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UPPER SEMICONTINUITY OF ATTRACTORS FOR
THE DISCRETIZATION OF STRONGLY DAMPED
WAVE EQUATIONS

S. M. Bruschi; A. N. Carvalhof

Abstract

In this paper we prove the upper semicontinuity of attractors for the
discretization of damped hyperbolic problems of the form

Ut + ZUA%ut + 2aus + Au = f(u)

with D(A) = {u € H*(0,1) : uz(0) = uz (1) = 0}, A: D(A) € X — X,
Au = —ugy + du, § > 0, a > 0, n > 0 as the discretization step goes to
zero.

1 Introduction

For each n > 0, we consider the strongly damped wave equation

utt—|—277A1/2ut—|—2aut:—Au+f(u), O<z<l, t>0 (1.1)
uy(0) =u,(1) =0, t >0, '

and its discretization given by

U+ 20 AU 420U = =AU + {(U) (1.2)

where a > 0, Au:—um—i—%u, A, is a n X n matrix, An:An+%I,6>Oand

A, is the discretization of the Laplacian with Neumann boundary conditions
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given by
(1 -1 0 -~ 0 0 0]
-1 2 -1 .- 0 0 0
o -1 2 -+ 0 0 0
Ap=n?|: : : .o : Do (1.3)
0 0 o .- 2 -1 0
o o o0 - -1 2 -1
L0 0o 0 -~ 0 -1 1]

f:IR — IR is a C? function satisfying the dissipative condition

lim sup Q) < =4, (1.4)

|u|—+o0o U

(U) = (Fw), - )T and U = (ur, -~ )7

In this paper we study how the dynamics of the continuous equation (1.1)can
be approximated by the dynamics of the discretization (1.2). More precisely,
we prove that the family of global attractors of the discretization (1.2) is upper
semicontinuous to the global attractor of the continuous problem (1.1), as n
goes to oo.

We study the problem (1.1) in an abstract form (in the sense of Henry [8]).
Let’s denote by A, the operator A : D(A) € X° — X° given by Au = —u,+3u,
X =L2=X"and D(A) = {u € H*0,1);u/'(0) = /(1) =0} = X*. So we can

write (1.1) as
4 H 4, H T M) (1.5)
where D(4,) = X' x X7 =Y,
An= [OA YN a>] and. [ifb - [f@?u)] |

For n > 0, —A, is a sectorial operator and generates an analytic semi-

group of contractions (see [6, 7]). For n > 0, the equation (1.5) generates a
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C'-semigroup T, on Y° = H' x L2 T,(t), t > 0, is a gradient system asymp-
totically smooth. Furthermore, as proved in [5] to a more general case, T),(t)
admits a global attractor A,. By using regularity results we have A, C Y.

In order to keep the similarity, we rewrite (1.2) in a matrix form

Saflonfh oo

where
An = [—?4,1 —2(771413?/2 +a)] and H([g]) - {f(?])}

For (1.6), we have a global attractor A,,.

Considering

dy (A, B) = sup inf dy (z,y) (1.7)
rcAYEDB

we can define the continuity of a family of sets B,, C Y in the following form:
a family B, is continuous in 7 if it is upper semicontinuous at 79, that is,
dy (By, By,) — 0 as n — 1n9; and it is lower semicontinuous at 7, that is,

Sy (By,, By) — 0 as n — np.

In most problems, the ideal situation is having the asymptotic dynamics
of one equation the same of the asymptotic dynamics of its discretization.
Nevertheless, studying the linear wave equation, we noted that the spectrum
of the discretization and the spectrum of its continuous counterpart are far away
from each other, no matter how fine the discretization is. That also happens
to some parabolic equations but in this set of problems the nonconvergent part
is controlled by the fact that the real part of the eigenvalues is negative and
very large in absolute values (the corresponding modes do not interfere in the
asymptotics). The spectrum of A, with 7 = 0 do not have this property. That

is restrictive to the hyperbolic equation, i.e. n = 0.
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In order to overcome this problem we propose to approach the semilinear
damped wave equation with n = 0 (hyperbolic case) by a “parabolic equation”
strongly damped ( > 0) and then to make the approximation of this equation
by its discretization.

