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THE GEOMETRY OF GRAVITATIONAL COLLAPSE

Roberto Giambò

Abstract

This review aims to give a first glance to some aspect related to sin-
gularities in General Relativity, in particular connection with the math-
ematical formulation of gravitational collapse theory. Some models of
spacetime providing counterexamples to Penrose’s Cosmic Censorship
conjecture are reviewed, and related open issues are discussed.

1 Singularities in general relativity

By singularity it is usually meant a region of spacetime where laws of physics

break down. Giving a general definition in a rigorous way, however, could be

a hard task by itself. First of all, we recall that a spacetime with energy–

momentum tensor T is a 4–dimensional Lorentzian manifold (M, gµν), time

orientable, solving Einstein field equation

Gµν := Rµν −
1

2
S gµν = 8π Tµν , (1.1)

where Rij are Ricci tensor components, S is the scalar curvature, and the tensor

T encodes all properties of matter – momentum, energy, stresses and strains. In

order to avoid ”fake” examples of singularities, the spacetime is also supposed

to be inextensible, that is it cannot be isometrically embedded into another

larger spacetime.

By a singularity we will mean a boundary of the spacetime where i) non–

spacelike geodesic incompleteness occurs, and ii) at least one curvature invariant

diverges along non–spacelike geodesics. We briefly comment on this definition.
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First, let us observe that i) does not cover all cases of singular behavior – see

for instance the example by Geroch [5] of a geodesically complete spacetime

possessing a future inextensible timelike curve with finite proper length. Here,

however, the singularity will be determined by non–spacelike geodesics, repre-

senting motions of free falling particles and photons. Of course, we will also

want to model physical genuine singularity, since in principle one may have

examples of geodesic incomplete spacetime with bounded curvature – see for

instance properties of the so–called Taub–NUT spacetime described in [14] –

and this is the reason for requirement ii).

The easiest and most famous example of such a singularity is probably rep-

resented by Schwarzschild solution

g = −

(

1 −
2m

r

)

dt2 +

(

1 −
2m

r

)−1

dr2 + r2
(

dθ2 + sin θ dφ2
)

. (1.2)

This is the only possible spherically symmetric solution of field equation in

vacuum, that is when the tensor T vanishes, and for r > 2m represents the

geometry of the spherical massive star exterior, with mass m. Actually, it is

well known that the r < 2m portion of the spacetime contains a true singularity

at r = 0, and that the two patches can be continuously ”glued” together at

r = 2m using appropriate coordinate transformations [2, 3, 12, 18]. Photons

or particles may travel from the r > 2m–region to the other patch, but the

contrary is forbidden, since all their trajectories will end in the boundary r = 0,

according with requirement i) above. The surface r = 2m therefore acts like

an horizon which covers the singularity from observers in the outer region, and

that is the reason why the r < 2m solution is called Schwarzschild black–hole.

Many other examples of singularities are known, even accepting a lower de-

gree of symmetry – for instance, Kerr spacetime that is only axisymmetric. In

the first years of dvelopment of general relativity, it was conjectured that sin-

gularities could be avoided removing symmetry of the spacetime. Hawking and

Penrose’s singularity theorems [4], instead, predict geodesic incompleteness un-

der assumptions not relying on any kind of symmetry. These theorems, however,

do not provide any information about the causal structure of the singularity,
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that is whether it will be covered by an event horizon – as for Schwarzschild

– or not. For instance, there is a subclass of Kerr solutions that possesses the

singularity but no horizon, and therefore the singularity is globally visible by a

faraway observer. But this solution is actually stationary, that is the singularity

is eternally naked, whereas it would be of great interest to investigate properties

of dynamically forming singularities. This category contains scalar field singu-

larities investigated by Christodoulou [1], as well as the singularities forming

in radiation collapse described by Vaidya spacetime [10]. However, solutions

of (1.1) describing solid–elastic matter probably represent the most interesting

field of investigation, since they arise for instance as a model for the indefinite

collapse of a massive stellar body. This issue will be addressed in the following.

2 A short introduction to spherical gravitational

collapse

When a massive star exhausts its nuclear fuel, it collapses under the effect of

its own gravitation. If the star is unable to radiate away a sufficient amount of

mass to fall below the neutron star limit (about 3 solar masses) no final stable

state is available and then singularities are formed.

As said before, singularity theorems cannot predict the final state of such

singularities. Although it is commonly believed that a cosmic censor exists who

safely hides the singularity inside a black hole, actually this is just a conjecture,

first formulated by Penrose [17], and cannot be proved using field equations.

