second cycle, the first cell computes x1*a21, while 
the second cell computes x1*a11 + x2*a12, where the first 
term is taken from the first cell and added to the product 
produced in second cell. In the third cycle, the third cell 
produces the first result:  y1 = x1*a11  + x2*a12 + x3*a13. 
In the following two cycles y2 and y3 will be output by 
the third cell. Thus,  by the end of the third cycle the 
first result is produced and the remaining values are 
produced in the following cycles. 

a11 
a21 
a31 

a12 
a22 
a32 

0 

a13 
a23 
a33 

0 
0 

y1 = a11x1+a12x2+a13x3 

y2 = a21x1+a22x2+a23x3 

y3 = a31x1+a32x2+a33x3 

DPU1 
(X1) 

DPU2 
(X2) 

DPU3 
(X3) 

Figure 1: Vector – matrix computation 
 



There are several alternative configurations of 
functional cells, each one tailored to a particular class of 
computing problems.  However, one of the main critics 
to systolic arrays is its restriction to applications with 
strictly regular data dependencies, as well as its lack of 
flexibility. Once designed, it is suitable to support only 
one particular application problem. 

The limitations of systolic arrays may be circumvented 
by using reconfigurable circuits, the most representative 
of them being the FPGAs (Field Programmable Gate 
Arrays). Figure 2 shows the internal structure of a 
RAM-based FPGA. The small boxes represent the logic 
cells and the larger blocks, with the letter S, are 
programmable switch boxes. An FPGA can have its 
behavior redefined in such a way that it can implement 
completely different digital systems on the same chip. 
Fine grain FPGAs allow the user to define a circuit at 
gate level, working with bit wide operators. This kind of 
architecture provides a lot of flexibility, but takes more 
time to reconfigure than coarse grain reconfigurable 
platforms (rDPAs: reconfigurable data path arrays: 
arrays of rDPUs). In those ones, the user does not 
provide details at gate level but specify the 
configuration in terms of word wide operations, i.e., a 
funcional unit is configured to operate over n-bit data, 
and the configuration just specify one among a set of 
avaliable operations. The amount of configuration bits 
in this case is much less than in the fine grain FPGAs. 

 

 

 

 

 

 

 

 
 
 
 

Figure 2: FPGA architecture 

The design of reconfigurable systolic architectures [13, 
23] aims to overcome the restriction of pure systolic 
circuits while keeping the benefits of a large degree of 
parallelism. In this approach, the operations performed 
by each functional unit as well as their interconnections 
may be reconfigured in order to be adapted to different 
applications. Moreover, it is possible to change the 
configuration of the circuit during run time, what is 

called dynamic reconfiguration, which broadens even 
more the architectural alternatives.  A dynamically 
reconfigurable system, in a given instant of time t, 
process data d(t) using a configuration cfg(t). Instead of 
referring to an instruction stream and a data stream, 
according to Flynn taxonomy, one could describe a 
reconfigurable system by its configuration stream and 
its data stream. Optimization of such systems relies on a 
choice of a reconfigurable hardware structure and a 
corresponding reconfiguration scheme for a given 
application under a set of constraints. It is a complex 
task, since there are no commercial tools available that 
are well adapted to this kind of problem. Prototyping 
alternatives in VHDL or even SystemC, in a first 
approach, may be too cumbersome.  

The variety of implementations that arise from the 
combination of systolic architectures and dynamically 
reconfigurable computing requires adequate tools for 
modeling and simulation of design decisions, providing 
a framework for design space exploration. 

 
3. Systolic Arrays via Rewriting-Logic 

Rewriting-logic based specifications of simple systolic 
arrays for vector and matrix multiplication are 
presented. In these systems each component - DPU as in 
the Figure 1-  is called a MAC (Multiplier/Adder). 

Initially, we will explain the modeling of the matrix/ 
vector multiplier, presented in the Figure 1. The type 
definition for each MAC is shown in Table 1 and the 
structure of the systolic array in the Figure 3.  