In [3], they proved that the family of global attractors A,, n > 0 is contin-
uous (lower and upper) in n = 0 . Note that n = 0 in (1.5) give us the damped
wave equation.

In order to compare the problems (1.5) and (1.2) it was necessary to consider
the space R™ x R"™ embedded in the phase space of the continuous problem.
We also consider two norms in R™ x R™ which are the discretization of norms
in the continuous space (Y? and Y'!). Studying the problem, we realize it was
not possible to reduce the phase space dimension using a finite dimensional
invariant manifold. The reduction to a finite invariant manifold was used to
prove the topological equivalence between the dynamics of the discretization
and the continuous heat equation, see [4]. The spectrum of A, do not satisfy
the existence of a large gap, since limy oo Re(Ay(x41)) — Re(A+r) = 71, where
Mg is the k' eigenvalue of A,,, therefore we could not use this technic.

We workout this problem for a fix n > 0 as follows. First, we analyze the
closeness of the linear semigroups in the norm Y. In order to do that, we
decompose the semigroups in two parts. One of them, is defined on an infinite
space dimension, such that Re(Ai;) — —oo, where & — oco. It means that
the semigroup norm can be set arbitrarily small. So our problem becomes to
compare the semigroups in a finite dimension space. We did that using the
convergence of the eigenvalues and eigenvectors of the discrete problem to the
continuous problem. Then, we compare the nonlinear semigroups and, finally,

we prove the upper semicontinuity of the global attractors A, ,,. This procedure
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was used in [1]

The main result of this paper is

Theorem 1.1. The family of global attractors A, is upper semicontinuous

at n = oo, for any n > 0.

Theorem 1.1, and the fact that the family A, is upper continuous (see [3]),

leads to the following important result

Theorem 1.2. Let A be the attractor of (1.1) for n =0. Then, there exists a

sequence (1,ny) such that 6( Ay, , A) converges to zero when n — 0.

These results can be summarized in the following diagram

n—0
A Ay
~
AN
N
AN
N n—o0, n fixed
AN
N
AN
N
Ay

where the arrows denotes upper semicontinuity when it points to the limit

problem and lower semicontinuity when it points to the family problems.

This paper is organized as follows. Section 2 recalls some spectral properties
of A, and A,,,. We also define the norms and some relations between R™ x R"
and Y and Y'!. In Section 3 we make the comparison of the linear semigroups.
The comparison of the nonlinear semigroups is done in Section 4. Finally, the

last section proves the upper semicontinuity of attractors A,,.
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2 Spectral properties of A, and A,,.

In this section, we recall from [6, 7] some important spectral properties of
A, and A,,,. We also define the norms and some relations between R™ x R"
and YO, Y1

Let vy, = (k:7r)2—|—% be the eigenvalues of A for k = 0,1, ---. The eigenvalues,

A+k, of A, are the solutions of
1
AN+ (202 + 2av) A+ v =0

and they are given by:

Ay = 77Vk —l—a i\/m/;/z — UL

For each n > 0, there exist an kg = ko(n) > 0 such that Ay is a real number
for k < ko and Ay is a complex number for k& > k.

The correspondents eigenfunctions are given by:

Gk = [/\f:ek] (2.1)
where e, = cos(kmzx) is a eigenfunction of A with respect the eigenvalue vy.
If Ay is a double eigenvalue then ¢ = Lok] is a generalized eigenfunction
associated with Aip. If Ayig is a complex eigenvalue then we consider the
following vectors 14, = Re(d+x) and ¥_p = Im(¢1y), in the real eigenspace
associated with Ayp.
We have the following properties:

1) the family (¢14);%, (¥41)7%y, is orthogonal in Y0

2) the family (¢_)F 0 (W-k)72y, is orthogonal in Y
3) (0—ir d1j)yo = 0, (Vi ¥yj)yo = 0, {P—i,thuj)yo = 0, (Y, d1j)yo = 0 if
i .
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Using the same arguments of [3] in section 2, we have that there are

K >1 and v > 0, independent of 7, such that |ent|| < Ke™7, for n > 0.