Indeed, counterexample may be given – and some of them will be sketched

below – where the horizon forms but ”not at time” to prevent the singularity

from communicating with light signals to a faraway observer. In the following,

examples of spacetimes exhibiting naked singularities will be reviewed, but first,

it is necessary to restate Einstein field equation in spherical symmetry. Of

course, one can raise objections on physical reasonability of the solutions found

– see last paragraph – but what turned out to be the truth in the last twenty

years of research is that a general theory – and, in fact, even the underlying
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hypotheses – are extremely difficult to be stated (see e.g. [10]).

The general spherical line element in a comoving reference frame is given by

the metric

g = −e2ν(t,r) dt2 + e2λ(t,r) dr2 + R(t, r)2
(

dθ2 + sin θ dφ2
)

. (2.1)

We now introduce the Misner–Sharp mass, defined in terms of the gradient of

R induced by g:

1 −
2m

R
= g(∇R,∇R),

which gives

m(r, t) =
R

2

[

1 − R′2 e−2λ + Ṙ2e−2ν
]

. (2.2)

With this auxiliary function, Einstein field equations (1.1) in the unknown func-

tions λ, ν and R of r and t read (prime and dot denote derivation with respect

to r and t)

m′ = 4πε R2 R′, (2.3)

ṁ = −4π pr R2 Ṙ, (2.4)

Ṙ′ = λ̇R′ + ν ′Ṙ, (2.5)

p′r = −(ε + pr) ν ′ −
2R′

R
(pr − pt), (2.6)

where ε, pr, pt are the nonzero components of the energy momentum tensor:

T µ
ρ = diag (−ε(r, t), pr(r, t), pt(r, t), pt(r, t)) . (2.7)

2.1 Spherical dust collapse

The collapse of an incoherent spherical dust cloud is the described by the metric

satisfying (1.1) with Tµν = εuµ uν, where uµ is a velocity (i.e. unit timelike)

vector field and ε is the energy density of the system. With reference to the

energy momentum tensor (2.7), it amounts to require the equation of state

pr = pt = 0 to hold. This spacetime is described by the Tolman–Bondi–Lemaitre

solution1, that, in a reference frame (t, r, θ, φ) comoving with the collapsing

1equation (2.8) actually represent only a particular case of TBL class of solutions, called
marginally bound, which anyway is enough for the purpose of this review.
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matter (uν = −δν
t ), reads

g = −dt2+

(

∂R

∂r

)2

dr2+R2
(

dθ2 + sin θ dφ2
)

, R(r, t) = r

(

1 −
3

2
t

√

2m(r)

r3

)2/3

,

(2.8)

where the mass function (2.2) m is a function of the coordinate r only, and then

it is completely determined by the initial state at t = 0. The initial condition

R(r, t = 0) = r, (2.9)

amounts to label the 2–dimensional shells of matter r = const. in such a way

that the map t 7→ R(r0, t) denotes the evolution of the shell labelled r0.

Equation (1.1) implies

ε = ε(r, t) =
m′(r)

4π R2 R′
,

and then it is clear that, if m′ is regular and bounded away from zero, the energy

density ε diverges as R = 0 or R′ = 0. The latter case corresponds to the so–

called shell crossing singularities, which are of some interest by themselves but

are not a topic of this study, that deals instead with shell–focussing singularities,

i.e. those occurring as R = 0 [11].

Since the collapse is spherical, there is no dependence of angular parameters,

and then the whole framework can be expressed by a 2–dimensional picture,

where the singularity curve

ts(r) =
2

3

√

r3

2m(r)

represents the time of complete collapse of the shell labelled r, and, by analogy

with Schwarzschild case, the curve th(r) implicitly defined by

R(r, th(r)) = 2m(r) (2.10)

represents the apparent horizon, i.e. the time at which the shell gets trapped.

The situation is sketched in Figure 1(a). In order for the initial time to

represent a nonsingular state, the mass m(r) must be a regular function with
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m(0) = m′(0) = m′′(0) = 0. A choice of m(r) = m0r
3 models a homogeneous

situation – i.e. all shells get singular at the same time – and it is not significant

for our discussion. The interesting case is when

m(r) = m0r
3 + mnr3+n + o(r3+n), n ∈ IN, n > 0. (2.11)

For the sake of simplicity one chooses m0 such that ts(r) → 1 as r → 0+.