Table 1: MAC types in ELAN 

operators global 
 @        : ( int ) Const; 
 port(@)  : ( int ) Port; 
 reg(@)   : ( int ) Reg;  
 [@@@@@@] : ( int Port Port Reg Reg Const) MAC;  
 <@@@@>   : ( MAC MAC MAC DataStream) Proc; 
 (@@@)    : ( list[Data] list[Data] list[Data]) 
            DataStream; 
 @        : ( int ) Data; 
end 

Type definition in ELAN has the following syntax 
(Table 1): the keyword operators indicates the start of 
the type definitions, which may be global or local. Each 
definition is written as a rule using “:” as a separator. Its 
left side contains the lexical structure of a operator 
where the ‘@’ sign is a place holder. In the right side of 
the rule the types associated to the place holders as well 
as the name of the type are given.  For instance, Port 
type is defined by port(@), where the parameter 
between parenthesis is an integer.  Each MAC consists of 
six elements: the identifier, of type int; two Ports; 
two Regs and one Const for the respective constant 
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component of the multiplier vector. The systolic 
processor consists of four components: three MAC’s and 
one DataStream. The DataStream is an object with 
three components of type list[Data].  

Table 2: ELAN Description of the Sole Rule 
rules for Proc  
 d1,d2,d3 : int;  // input data variables 
 l1,l2,l3 : list[Data]; // input data list 
 p11,p21,p22,p31,p32:int; //ports 
 r11,r12,r21,r22,r31,r32:int; //regs 
 c1,c2,c3 : int;  // constants 
global 
  [sole]   
<[1,port(p11),port(0),reg(r11),reg(r12),c1] 
 [2,port(p21),port(p22),reg(r21),reg(r22),c2] 
 [3,port(p31),port(p32),reg(r31),reg(r32),c3]  
 (d1.l1 d2.l2 d3.l3)  >     
=> 
   <[1,port(d1),port(0), 
                 reg(p11*c1),reg(0+r11),c1]  
    [2, port(d2),port(r12),reg(p21*c2), 
                           reg(p22+r21),c2]  
    [3, port(d3),port(r22),reg(p31*c3), 
                           reg(p32+r31),c3]  
    (l1 l2 l3)  >  
 end 
end 

The rule sole given in the Table 2 describes the 
behavior of the processor during one cycle of the 
execution: after one-step of reduction, applying this 
rule, all necessary changes in the specified processor are 
done.  Firstly, notice that  d1, d2 and d3 at the top of 
the DataStream, are removed from the three lists of 
data and placed into the first ports of the three MACs.  

 
Figure 3: MAC Systolic Array Architecture. 

Afterwards, notice that the multiplications  between the 
contents of each first port pi1 and the corresponding 
constant ci are placed in the first register of each MAC, 
for i=1,2 and 3 and the additions between the first 
register ri1 and the second port pi2 are placed in the 
second port of each MAC, for i=1,2 and 3. 

Finally, note that the transfer of data from the second 
register ri2 of each MAC to the second port of the next 
component p(i+1)2 is done, for i=1, 2. This is done by 
only one application of the rewriting rule sole 

simultaneously.  Notice the necessity of the extra zeros 
with respect to the original proposal in the Figure 1. 

A simple mechanism of reconfiguration is the 
possibility of changing the constants in each MAC.  Then 
a computation with our systolic array consists of two 
phases: a reconfiguration phase, where the constants are 
set and the subsequent processor execution phase with 
the previously defined rule sole. 

Table 3: conf Rule for Reconfiguration 
[conf]  
<[1,port(p11),port(0),reg(r11),reg(r12),c1]    
 [2,port(p21),port(p22), 
                      reg(r21),reg(r22),c2]  
 [3,port(p31),port(p32), 
                      reg(r31),reg(r32),c3]  
 (d1.l1 d2.l2 d3.l3) >     
=> 
<[1,port(p11),port(0),reg(r11),reg(r12),1]   

[2,port(p21),port(p22),reg(r21),reg(r22),0] 
[3,port(p31),port(p32),reg(r31),reg(r32),0]  
 (d1.l1 d2.l2 d3.l3) >  

end 
strategies for Proc 
implicit 
 [] withconf => conf; normalise(sole) end 
 [] simple  => normalise(sole) end 

end 

The Table 3 shows one additional rule created for the 
reconfiguration of a processor called  conf. It simply 
changes the contents of the constant part of each MAC 
(by the vector (1,0,0)). Note that with the pure rewriting 
based paradigm this rule applies infinitely. Thus for 
controlling its application, we define a logical strategy, 
called withconf, which allows for the execution of 
one-step of reduction with the rule conf (the first 
reconfiguration stage) and a normalization with the rule 
sole (the second processor execution stage). 