Similarly, the eigenvalues of A,, are given by v}’ = 4n? sin? g—g + g and the
associated eigenvectors are e = (cosknzy,--- ,coskrx,) for k=0,---,n—1

2;1. The eigenvalues, A}, of A,,, are the solutions of the equation

and x; =

A2 + (277(%‘)% +2av])A + v;} = 0 and are given by:

e o= —(meHY*+a) ﬁ:\/ Y2+ a)? —vp
The correspondents eigenvectors are given by:

0= sl (2.2

ALyer
where e} is the eigenvector of A,, associated with the eigenvalue v;!. If A}, is a
double eigenvalue then ¢} = [e%} is a generalized eigenvector associated with
XL,
If A}, is a complex eigenvalue then we consider the following vectors ¢, =
Re(¢%,) and ¢", = Im(¢%, ), in the real eigenspace associated with Aiy.
We also get that for each 7 > 0 and n > 0 exist a kg = ko(n, n) > 0

such that A%, is a real number for k < ky and A}, is a complex number for

ko <k <n.

In order to compare the problems (1.5) and (1.6), it is necessary to consider
in R” x R™ a compatible norm with the norm in Y°. Therefore, we define in

R™ x R™ the following inner product:

(V] [Z ] = oo wiae + v 20 (23)

where (U, W)gn = 31" | Lu; w; is the inner product L? discretized. We denote

for Y, the space R™ x R™ with the inner product given above.
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About the eigenvectors of A,, in the space Y,) we have:
1) the family ( +k)k 0 (W )R —p, 15 orthogonal in Y,;
2) the family (gb”k)k 0r (V") k=, is orthogonal in Y2,
3) (@75, 0% )ve = 0, (W7, 0 )yo = 0, (", ¥ i) ve = 0, (U7, %) yoe = 0 if
1# 7.
We also need to consider another inner product in R™ x R™ compatible with

the inner product in Y'', that means,

(V] [7]n = @tz + 0V 23 2.9

We denote by Y,! the space R™ x R™ with the inner product given above. We
make the distinction in the inner products by the index 0 or 1.

With a simple evaluation we get that

(AU, W)Hg Z n(uirr — ug)(wipr — Z U;W;.

We use the notation Y,? or ¥,! to indicate the inner product and the norm
considered in R™ x R™. Furthermore, we use in R", three differents norms
given by U] 12 = (U, U)g? which we call L*-discretized, [|[U]| 1 = (AnU, U/,
which we call H! discretized and Uz = (AnU, AnU&{f which we call H?
discretized. In order to avoid mistakes, we denote by [[U'[|z2 = (A,U, U)z the

L? norm discretized of the discretized derivative.

We also decompose the spaces R® x R™ and H! x L2.

We write H! x L? = ®E), where E}, is the generalized real eigenspace 2-
dimensional associated with the eigenvalues Ayg. If Ayj are real then Ey =
[p1k, d—k]. If Ay are complex, we consider the vectors ¢, = Regi; and

Y_ = Im¢,y the base of Ej. We observe that the family Fj is orthogonal.
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We denote by <II_,’§ the angle between ¢y, and ¥_j;. We observe that
cos(<g,]§) < 1-¢, for some £ > 0 and for any k. In fact, considering ||ex||z2 =1
we get

lexllFn + Re(Asi)Im(Ayy)
\/IlekH i+ (Re? () Im® () [lexll3: + (Re(Asw)Im(A )

coSs <i+k

b

remembering that Re(Ay1) = O(=nllex||z1) and Im(Ayr) = O((1—n2)2 |lex || 1)

then,

1+7n(1—1n?)z)?
lim cos (<I+k) < (Lt nld = )21)
koo 2+n(1—-n%)2

for some £ > 0. With this fact, we obtain the equivalence between the sum

<1-¢

norm, the max norm and inner product norm in each Fj, with equivalence
constants independent of k.
Therefore, for (u,v) € H! x L? we write
) )
=3 ((w,v){ bk + (u,v) = (u,
k=1 k=1

Using the orthogonal properties of Ej,, we have ||(u, v)||yo = (3 pey || (u, v)k 12)2
where (u,v)y is a projection of (u,v) in the space Fj.