The constant mn must be negative so that the initial energy ε at t = 0 is a

not–increasing function of r.

In order to study light rays emission from the singularity, let us recall the

following facts. First, if we restrict ourselves to look for radial null geodesics,

i.e. curves with constant angular part θ and φ, then it suffices to study solution

of the first order ODE
dtg(r)

dr
= R′(r, tg(r)). (2.12)

It is a remarkable property that the apparent horizon th(r) is a subsolution of

equation (2.12) for r > 0. Although it can be straightforwardly proved using

(2.8) and (2.10), this is a more general fact that actually depends almost only

on the spherical symmetry of the system, as proved in [7]. In view of this fact,

comparison theorems in ODE straightly show that noncentral singularity – i.e.

points (r, ts(r)) with r strictly positive – cannot be naked, since the comoving

time at which the shell labelled r (with r > 0) enters the trapped region is

strictly smaller that the time at which the same shell gets singular.

Things may be different for the central shell (r = 0), where singularity

occurs at the same time the shell gets trapped. The central singularity can give

rise to a violation of cosmic censorship, since it is naked in case it emanates a

null (and future–pointing) geodesic below the horizon. Unfortunately, studying

equation (2.12) for the initial data tg(0) = 1 cannot be performed using classical

existence theorems in ODE, since the right hand side of (2.12) is not defined

at the point (0, 1). In order to give a satisfactory answer to the existence of

solutions of the ODE, a technique first employed in [15] and therefore developed

in [8, 9] can be used. It actually relies on looking for curves which coincide with

the horizon at r = 0, stay below it for r > 0 and are supersolution of (2.12).
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The existence of such curves – denoted as t∗(r) in Figure 1(a) – implies, using

comparison theorems in ODE, the existence of a null radial geodesic below the

horizon that can be traced back until the singularity, which is therefore naked.

Using Taylor developments, it can be seen [6] that, with reference to (2.11), the

central singularity is at least locally naked if n = 1, 2 (if n = 3 the endstate is

related to the sign of a quantity involving m0 and mn).

It must be also remarked that, although it is just a point of the curve ts(r) to

violate cosmic censor, a faraway observer does not see it like a pointwise object,

since there may be nonradial null geodesic emanating from the singularity as

well, as pointed out in [16]. The study of nonradial null geodesic, anyway, does

not affect the spectrum of endstates sketched before with reference to the radial

geodesic equation (2.12), since nonradial geodesics are supersolutions and their

existence would imply the existence of a radial light ray. In other words, a

singularity radially censored is censored, and it must be remarked that this is

again a general fact only relying on the symmetry of the problem, as shown in

[8].

3 New examples of Cosmic Censorship viola-

tion

Tolman–Bondi–Lemaitre solutions were the first example of a elastic–solid medium

to provide a violation of cosmic censorship, and in spite of its simplifications

it represents a cornerstone in the study of gravitational collapse. Nonetheless,

it is clear that it could have been of great interest to test Penrose’s conjecture

on models of collapsing objects with nonvanishing pressures. The first attempt

was probably due to [13], that discovers solutions with pr = 0, pt 6= 0, but what

is clear from the analysis carried out in [8] is that the class of nonvanishing tan-

gential pressures can be further extended to a wider class of spacetimes. Indeed,

for an elastic media, an equation of state is needed to close the system of Ein-

stein field equation, i.e. a relation involving the energy–momentum tensor. We

refer the reader to [13] and references therein for further details on this topic.
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Figure 1: A 2–dimensional picture of the gravitational collapse. The
grey region is the trapped region where light signals cannot escape
from. In (a) the situation using comoving coordinates is sketched.
In (b) the same situation using the area–radius system (r, R, θ, φ).
In view of (2.9), the curve R0(r) = r represents the initial data of
the problem.

We just recall here that this relation can be given in different ways, and a very

useful one is to express Tµν as functions of the ”spatial” coordinates r, θ, φ and

the ”spatial” part of the metric eλ, R, R sin θ. Dependance on θ, φ is forbidden

by spherical symmetry and so we are left with r, R, eλ as possible arguments of

Tµν to formulate an equation of state.

