Towards reasoning about concurrency: a logical approach

XIII Seminário Informal (, mas Formal!)

Bruno Lopes

FRAME lab.
Instituto de Computação
Universidade Federal Fluminense

January, 2016
1 Concurrency

2 Petri nets

3 A logical approach
 PDL
 Petri-PDL
 DS_3

4 Model Checker

5 Examples

6 Ongoing
Towards reasoning about concurrency

Bruno Lopes

Concurrency

Petri nets

A logical approach

Model Checker

Examples

Ongoing

References

Contact

E. Dijkstra & C. A. R. Hoare (1965)
Towards reasoning about concurrency
Bruno Lopes
Concurrent
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

E. Dijkstra & C. A. R. Hoare (1965)
Towards reasoning about concurrency
Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

E. Dijkstra & C. A. R. Hoare (1965)
1 Concurrency

2 Petri nets

3 A logical approach
 PDL
 Petri-PDL
 DS3

4 Model Checker

5 Examples

6 Ongoing
Petri nets

C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.
C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.

Elements

- Place
- Transition
- Tokens
- Edge
C. A. Petri (1939)

A bipartite graph with two types of nodes: places and transitions.

Elements

- Place
- Transition
- Tokens
- Edge

Firing

A bipartite graph with two types of nodes: places and transitions.
Petri nets

C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.

Elements

- Place
- Transition
- Tokens
- Edge

Firing

\[p \rightarrow q \]
C. A. Petri (1939)
A bipartite graph with two types of nodes: **places** and **transitions**.

Elements
- Place
- Transition
- Tokens
- Edge

Firing

\[p \rightarrow q \]
C. A. Petri (1939)

A bipartite graph with two types of nodes: **places** and **transitions**.

Elements

- **Place**
- **Transition**
- **Tokens**
- **Edge**

Firing
C. A. Petri (1939)

A bipartite graph with two types of nodes: **places** and **transitions**.

Elements

- Place
- Transition
- Tokens
- Edge

Firing

\[
\begin{array}{c}
\text{p} \\
\downarrow \\
\text{q}
\end{array}
\]
C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.

Elements

- Place
- Transition
- Tokens
- Edge

Firing

\[p \rightarrow q \]
C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.

Elements

- □ Place
- □ Transition
- ● Tokens
- → Edge

Firing

- p
- q
- r
Petri nets

C. A. Petri (1939)

A bipartite graph with two types of nodes: **places** and **transitions**.

Elements

- Place
- Transition
- Tokens
- Edge

Firing

![Petri net diagram]

C. A. Petri (1939)

A bipartite graph with two types of nodes: **places** and **transitions**.
Petri nets

C. A. Petri (1939)
A bipartite graph with two types of nodes: places and transitions.

Elements

- **Place**
- **Transition**
- **Tokens**
- **Edge**

Firing

\[
\begin{align*}
\text{p} & \quad \text{q} \\
\text{r} &
\end{align*}
\]
Petri nets: usage example

Modelling
Petri nets: usage example

Modelling
Once a coin is inserted in a supposed machine, “Player 1” will able to begin his game.
Petri nets: usage example

Modelling
If the user wins, a token will be placed at “Win₁” and the user will be able to play again.
Petri nets: usage example

Modelling
If he loses, a token will be placed at “Win₂” or the game restarts if there is a draw match.
Petri nets: reasoning challenges

- State explosion
- Undecidability
- Incompleteness
Petri nets model

Type 1:

\[
\begin{array}{c}
\text{X} \\
\text{Y}
\end{array}
\]

Type 2:

\[
\begin{array}{c}
\text{X} \\
\text{Y} \\
\text{Z}
\end{array}
\]

Type 3:

\[
\begin{array}{c}
\text{X} \\
\text{Y} \\
\text{Z}
\end{array}
\]

E. S. de Almeida & E. H. Haeusler (1999)
As an example...

For a Petri net with the three types of transitions
As an example...

We may decompose the Type 1 transition...
As an example...

The Type 2 transition
As an example...

And the Type 3 transition

![Petri Net Diagram](image-url)
1 Concurrency

2 Petri nets

3 A logical approach
 PDL
 Petri-PDL
 DS_3

4 Model Checker

5 Examples

6 Ongoing
Propositional Dynamic Logic

PDL

Is a multi-modal logic used for specifying and reasoning on sequential programs. It uses one modality $\langle \pi \rangle$ for each program π.
Propositional Dynamic Logic

PDL

Is a multi-modal logic used for specifying and reasoning on sequential programs. It uses one modality $\langle \pi \rangle$ for each program π.