The Figure 4 shows the structure of a systolic array for 
4x4 matrix multiplication. Its description is given in the 
Table 4. The approach adopted here is different from the 
previous one in order to reduce the number of variables 
needed for its description. One solution is to split the 
cycle defining independent rewriting rules, to be applied 
under a reasonable strategy, to simulate the internal 
process into each MAC component and the propagation 
of data between each component to their  North and 
East connected MACs. 

We define a rule for each of the sixteen components, 
which propagates the contents into their registers two 
and three to their North and East connected 
components, respectively.  

To complete a whole cycle of execution, as 
consequence of the direction in which data is transferred 
between the MACs, these sixteen rules should be applied 
right-left and top-down.  

 

 



Figure 4: Systolic for matrix multiplication 

Table 4: a 4××××4 Systolic array Description 
operators global 
  @      : ( int ) Const; 
  p(@)   : ( int ) Port; 
  r(@)   : ( int ) Reg; 
  [@,@,@,@,@,@,@] : ( int Port Port Reg Reg Reg 
Const) MAC;  
  < @ 
      @ @ @ @  
      @ @ @ @  
      @ @ @ @  
      @ @ @ @  
      @ > 
    : ( DataString  
         MAC MAC MAC MAC  // MACs 13 14 15 16 
         MAC MAC MAC MAC  // MACs 09 10 11 11 
         MAC MAC MAC MAC  // MACs 05 06 07 08 
         MAC MAC MAC MAC  // MACs 01 02 03 04 
        DataString ) Proc; 
  (@@@@) : ( list[Data] list[Data] 
             list[Data] list[Data] )DataString; 
  @      : ( int ) Data; 
end 

All these rules are very similar and one of them is 
presented in the Table 5.  Observe that the rules for the 
South (mac01, mac02, mac03, mac04) and West 
(mac01, mac05, mac09, mac13) boundary components 
of the processor load the data (dS and dW) from  the 
head of the corresponding list of the data stream (lS1, 

lS2, lS3, lS4 and lW1, lW2, lW3 and lW4).  Also 
observe that the rules for MACs in the North  (mac13, 

mac14, mac15, mac16) and East (mac04, mac08, 

mac12, mac16) boundaries of the processor only 
transfer data to the East and North neighbor MACs, 
respectively; except, of course, for mac16.  Thus, to 
complete a cycle of the processor, different orderings of 
application of these rules are possible. In the Table 6 we 
present a possible strategy called onecycle which 
defines an(other) ordering of application for completing 

a cycle of the processor.  For completing the simulation 
of execution with this simple processor, one should 
define a normalization based on this strategy: 
normalise(onecycle).  The built-in strategy normalise 
applies onecycle until a normal form is reached. 

Table 5: a set of rules for matrix-vector multiplier 
rules for Proc  
   m01,m02,m03,m04,m05,m06,m07,m08: MAC; // 1-8 MACs 
   m09,m10,m11,m12,m13,m14,m15,m16:MAC; //9-16 MACs 
   dW, dS                         : int; // data East and South 
   lW1,lW2,lW3,lW4,lS1,lS2,lS3,lS4:list[Data]; // West and South 
   r1,r2, r3,rN1,rN2,rN3   : int;  // Central North and 
   rE1,rE2,rE3                 : int;  // East registers 1,2,3 
   p1,p2,pN1,pN2,pE1,pE2: int; //Central,North and East ports 
   c,cE,cN                       : int; 
global 
  [mac16]  
   <  (lW1 lW2 lW3 lW4) 
       m13 m14 m15 [16,p(p1),p(p2),r(r1),r(r2),r(r3),c ]  
       m09 m10 m11 m12 
       m05 m06 m07 m08 
       m01 m02 m03 m04   
      (lS1 lS2 lS3 lS4) >                => 
        <  (lW1 lW2 lW3 lW4)  
           m13 m14 m15 [16,p(p1),p(p2),r(p1*c),r(r1+p2),r(p1),c ]  
          m09 m10 m11 m12 
          m05 m06 m07 m08 
          m01 m02 m03 m04   
         (lS1 lS2 lS3 lS4) > 
  end          ... 
end 

In this rewriting-logic setting our specification could be 
easily modified to allow the interpretation of parts of the 
processors as reconfigurable components. At first 
glance, one could look at the constants of the 16 MACs 
as a reconfigurable component.  In this way the 
processor can be adapted to be either a 4-vector versus 
4x4-matrix multiplier or vice-versa and the 4x4-matrix 
may be modified to represent, for example, either the 
identity or the F4  matrix of the Discrete Fourier 
Transform - DFT, which is discussed in next section. 