The class of solutions found in [8] is described by the equation of state

∂pr(r, R, eλ)

∂eλ
= 0

and the line element is expressed in a not comoving coordinate system, which

promotes R as a new coordinate together with r and θ, φ:

ds2 = −

(

1 −
2m

R

)

G2dr2 +2G
Y

u
dRdr−

1

u2
dR2 +R2(dθ2 +sin2 θ dϕ2) . (3.1)

In the above formula, the two functions m(r, R) and Y (r, R) are arbitrary

(positive) functions, while

u2 = Y 2 +
2m

R
− 1, (3.2)
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and the function G is given in terms of a quadrature:

G(r, R) =

∫ r

R

1

Y (r, σ)

∂(1/u)(r, σ)

∂r
dσ +

1

Y (r, r)u(r, r)
. (3.3)

For instance, spherical dust solutions correspond to a couple (m, Y ) such that

mass profile m only depends on r and the Y is equal to 1 (at least in the

marginally bound case).

In general, it is shown that a collapsing situation is related to Taylor expan-

sion of the 2–variables function

H(r, R) := 2m(r, R) + R(Y 2(r, R) − 1) (3.4)

that must be such that the lowest order term is given by αr3 + βr2R + γrR2 +

δR3 with α > 0 (compare with (2.2)). In this case, the endstates of central

singularity can be studied in an analogous way as in dust case. Indeed, in [8] is

shown how the endstate of central singularity is related to Taylor development

of the (regular) function

G(r, R = 0) = ξrn−1 + o(rn−1).

If n = 1, 2 the singularity is naked, whereas if n = 3 a transition situation is

given depending on the sign of a quantity related to the data of the problem.

The picture is sketched in Figure 1(b). One must now pay attention to the

fact that, for instance, the apparent horizon curve is now a supersolution of

radial null geodesic equation. This is actually due to the change of orientation

provided by the new coordinate system: the element of a 2–dimensional surface

{θ = const., ϕ = const.} transforms as follows:

dr ∧ dt =
1

Ṙ
dr ∧ dR

since we are considering a collapse situation, Ṙ < 0 and therefore this change

of orientation results in an opportune restatement of the main results valid in

comoving coordinates. For instance, one must now look for curves – denoted

by R∗(r) in Figure 1(b) – that are subsolution (instead of supersolutions) lying

above (and not below) the horizon, to grant the existence of radial null geodesics.
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As a matter of fact, another complication is given by the use of this coor-

dinate system. Indeed, in comoving coordinates, it is R(r = 0, t) = 0 for all

times prior to singularity formation: the vanishing of R at the central shell is

not due to a singular behavior, but to the geometry of the spacetime in the

”pole” r = 0. The use of (r, R, θ, φ) coordinate system therefore implies that

the line (r = 0, t < ts(0)) – which in principle contains both regular points

and a singular point – is mapped into the origin of coordinates, and so one

cannot make distinction anymore between regular and singular centre, unless

one does not study behavior of physical quantities along curves escaping from

(r = 0, R = 0).

For instance, one must ensure that candidate curves for being subsolutions

of null radial geodesic equation, restated in comoving coordinates, tend to the

singular centre as r goes to zero. One way to do that is to study a physically

relevant quantity as the energy density along those curves: if it diverges, this

means that the curve tends to the singularity. Another way is to integrate the

relation

u = −Ṙ e−ν

to find straightly the relation between the comoving time and the ”new” vari-

ables in the coordinate system:

t(r, R) =

∫ r

R

e−ν

u
dσ,

and study directly the asymptotic behavior of this quantity as r goes to zero.

All in all, this coordinate system provides a powerful method to escape, but

not completely, the difficulties connected to the use of comoving coordinates,

the latter remaining the best way to understand the underlying physics of the

problem.

4 Conclusions

The questions connected with the study of gravitational collapse in General

Relativity are far from being solved in a satisfactory manner. Many models
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providing counterexamples to Penrose’s conjecture have been found, and some

of them have been reviewed above, but of course it would be of great interest

to investigate what happens if symmetry assumptions are removed. Unfortu-

nately, even in case of axial symmetry – like Kerr spacetime – things become

more complicated, and even the geometrical formulation of the problem presents

obstacles that have not been removed so far.

In addition, whenever one will be able to give satisfactory answers in more

general cases, one must keep in mind that not only classical General Relativity

should be taken into account, since quantum effects may not be neglected in

the extreme states of collapse, but unfortunately again, quantum gravity is a

still unknown theory.

These are the main reasons why Penrose’s opinion about the question of

naked singularities existence in Nature, termed almost forty years ago as ”the

most fundamental unanswered question of general-relativistic collapse theory”,

is still of great interest at present time.
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