Language

Syntax: Let p be an atomic proposition and α a basic program

$$\varphi ::= p \mid T \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \pi \rangle \varphi$$

$$\pi ::= \alpha \mid \pi; \pi \mid \pi \cup \pi \mid \pi^*$$
Propositional Dynamic Logic

PDL

Is a multi-modal logic used for specifying and reasoning on sequential programs. It uses one modality $\langle \pi \rangle$ for each program π.

Language

Syntax: Let p be an atomic proposition and α a basic program

$$\varphi ::= p \mid T \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \pi \rangle \varphi \quad \sim \quad \text{“generator”}$$

$$\pi ::= \alpha \mid \pi ; \pi \mid \pi \cup \pi \mid \pi^*$$
Usage example

```latex
if p then
    \alpha;
    \beta;
    \textbf{while} q \textbf{do}
    \mid \beta;
end
end
```

Modelled in PDL

$p \rightarrow [\alpha; \beta] (q \rightarrow [\beta; \star] \neg q)$
Usage example

```plaintext
if p then
    α;
    β;
    while q do
        β;
    end
end

Modelled in PDL
p → [α; β](q → [β*]¬q)
```
Petri nets

- Native support to concurrence
- Intuitive graphical interpretation

Propositional Dynamic Logic

- Formal system to verify properties in programs
- Deductive systems
Petri nets

- Native support to concurrency
- Intuitive graphical interpretation

Propositional Dynamic Logic

- Formal system to verify properties in programs
- Deductive systems

Our approach
Unify these formalisms!
Petri-PDL

PDL Language

Syntax: Let p be an atomic proposition and α a basic program

$$\phi ::= p \mid T \mid \neg \phi \mid \phi \land \phi \mid \langle \pi \rangle \phi$$

$$\pi ::= \alpha \mid \pi ; \pi \mid \pi \cup \pi \mid \pi^*$$
Towards reasoning about concurrency
Bruno Lopes

Concurrency
Petri nets
A logical approach
Petri-PDL
Model Checker
Examples
Ongoing
References
Contact

PDL Language
Syntax: Let p be an atomic proposition and α a basic program

$$
\varphi ::= p \mid T \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \pi \rangle \varphi
$$

$$
\pi ::= \alpha \mid \pi; \pi \mid \pi \cup \pi \mid \pi^*
$$
Petri-PDL

Petri-PDL Language

Syntax: Let p be an atomic proposition and α a basic program

$$
\varphi ::= p \mid T \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \pi \rangle \varphi \quad \leadsto \text{now a Petri net}
$$

$$
\pi ::= \pi \circ \pi \mid \eta
$$
Petri-PDL

PDL Language

Syntax: Let p be an atomic proposition and α a basic program

$$
\varphi ::= p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \langle s, \pi \rangle \varphi \quad \leadsto \text{marked!}
$$

$$
\pi ::= \pi \odot \pi \mid \eta
$$

s : a sequence of names
Basic Petri nets

Type 1: at_1b

Type 2: a, bt_2c

Type 3: at_3b, c
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Petri-PDL
Model Checker
Examples
Ongoing
References
Contact

Firing function

\[
T_1 \\
\begin{align*}
f(s, at_1 b) &= \begin{cases}
 s_1 bs_2, & \text{if } s = s_1 as_2 \\
 \epsilon, & \text{if } a \not\prec s
\end{cases}
\end{align*}
\]

\[
T_3 \\
\begin{align*}
f(s, at_3 bc) &= \begin{cases}
 s_1 s_2 bc, & \text{if } s = s_1 as_2 \\
 \epsilon, & \text{if } a \not\prec s
\end{cases}
\end{align*}
\]

\[
T_2 \\
\begin{align*}
f(s, abt_2 c) &= \begin{cases}
 s_1 cs_2 s_3, & \text{if } s = s_1 as_2 bs_3 \\
 \epsilon, & \text{if } a, b \not\prec s
\end{cases}
\end{align*}
\]

\[
f(\epsilon, \pi) = \epsilon
\]
Towards reasoning about concurrency
Bruno Lopes

Concurrent
Petri nets
A logical
approach
Petri-PDL
Model
Checker
Examples
Ongoing
References
Contact

Instituto de Computation

Axiomatic System

(PL) Enough propositional logic tautologies

(K) \([s, \pi](p \rightarrow q) \rightarrow ([s, \pi]p \rightarrow [s, \pi]q)\)

(Du) \([s, \pi]p \leftrightarrow \neg \langle s, \pi \rangle \neg p\)

(Sub) If \(\models \varphi\), then \(\models \varphi^\sigma\), where \(\sigma\) uniformly substitutes proposition symbols by arbitrary formulas.

(MP) If \(\models \varphi\) and \(\models \varphi \rightarrow \psi\), then \(\models \psi\).