Similarly, we write R" x R" = @©FE}' where I} is a two dimensional space
associated with the eigenvalues A%f,. If A}, are real eigenvalues then E}' =
(@7 s @™ 1], where @7t is the normalized eigenvector associated with A7, . If
A%, is complex we consider the vectors ¢, = Re¢’}, and 4", = Img" ;. a base
de E7.

Thus, (U, V) € R™ x R™ is

n

U, V) =) ((UV)idh + U V) o)
k=1

and [|(U, V) |lyo = >y (T, V)klI?)Y/2, where (U, V), is a projection of (U, V)

in the F} which are orthogonal.
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In order to make the comparison proposed, we use a technique of Numerical
Analysis which is denominated Internal Approximation of a Normed Space, see
[9]. We define a family {R" x R", Py,,,i2,}, n € N where Py, : YO — R" x R"
and 7, : R" x R" — Y© are denominated projection and inclusion respectively.

Let (U, V) = (u1,u, +* ,Upn, V1,02, - ,0,) € R® x R™ the inclusion ap-
plication, is,, is defined by ia, (U, V) = (u(x),v(x)) where u(x) and v(z) are

given by

ny
u(@) = urxp, gy + Y (it (i1 —ui)n(@ —2:))x(2i1 241y Fun Xzt gy (2.5)

— 2n ' 2n
and
v(x) = vixi, (2.6)
1=1

where I; is the interval [©=1, L)

We also defined a projection of Y° in R™ x R™ in the following way. For
each e, we define P,(e;) = U = (uy,uz, - ,u,) € R™ where u; = eg(z;),
hence, P, (e;) = eff. We define P, : L? — R™ by P! (3", aker) = > p_; axel,
P! H' — R" by P/(>7 | arer) = > poy axell, and Pa, : H' x L? — R" x R"
by Pon(u,v) = (P} (u), P, (v)).

For the inclusion and projection applications we have

Theorem 2.1. The inclusion application, is, : R x R" — H' x L? is contin-

uous. Furthermore, the continuity is uniform in n.

Proof: In fact, let u(z) given by (2.5), then

2 n—l .z, 2
2 _ W 2 Un
lu@)lz: = o=+ Z/ u?(2)d + 5P
Jj=1""
2 n—1 _2 2 2 n 2
uy j+1 Y Up uj 2
S T2yttt =2y =V
1 j=1
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and,
n—1
lu(@)IFn = nlujen —uy)? = U7
j=1
and let v(z) given by (2.6), then [Jv(x)||3. = ZJ LRV = HV|| . Thus,

iU, V) llyo = (Ju(@)lIF: + gIIU(w)II%z +lo(@)[172)2 < [T V) v

Theorem 2.2. The projection application, Ps,, is continuous. Furthermore,

the continuity is uniform in n.

Proof: In fact, let U = P,(cos(krz)) = (cos(kmxy),...,cos(kmxy)) then we

have

-1 1
1U11Zs = ; ~uf = ; ~ cos? (kma;) < 1= 2| cos(kma) [F2  (27)

and

— n—1
”U”%@ = Z n(uiyg —ui)? = Z n(cos(kmxiy,) — cos(krx;))?
1 1
. ) )
= Z % sen? k:ﬂ'a:z)— < (k)% < 2|7 sen(kmz)||2.

1

Thus,

[1Pon(dx)llve = [[(Paler) AxrPnler))lmixrz

0 1
(I1Paler) 17 + §||Pn(6k)||ig + Al 1P (er)[172)

IN

1) 1
2llexllmr + §2||ekHL2 + [Ask|2]|ex]|72)?

V2| parlyo

By using Theorems 2.1 and 2.2 we have that these applications are stable (see

[9])-

Another result is
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Theorem 2.3. i) Let Ay, be the eigenvalues of A, and N}, the eigenvalues of
Ayn, then for each k fized we have that N}, — A4y, when n — oo.
it) Let ¢4y, be the eigenvectors of A, and ¢%, the eigenvectors of A,,, then for

each k fized we have that i(¢",) — ¢+r when n — oo, and P,(ex) = ell.