Table 6: onecycle strategy for rule application 
Strategies for Proc 
  implicit 
    []    onecycle =>  
             mac16;mac15;mac14;mac13; 
             mac12;mac11;mac10;mac09; 
             mac08;mac07;mac06;mac05; 
            mac04;mac03;mac02;mac01   
         end 
 end 

4. Run time efficient FFT Modeling 

The FFT is an implementation of the DFT, which is 
widely used in signal processing. Given an n-array of 
complex numbers  a = (a0, …, an-1), its DFT, Fn × a, is 
the n-array (b0, …, bn-1), where 

b
j
=  ak ⋅ωn

kj

k= 0

n−1

�  for  j = 0,1,...,n −1 
 and 

ωn = e
i
2π
n

 is a primitive nth complex root of the unity. 
The basic operations are multiply-accumulate, executed 
over complex numbers.  
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The FFT is an O(n ln n) run time implementation of 
DFT based on a recursive algorithm proposed by 
Cooley-Tukey. This algorithm can be implemented in 
dataflow hardware as presented in classical text books 
on algorithms [10,6,1]. The number of data points is a 
power of 2. The network of nodes is a butterfly circuit. 
Each node implements a complex number multiplies-
accumulate operation on its inputs:  bj = uj + z vj. 

The two 8-array architecture that we use for computing 
F8 is based on these circuits and its (operational 
semantics and) correctness is founded on the adequate  
application of dynamic reconfiguration of the operators, 
constants and data selection registers. Reconfiguration 
and execution steps run simultaneously alternated on the 
two 8-array of MACs. The structure of each MAC is 
presented in the Figure 5. We distinguish between 
reconfigurable (shadowed) and fixed components. The 
formers are: data selection registers, Ar1 and Ar2;  
operators, Op1 and Op2; and constant, C1. The latter are 
the ports and registers: P1, P2  and R1 and R2. 

The registers, ports and the constant store complex 
numbers and consist of two components: real and  
imaginary. The operators can be reconfigured as any 
operation over complex numbers. In particular, for 
implementing FFT we will use only addition (+), 
subtraction (-) and multiplication (×). The two data 
selection registers, Ar1 and Ar2, are used to indicate in 
each of the eight MACs of one of the two 8-arrays the 
origin of the data that should be loaded into the 
respective ports, P1 and P2. The options for 
configuration of these address registers are either the 
input (I) (as input we will supply the coefficients of a 
given polynomial permuted adequately) or the output 
(second register R2) of one of the eight nodes of the 
opposite 8-array of MACs (indexed by 0,1,...,7).  In any 
reconfiguration the constant is set with arbitrary 
complex numbers. For computing FFT, we will set these 
constants with the adequate complex roots of the unity. 

 

4.1 The two 8-array of MACs system 

The Figure 6 shows the basic idea behind the two 8-
array system. The North and South rows are composed 
by 8 nodes with the architecture depicted in the Figure 
5. The node outputs of a row are feedback to the inputs 
of the other row through a reconfigurable 
interconnection network (RIN). The RIN can provide to 
the MAC ports any MAC output or an external input. The 
configuration of data selection registers Ar1 and Ar2 will 
select from the RIN the specific node inputs in a given 
iteration of the algorithm. In the first step, one of the 8-
array receives as input zeros and coefficients of an input 
polynomial a0+a1·x+...+a7·x

7 in the adequate ordering  
(bit-reversal permutation), taken from the primary 
(external) inputs. Then, at each step the interconnections 
and the node operations are reconfigured in order to 
implement the corresponding butterfly slice alternating 
from a row to the other. In this way while the MACs in 
one row are executing the others are being reconfigured, 
which eliminates from the run time analysis the time 
spent for reconfiguration except for the time spent for 
the initial reconfiguration. The initial reconfiguration 
parameters are given by the sequence: 