For the inclusion application we use only ¢ and the dimension of the space

is omitted.

3 Comparison of Linear Semigroups

Let be eA7* and et the semigroups generated by A, and A,,, respectively.

We have the following result comparing the semigroups
Theorem 3.1. For each € > 0, there is a n,(€) such that Vn > ng
e (ug, vo) —i (e Py, (ug, v0))||yo < Met™P||(uo, vo)||c1+axca,t >0 (3.1)
for all (ug,vo) € C*+* x C* and
lenti(Uy, Vo) — i(e* ! (Us, Vo)) llyo < Met™?||(Us, Vo)|lyo,t >0  (3.2)
for all (Uy, Vo) € U,, Ayn-

Proof: We make the proof for the first inequality and when it is necessary we
note the changes for the second one.

Let € > 0 be a real parameter. We consider two cases
i) for 0 < t < e. In this case, when ¢ is small, we use that e~ is bounded by

Ke’t=8 for > v > 0. Hence,

e (uo, vo) — (e Pan (ug, vo))[lyo < K'e™ || (g, vo)|lyo

IN

MéytiﬁH (uo, ’UQ)Hyo.
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ii) for ¢ > €, we need estimate

e (uo, vo) — i(e™ ™ Pay (uo, v0))lyo-

In this case, we decompose Y in two subspaces. In the subspace of finite
dimension, we have the uniform convergence of eigenvalues and inclusion of
eigenvectors for the eigenvalues and eigenfunctions of the continuous problem.
In the subspace of infinite dimension, we have that the real part of eigenvalues

goes to —oo.

By using that A}, — A+ when n — oo and Re(Ayy) — —oo, when k — oo
and considering 5 € (0,1) a fixed number then there are K(e) and N(¢) such

that

eReQLIt < =8 eReQa)t < 478 for all n > N(e) and k > K(¢). (3.3)

Using K = K () given in (3.3), we consider the following subspaces ©@E},
1<k<K, @E' K+1<k<nofR"xR" and ®E, 1 < k < K, &F},
K+1<k<ooof YO Then,

lle (ug, vo) — i(e™" Py (g, v0))|lyo

K K
< [l > (wo, vo)i — e S (Pan(uo, v0)i)llyo
k=1 k=1
jo%) n
+ et ST (uosvo)llye + i€ 3" (Pan(un, vo))i) yo
k=K+1 k=K+1

By the continuity, uniform in n, of the applications inclusion and projection,

we have:
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it ™ (Pan(uo, v0))i)llyo < MlleAnt 3™ (Pan(ug, vo))illye
k=K+1 k=K+1
= M( Z ||€A""t(P2n(Uo,Uo))k”%gt;)l/z < M( Z (eRPXJ;t||(P2n(uo,Uo))kHy;g)Q)l/2
k=K+1 k=K+1

n

< Met™( ) ||(P2n(uo,vo))k|\§/g)1/2 < Met™ || Py (uo, vo) o
k=K+1

< M'et=P||(ug, vo)||yo

In the similar way, we have

oo

et Z (uo, vo)k[lyo < Met™"||(uo, vo)k|yo
k=K +1

We consider another operator B,, which possess the same eigenvalues of

Ay, but, associated with the eigenvectors of A,. Thus, we have

K K
e “(ug,vo)e — i(e "> " (Pan(uo, vo))i)|lyo
k=1 k=1
K K
< et Z U0, Vo) k —eB"tZ o, Vo) k[ yo
k=1
K K
+ [P (o, vo)x — i(e™ > (Pan(uo, v0))k)llyo
k=1 k=1

If each A%}, for 1 <k < K, is real then



UPPER SEMICONTINUITY OF ATTRACTORS FOR THE 15

~

K
| Z e (ug, vo)x, — Z ePnt (ug, vo)k [ yo
k=

k=1 1

[[(eM+F — eX5xT) (ug, v0) 4 + (X4 — X47) (g, v0) -k [130) '/

]~

IN

(

k=1

K
<2M max {JeMet — A, A rt - ML o, wo)i )2
- k=1
}'\n A
< 2Mt max {|e A s = Nyl [ YAk = A% I (wo, vo)lyo

< et (uo, vo) [ yo

for n > ny > ng, where X’jk is between A_; and A", ; and S\ik is between A
and A7 ,.