0 0: I,I,+,1, ×;  1: I,I,+,1, ×;  2: I,I,+,1, ×;  3: I,I,+,1, ×; 
   4: I,I,+,1, ×;  5: I,I,+,1, ×;  6: I,I,+,1, ×;  7: I,I,+,1, ×; 

The first zero stands for indicating that the North row is 
being reconfigured while the South row is executing 
vacuous operations. The other parameters of 
reconfiguration indicate that the node 0 receives its 
inputs from the corresponding external inputs; its first 
operator is configured as addition; its constant 
component as 1; and its second operator as 
multiplication. Similarly for the remaining seven nodes. 
After this reconfiguration, the operations in the north 
row are executed while the system is being reconfigured 
according to the parameters: 

1 0: 0,1,+,1, ×;  1: 0,1,-,1, ×; 
   2: 2,3,+,1, ×;   3: 2,3,-, i, ×; 

R2 

Op2 

R1 C1 

Op1 

Ar1 Ar2 

P1 P2 

Figure 5: node architecture for FFT 

Figure 6. Two 8-array  system 
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   4: 4,5,+,1, ×;  5: 4,5,-,1, ×; 
   6: 6,7,+,1, ×;   7: 6,7,-, i, ×; 

Execution in the North row gives in the output register 
(R2) of each node the coefficients: a0, a4, a2, a6, a1, a5, a3 
and a7, respectively. Observe that this second step 
provides again the same input, but now, adjusted to be 
processed in the South row that is being simultaneously 
reconfigured according to the above parameters. The 
first "1" in the above reconfiguration parameters means 
that the South row is being reconfigured while the North 
row is executing as it has been explained. The other 
reconfiguration parameters mean that the first and 
second data selection registers of the nodes 0 and 1 
should be loaded with 0 and 1. Thus, the outputs of 
nodes 0 and 1 are loaded in the associated ports, and 
these are added in the first node and subtracted in the 
second node. All nodes are configured with the constant 
1 in this iteration except for the fourth and eighth where 
the constant is the complex i. The second operator 
remains as multiplication. After this second 
reconfiguration and the third execution over the South 
row (while the North row is being reconfigured) we will 
obtain as respective outputs the values: a0+a4, a0-a4, 
a2+i·a6, a2-i·a6, a1+a3, a1-a3, a5+i·a7 and a5-i·a7. 
The third reconfiguration is given by the sequence: 

0  0: 0, 2, +,1, ×;  1: 1,3,+, 1,    ×; 
    2: 0, 2, -, 1, ×;   3: 1,3, -, 1,  ×; 
    4: 4, 6, +,1, ×;   5: 5,7,+, (1+i)/, ×; 
    6: 4, 6, -,  i, ×;   7: 5,7, -, (-1+i)/, ×; 

Finally, simultaneously to the fourth execution phase, 
the 8-array is reconfigured with the following sequence: 

1   0: 0,4,+,1, ×;    1: 1,5,+,1, ×; 

     2: 2,6,+,1, ×;    3: 3,7,+,1, ×; 
     4: 0,4,-,1, ×;     5: 1,5,-,1, ×; 
     6: 2,6,-,1, ×;     7: 3,7,-,1, ×; 

This gives as output F8×(a0, ..., a7), that is the DFT of 
the polynomial a0 + a1·x +...+ a7·x

7. 

4.2 Specification of the two 8-array in ELAN 

The key operators of our ELAN specification of this 
system have the type description given in the Table 7. 
Notation “<@ @> : ( num num ) complexUnit;” 
means that “< >” is a binary operator of type 
complexUnit with two parameters of type num.  

Our system is described as the operator: 

< @ @ @ @ > : ( int list[ReconfParameter]  

                MACsArray MACsArray )   Proc; 

whose last two parameters are the two 8-arrays of MACs 
of type MACsArray, the first parameter of type int 
identifies the 8-array being reconfigured and the second 
parameter is a list of reconfiguration parameters. Each 
MACsArray consists of eight MACs being the operator 
MAC defined by "[@ # @] : ( fixMAC recMAC )", 
where  fixMAC and recMAC are the types of the 
operators for its fixed and reconfigurable parts, as 
described in the Figure 5.    