In the case A\yj complex, we denote by (ug,vo)x the component of (ug,vo)
in Fy and (ug,v0)r = 2a(cosd, —send) in the base 11k, ¥_k. In this case, we

have
et (ug, vo)i, = 2ae™* (cos(Bxt + 0)1hyx — sen(Byt + 8)Y_y),
Pt (ug,vo)i = 2ae™* (cos(Bpt + 0)Yik — sen(Bpt + O)y_y),

where A1y = o £ f and A}, = off £ 3}, then

[l (ug, vo)r, — P (ug, vo )k [0
< [|2ae***[(cos(Bxt + &) — cos(Bit + 8))¢4r — (sen(Bxt + &) — sen(Byt 4 6))v—||
+[2alcos(Bit + 6)to ik — sen(Bpt + 8)ip_]|[[e™+Ht — ™|
< e 4B — Bl — 2asen(By + 8)¢4k — 2acos(Bit + 8)v_i||
ety — aj|[[2a cos(Bpt + 8)yr — 2asen (Bt + 8)yi|

< L(e“+'t|Br — B | + e+ t|a — ait|)|| (w0, vo ) ||

If (Pon(uo,v0))x = alf b, + a0, and (uo,vo)x = aqpthir + a_p_y
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then

K K
e8> " (o, vo)i — (e Y~ (Pan (1o, v0))i)llyo
k=1

k=1

K K
<1 Bt ug,vo)k — D ePrt (@l bk + a” i) lyo
k=1 k=1

i(eA"nt(PZn(u()a ’UO))]’C) HYO

] =

K
HI Y e (al bk + a ) -
k=1
K
< e (lagr — ayl [kl + la—k — a” |-kl
k=1

b
I
—

i(eAnntaikwik +a” ") |lyo

M=

K
+ Z Pt (al ik + al ) —
k=1

x>
Il
—_

Hence, we need to estimate |ay—a’l,| and |a_p—a”|. In order to calculate

. . b bk
this, we write a’};, = -t* and a;, = ** where
+k

e = (Pan (0, v0), W1 U™ 117 = (Pan(uo, v0), 97 k) (W7 4, W),

= IRl k1P = (@, 0 g)?
and

b = ((u0,v0), Yr) [o—kl1? = (0, v0), Y—) (Y—p Vi),
ek = |Vsrl*l—kl® = (Wqn, —i)?

and
| ellbr — 0| + levr — e l107

latr —aly] <
* letrllelt gl

Thus, it is sufficient estimate [byy — b7, | and |cypr — /| We consider two
cases:

I)(Umvo) = Z‘(Uo, Vo) and P2n(u071}0) = (Uo, Vo) for (Uo, Vo) € Ann;

1) (uo,vo) in C1He x C«.

Since that



UPPER SEMICONTINUITY OF ATTRACTORS FOR THE 17

D) [skllyo = 195 llve +O(3),

i) (Vg Y—i)yo = (Y4, 000 + O(£)

iii) (i (P (o)), cos(kma)) g = i) [ n(uip — wi) b sen(kma)de,
iV)(P (uo), Po(cos(kma)) g = 300 [2 iy — wi)km sen(kn;)da.

then
[(i(Pn(u0)), cos(kmx)) i — (Prn(uo), Pr(cos(kmz)) | < kn? z_: %(U;i.ﬂrl —u;).

If (ug,vo) = i(Uo, Vo) for some (Uy, Vo) € A, then, by [2], we have | J,, Ay »n
is bounded in Hg x Hj and nluit1 —ui| < |Ullgy +[|U]| g2 < 2K for 1 <4 <
n — 1, thus

k2

n

[(6(Pa(u10)), cos (k) s — (o (o), Pa(cos(kna)) gy | < ([ Uoll 3+ Uo ).