Each simultaneous execution-reconfiguration step of 
this system  is specified by rewriting rules as the one 
presented in the Table 8. This rule changes the first 
(North) 8-array  MACsArray1 to   MACsArray1Res by 
applying the EXECUTE strategy:  

MACsArray1Res :=(EXECUTE) MACsArray1 

Table 7: Description of the Operators of the Two 8-array Architecture 
operators global  
  +  : Op;  -  : Op;  * : Op;  
  <  @  >                           : ( Op ) OpUnit;  
  <  @ @  >                       : ( num num ) complexUnit;   
  const(@)                          : ( complexUnit ) Const;  
  port(@)                           : ( complexUnit ) Port;  
  reg(@)                            : ( complexUnit ) Reg;    
  addr(@)                           : ( int ) Addr;  
  @,@,@,@,@                         : ( int Port Port Reg Reg ) fixMAC;   
  @,@,@,@,@                         : ( Addr Addr Const OpUnit OpUnit ) recMAC;   
  [  @ # @  ]                       : ( fixMAC recMAC ) MAC;  
  MACsArray( @ @ @ @ @ @ @ @ )      : ( MAC MAC MAC MAC MAC MAC MAC MAC ) MACsArray; 
  reconfigure( @,@ )                : ( MACsArray ReconfParameter ) MACsArray; 
  propagateRegsValuesFromTo( @,@ )  : ( MACsArray MACsArray ) MACsArray; 
  operate( @,@,@ )               : ( complexUnit complexUnit OpUnit ) complexUnit;  
  getRecMAC( @ )                    : ( MAConfig ) recMAC; 
  getMACInit( @,@,@ )               : ( int complexUnit complexUnit ) MAC; 
  getMAC( @,@ )                     : ( MAC MACsArray ) MAC; 
  extractRegValue ( @ )             : ( MAC ) complexUnit;  
  ( @ @ @ @ @ @ )                   : ( int int num num Op Op ) MAConfig; 
  <  @ @ @ @ @ @ @ @  >             : ( MAConfig MAConfig MAConfig MAConfig  
                                        MAConfig MAConfig MAConfig MAConfig )ReconfParameter; 
  continue                          : ReconfParameter; // vacuous reconfiguration 
  <  @ @ @ @  >                     : ( int list[ReconfParameter] MACsArray MACsArray ) Proc;  
end  



while the second (South) 8-array MACsArray2 is being 
reconfigured according to the head parameter of 
reconfiguration recfpar in the reconfiguration stream 
recfpar.streamrecf: 

MACsArrayAux:=()reconfigure(MACsArray2,recfpar) 

The second 8-array finishes this step loading their ports 
according to the address selection registers of its MACs  
with the corresponding output registers of the first 8-
array.  The last is done by means of the operator  
propagateRegsValuesFromTo. All operators are 
defined by rewriting rules.   

Table 9: Rule of Execution in the MACs 
[MAC01] // Execution over the first and second 
        // MACs (MAC0 and MAC1) of one 8-array  
 MACsArray( 
 [0,port(cPort1),port(cPort2), 
  reg(cReg1),reg(cReg2)# 
           addr1,addr2,const(cConst1),op1,op2 
]  
 [1,port(cPort3),port(cPort4), 
  reg(cReg3),reg(cReg4) # 
           addr3,addr4,const(cConst2),op3,op4 
]  
 [ fix2#rec2 ] [ fix3#rec3 ] [ fix4#rec4 ]  
 [ fix5#rec5 ] [ fix6#rec6 ] [ fix7#rec7 ] ) 
=>  
  MACsArray(   
   [0,port(cPort1),port(cPort2), 
    reg(cRegRes1),reg(cRegRes2) # 
          addr1,addr2,const(cConst1),op1,op2 ]  
   [1,port(cPort3),port(cPort4), 
    reg(cRegRes3),reg(cRegRes4) # 
          addr3,addr4,const(cConst2),op3,op4 ]  
   [ fix2#rec2 ] [ fix3#rec3 ] [ fix4#rec4 ]  
   [ fix5#rec5 ] [ fix6#rec6 ] [ fix7#rec7 ] )    
where cRegRes1 :=() operate(cPort1,cPort2,op1)  
where cRegRes2 :=()  
                 operate(cRegRes1,cConst1,op2)  
where cRegRes3 :=() operate(cPort3,cPort4,op3)  
where cRegRes4 :=()  
                operate(cRegRes3,cConst2,op4 )  