We also have

W)(i(Po (o)), cos(kma)) g2 = S0, [i5, vy cos(kma)d,
iv) (Pn(vo), Pu(cos(kma)) s = 370, }; v; cos(kmax;)dz.
Hence, ”

n

[(i(Pn(v0)), cos(kmz)) r2 — (Pn(vo), Pa(cos(kmz)) 2| < kjﬂ'z %vi.

i=1
We are in the case of (ug, vo) = i(Uy, Vi) for some (Uy, V) € A, ,, then, using
that |J,, Ay is bounded in H3 x H} and |v;| < IVlizz + [[VIz < 2K for
1 < i < n then,

k2

[(i(Pn(v0)), cos(km)) 12 — (Pu(vo), Pu(cos(kmz)) 12| < (IVollzz + Vol a3)-

n

Therefore,

3|>jz

[(i(P2n (0, v0)), Y+k)yo — (Pan(uo,v0), ¥ig)yvol < —|[(Uo, Vo)lly;:-
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If (ug,vo) # i(Uo, Vo) and (ug, vg) € O x O then we have |u; 1 —u;| <
0l v, 1] < [folloe. Thus
[(uo, cos(kma)) g — (P (uo), Po(cos(kmz)) g1 |
< [ug, cos(kmx)) g1 — (i(Pn(uo)), cos(kma)) g1 |
+[(i(Pn(uo)), cos(kmx)) p1 — (P (uo), Pr(cos(kmz)) g1 .

However,

. 1
[| (w0, v0) — i(Pan(uo,v0))|lyo < n—aH(Uovvo)chaxcw

Hence,

|<(UO7U0)7¢ik>Y0 - <P2n(u0700)7¢7ilk> 9

K
< nj”(Uo,Uo)HCHaxcw
Therefore, for case I)
[b1r — k| < Mn=H|(Uo, Vo)l
for case II),
|b+k - bik| < Mn_a”(uOva)”Cl‘*'(’xC“
and in analogous form, for k£, 1 < k < K we get
ek — eyl < Mn?

Analogously, we obtain |a_ — a”.|.
We came back to estimate e®1* ZkK:l(|a+k—aik|||1/J+k | +la—k—a”™ ||| Y—kl)-

In the case I)

n

K
Y (ark — abylllrel +lack — a4 llo-rl)
k=1

K

1> (el + [l

k=1

< e Mn~ 1” (U,

< et P (Uo, Vo) ly2
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and in the case IT)

K
et D (ask = abillerll +la—k — aZyll[Y-s)
k=1
K

< e M= (uo, vo) ler+axca D (I19+all + 1¥-l)
k=1

< et 7| (uo, vo) | 1+a x

Now we go to estimate
K K
| Z Pt (aly ik +a o) — Z i(emtal Wl 4 al ) [lyo
k=1 k=1

In order to do this, we consider a complex inclusion, that means the inclusion
of real part and the inclusion of imaginary part. In this case, we are considering

complex solutions.

Since that a'} ¢ +a” 0 = d dip+d” ¢k and a’}, 7, +a™ Y7 =
dy % +d? ", where dyy = 1/2(al, —ia”,) and d_j, = 1/2(a’};, +ia”;)

then

B n n
Pt (al o + algpoi) = MY dg + TR

and

i(emi (g + a"g"y)) = (e + e o)

= dygi(eten,) + d (e o)

Therefore
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e (@l ytpan + a™ppg) — (e (a0}, + a0 y)|
< | illle ppp — i(e G| + Ay e+t g_i —i(eX=r1gmy)|
= |d3 e p g — e eti(h )| + 1Ay e+ pg — eXti(om )|
< [d7 e [ dan — i@ )| + d e oy, — i(87)
< |y |e* K | gy + A2 g le* =+ K /nll gl

< MK fnl|(uo, vo) k|l < et || (uo, vo)|

Hence,

K K
1> eBrt(an b pnta i) = iledmtal bt ™) lyo < et (uo, vo) |l yo
k=1 k=1

Finally, in the case I),

K K
[Pt Z(Uo,vo k1l €A""tz Pan(u0,v0)))[lyo < €t (uo,vo)lyo,
k=1 k=1
and in the case II)
K K
||eB"tZ(u0,vo g — i(efnmt Z Py (u0,v0))k)|lyo < et P (uo, vo)||crtaxca-
k=1 k=1