end  

The execution cycle is split in four rewriting rules 
(MAC01, MAC23, MAC45, MAC67) for pairs of MACs. 
The specification of the rule MAC01 for the first pairs of 
MACs of one 8-array is presented in the Table 9. In this 
rule the values in the ports of the first two MACs are 
operated according to the configuration of the first 
operator in each MAC (cRegRes1 := () 

operate(cPort1,cPort2,op1) and cRegRes3 := () 

operate(cPort3,cPort4,op3)); then these results, 
which are loaded in the first register of the 
corresponding MACs, are operated, according to the 
configuration of the second operator, with the 

configured constants (cRegRes2:=() 
operate(cRegRes1,cConst1,op2) and cRegRes4:= () 
operate( cRegRes3,cConst2,op4 )) and the results 
are loaded in the second register of each MAC.  

The execution over an 8-array of MACs is implemented 
via the logical strategy EXECUTE => MAC01; MAC23; 
MAC45; MAC07. In fact, in theory a unique rule is 
necessary for the execution, but it is done in this way 
because of a restriction in ELAN in the maximum 
number of different variables that one can use in the 
description of a rewriting rule. 

Table 10: Rule of Dynamical Reconfiguration 
 [] reconfigure(MACsArray(  
       [ fix0 # rec0 ] [ fix1 # rec1 ]  
       [ fix2 # rec2 ] [ fix3 # rec3 ]   
       [ fix4 # rec4 ] [ fix5 # rec5 ]  
       [ fix6 # rec6 ] [ fix7 # rec7 ] ),  
  < MAConfig0 MAConfig1 MAConfig2 MAConfig3  
    MAConfig4 MAConfig5 MAConfig6 MAConfig7 >)                                                                      
=>              
   MACsArray([ fix0 # getRecMAC(MAConfig0) ]  
             [ fix1 # getRecMAC(MAConfig1) ] 
             [ fix2 # getRecMAC(MAConfig2) ]  
             [ fix3 # getRecMAC(MAConfig3) ] 
             [ fix4 # getRecMAC(MAConfig4) ]  
             [ fix5 # getRecMAC(MAConfig5) ] 
             [ fix6 # getRecMAC(MAConfig6) ]  
             [ fix7 # getRecMAC(MAConfig7) ] ) 

  end       

The reconfiguration over an 8-array (which is applied 
simultaneously to the previously described execution  
over the other 8-array) is guided by the rewriting rule in 
the Table 10. The first argument of the operator 
reconfigure is an 8-array of MACs whose MACs are 
reconfigured according to the reconfiguration 
parameters given by eight arguments of type MAConfig 
(see the Table 7). Each of these arguments include two 
values for the address selection registers, two numbers 
for the reconfigurable constant (real and complex part) 
and two values for the reconfiguration of the operations.   

As input of this system both data and a reconfiguration 
stream are given.  When no reconfiguration is necessary 
one can use a reconfiguration called continue with 
vacuous effect over the reconfigurable part of each MAC. 

Now we explain how we use logical strategies for 
simulating the desired execution with the simultaneous 
dynamic reconfigurations. The key for a correct 
simulation of our processor is in fact a very simple 
logical strategy, which simulates the execution-
reconfiguration steps. The former corresponds to the use 
of the strategy EXECUTE and the latter to the execution 
of the rewriting rules of reconfiguration (see the 
Table 8). The logical strategy PROCESS for controlling 
the execution-reconfiguration of the process is specified 
as: 

  Table 8: Rule of Execution-Reconfiguration 
[oneCycle]// Execution-reconfiguration in 
           // the first and secd 8-array,resp. 
< 0 recfpar.streamrecf MACsArray1 MACsArray2 > 
=>  
  < 1 streamrecf MACsArray1Res MACsArray2Res > 
 where MACsArray1Res :=(EXECUTE) MACsArray1 
 where MACsArrayAux  :=()  
             reconfigure( MACsArray2,recfpar ) 
 where MACsArray2Res :=() 
     propagateRegsValuesFromTo(MACsArray1Res, 
                                MACsArrayAux ) 

End    



  strategies for Proc  

     implicit  

       [] PROCESS => input; repeat*(oneCycle); 

                     output  

       end  

    end 

PROCESS basically organizes the application of rules for 
propagating the input data and reconfiguration stream, 
repeating the The oneCycle rules (see the Table 8) as 
long as possible and then giving the output (i.e., the 
contents of the register 2 of the MACs belonging to the 
8-array in execution during the last cycle). The use of 
logical strategies for guiding the application of rules in 
ELAN allows for a natural separation between the 
execution and reconfiguration steps in our proposed 
processors. We believe that this is a clean way to 
specify and simulate this kind of (dynamically) 
reconfigurable architectures. By clean we mean in a 
realistically manner in relation to eventual physical 
implementations of the conceived hardware. 

By providing appropriate reconfiguration streams this 
two 8-array system can be adapted to solve other  
operations, like matrix multiplication, inverse of the 
DFT, string matching, etc. 

It should be stressed here that one of the main  
advantages of this rewriting formalism is the direct 
reduction of the correctness proof of our specification of 
the FFT to the usual algebraic proof as presented in [6].  

3.3 A physical in-place implementation of FFT 

Our system has used two 8-arrays in order to alternate 
execution-reconfiguration steps which are alternatively 
executed simultaneously during each cycle.  In this way 
time for reconfiguration is discarded from the run time 
complexity. This makes as efficient our implementation 
of the FFT as the usual software implementations.  This 
is possible since computing of operations with complex 
numbers takes longer time than reconfiguration time 
eliminating the reconfiguration overhead. But our 
system is not space optimal for implementing the FFT. 
In fact, in a system consisting of a sole 8-array of 
MACs, steps of reconfiguration and execution can be 
alternated. In this approach, the data processing must be 
interrupted while reconfiguration takes place. And over 
this one 8-array system it is possible to implement the 
FFT alternating reconfigurations and steps of the 
computation of the FFT.  The use of a unique array of 
MACs  makes this proposed physical system optimal in 
the use of space such as the well-known in place 
algorithmic solutions of the FFT [4]. Of course, in this 
one 8-array system we have to take in count, for 
computing the run time complexity, the time required 

for reconfiguration. For both proposed systems, the 
number of necessary reconfigurations and execution 
steps for computing F8 is four (and in the general case 
ln(n)+1).  

The one 8-array architecture was modeled and 
simulated in ELAN, using a similar approach. 
Descriptions of the implementations are not presented 
here due to space limitations, but they are available in 
our web site:  www.mat.unb.br/~ayala/TCgroup.   

Although our specifications were proved correct, we 
have verified their correct functionality, even for 
complex polynomials, by comparing our outputs with 
the ones given by the algebraic system Maple.  

5. Conclusions 

The examples in the paper describe reconfiguration 
using rewriting-logic strategies.  Representing the 
reconfiguration in this way, outside of the rewrite rules, 
seem unnecessary: one can argue that this can be 
expressed as rules using conditions on appropriate state 
variables  -  functional approaches for describing digital 
circuits is nothing new [11] -.  But in our rewriting-logic 
based setting, we showed  how one can naturally profit 
from the discrimination between rewriting and logical 
strategies to simplify the purely rewrite based 
specification, experimentation, simulation (and even 
verification [3]) of reconfigurable systems. By 
rewriting-logic even the sophisticated dynamical 
reconfiguration appears a very natural mechanism to be 
simulated via logical strategies.  

Since digital systems get more and more complex, 
modeling the various architectural trade offs in the 
context of reconfigurable systems may benefit from the 
high abstraction level provided by rewriting-logic 
environments. Our experiments with ELAN targeted 
reconfigurable systolic arrays and their use for the 
efficient implementation of algebraic operators. For the 
implementation of complex operators such as the FFT, 
we have conceived physical systems, which are run time 
efficient (O(n ln n)) as well as space efficient (in place).  

Hardware description languages like VHDL, Verilog, 
and SystemC, do not provide the degree of abstraction 
and flexibility found in rewriting(-logic) systems. In 
fact, they do not compete in this field, since the detailed 
hardware design still must pass through a hardware 
description language (VHDL is the “assembly 
language” in this context). We do not need their 
architectural  and circuit details for mapping an 
application onto a rDPA, nor design space exploration 
to optimize, for instance, KressArray platforms [22].   



Currently, to study the possibilities of dynamical 
reconfiguration more sophisticated models are under 
development. Additionally, as future work we propose 
the automatic generation of synthesizable VHDL 
models from the ELAN descriptions. 
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