4 Comparison of nonlinear semigroups

About the nonlinear semigroups we have

Theorem 4.1. Let T, (t) and T,,(t) be the nonlinear semigroups generated by

(1.5) and (1.6), respectively, then
| T, (t,5(Uo, Vo)) — i(Tyn(t, (Uo, Vo)) llyo < MeKot P, (4.1)

fort e (0,7), (Uy, Vo) € Ay, and for n < n(e)
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Proof: By the variation of constants formula and for (U, V) € A,,,, we have

t
Ty (t, (Uo, Vo)) = e (U, Vo) + /eA""(H)H(Tnn(s,(Uo%)))ds (4.2)
0
t
Tn(t,i(Uo,Vo)):eA"tz'(UO,VO)—&—/ M= (T, (5,i(Us, Vo)))ds  (4.3)
0

Then, for ¢t € (0,7)

HTn(t7i(U07 %)) - Z(Tnn(tv (Uo, ‘/())))HYU
< lle*i(Uo, Vo) — i(e™* (Uo, Vo)) lyo
+| / A EIN(T, (s,i(Un, Vo)) — i) Poy (T (5, i(Un, Vo)) dsyo
+| / A9 P (T (5, i(Uo, Vo)) — i(em 7 H Ty (s, (Uo, Vo)) )ds|yo
< et "[(Uo, Vo) e

/ le = n (T, (s, i(Un, Vo)) — il =) Py h(Ty (s, i(Un, Vo)) llyods
+/O li(e =) Py (T, (s, iU, Vo)) — e = H (T (s, (U, Vo))l yods

Since that i(Up, Vo) is bounded in H' x L? we have (T,,(s,i(Uo, Vo)))1 is
bounded in C%, thus ||A(T,(s,i(Uo, Vo)))||c1+e xce is bounded for all (Uy, Vo) €
U,, Ann. We also have H (T, (s, (Uo, Vb)) = Pon(h(i(Tyn(s, (Uo, Vo))))) then

HTn(t7 i(U0> VO)) - i(Tnn(t7 (U07 VO)))HYO

t
< et P (Uo, Vo) llyo + 6/ (t — ) P |W(T(5,i(Uo, Vo))l cr+a x cads

/ le = [[|Pan (R(T (5, (Uos Vo)) = Pon(A(i(Tyn (s, (Uo, Vo))l vods

-BK,

< et PKy 4 ert — +L/ (T, (5, (Uo, Vo)) — i(Tym (5, (Uos Vo)) |y odls

Hence, by Gronwall Inequality, we have that exists a constant M (3,7, L) such
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that
(T, (¢, i(Uo, Vo)) — i(Topn (£, (Uo, Vo)) | x 2 < MeKot™?, (4.4)

for t € (0,7), (Uo, Vo) € Ay and for n < n(e)

5 Upper Semicontinuity of global attractors A,
and i(A,,) in H' x L?

Now we can prove the main result

Theorem 5.1. The family of global attractors A, is upper semicontinuous

at n = oo, for any n > 0.

Proof: Since that |J,, A, is bounded in R™ x R and also [[i(U, V)| g1xr2 <
NVl then iU, Ayl ez < Uy Anlli e < K.
The global attractor A, attracts bounded of H' x L? thus, Vé > 0, exists
7 = 7(9) such that
Oy, (Ty(7,1(¢n)), Ay) < 6/2
for all ¢, € A, and for all n.

The attractors A, ,, are invariant, thus if ¢, € A, ,, then exists ¢,, € A,,, such

that T (7, ¢n) = Un.

Hence, we choose ng(0) = n(e(d)) > 0 such that

T (7,8(¢n)) = i( Ty (7, o))l < Mer™P ||| < 6/2

for n > ng(9).

Therefore,

6Yo (7’(1[)")’“47]) < (;Yu(i("/)n)’TTI(T?i(gbn)) + 5Y0 (Tﬂ(Tvi(¢n))’Aﬁ) <94

for all ¢, € A, and for all n > ng(9).
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