(Gen) If \(\models \varphi\), then \(\models [s, \pi]\varphi\).

(PC) \(\langle s, \eta \rangle \varphi \leftrightarrow \langle s, \eta_1 \rangle \langle s_1, \eta \rangle \varphi \lor \langle s, \eta_2 \rangle \langle s_2, \eta \rangle \varphi \lor \cdots \lor \langle s, \eta_n \rangle \langle s_n, \eta \rangle \varphi,\)

where \(s_i = f(s, \eta_i)\), for all \(1 \leq i \leq n\)

(R_{\epsilon}) \(\langle s, \eta \rangle \varphi \leftrightarrow \varphi\), if \(f(s, \eta) = \epsilon\)
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Petri-PDL
Model Checker
Examples
Ongoing
References
Contact

Axiomatic System

(PL) Enough propositional logic tautologies

(K) \([s, \pi](p \rightarrow q) \rightarrow ([s, \pi]p \rightarrow [s, \pi]q)\)

(Du) \([s, \pi]p \leftrightarrow \neg\langle s, \pi\rangle \neg p\)

(Sub) If \(\models \varphi\), then \(\models \varphi^\sigma\), where \(\sigma\) uniformly substitutes proposition symbols by arbitrary formulas.

(MP) If \(\models \varphi\) and \(\models \varphi \rightarrow \psi\), then \(\models \psi\).

(Gen) If \(\models \varphi\), then \(\models [s, \pi]\varphi\).

(PC) \(\langle s, \eta \rangle \varphi \leftrightarrow \langle s, \eta_1 \rangle \langle s_1, \eta \rangle \varphi \lor \langle s, \eta_2 \rangle \langle s_2, \eta \rangle \varphi \lor \cdots \lor \langle s, \eta_n \rangle \langle s_n, \eta \rangle \varphi\),

where \(s_i = f(s, \eta_i)\), for all \(1 \leq i \leq n\)

(R\(\epsilon\)) \(\langle s, \eta \rangle \varphi \leftrightarrow \varphi\), if \(f(s, \eta) = \epsilon\)
Towards reasoning about concurrency

Bruno Lopes

Concurrency

Petri nets

A logical approach

Petri-PDL

Model Checker

Examples

Ongoing

References

Contact

Towards reasoning about concurrency

Bruno Lopes

Concurrency

Petri nets

A logical approach

Petri-PDL

Model Checker

Examples

Ongoing

References

Contact

Axiomatic System

(PL) Enough propositional logic tautologies

(K) \([s, \pi](p \rightarrow q) \rightarrow ([s, \pi]p \rightarrow [s, \pi]q)\)

(Du) \([s, \pi]p \leftrightarrow \neg<s, \pi>\neg p\)

(Sub) If \(\vDash \varphi\), then \(\vDash \varphi^\sigma\), where \(\sigma\) uniformly substitutes proposition symbols by arbitrary formulas.

(MP) If \(\vDash \varphi\) and \(\vDash \varphi \rightarrow \psi\), then \(\vDash \psi\).

(Gen) If \(\vDash \varphi\), then \(\vDash [s, \pi]\varphi\).

(PC) \(\langle s, \eta \rangle \varphi \leftrightarrow \langle s, \eta_1 \rangle \langle s_1, \eta \rangle \varphi \lor \langle s, \eta_2 \rangle \langle s_2, \eta \rangle \varphi \lor \cdots \lor \langle s, \eta_n \rangle \langle s_n, \eta \rangle \varphi, \sim \) firing

where \(s_i = f(s, \eta_i)\), for all \(1 \leq i \leq n\)

(RE) \(\langle s, \eta \rangle \varphi \leftrightarrow \varphi\), if \(f(s, \eta) = \epsilon \sim\) stop
Usage example
Usage example

Petri-PDL formula:
Usage example

Petri-PDL formula:
\[\langle (\text{Coin}, \text{Player}_2), \text{Coin} t_1 \text{Player}_1 \circ \land \rangle \psi. \]
Usage example

Petri-PDL formula:
\[
\langle (\text{Coin}, \text{Player}_2), \text{Coint}_1 \text{Player}_1 \rangle \\
\langle f((\text{Coin}, \text{Player}_2), \text{Coint}_1 \text{Player}_1), \text{Coint}_1 \text{Player}_1 \odot \Upsilon \rangle \psi.
\]
Petri-PDL model

Frame: \(\mathcal{F} = \langle W, R_\pi, M \rangle \)

- \(W \) is a non-empty set of states
- \(R_\pi \) is a binary relation on \(W \) for each program \(\pi \)
- \(M \) is a function \(M: W \rightarrow S \) that returns a sequence of names for each state
A labeled Natural Deduction

\[\text{Peter-PDL} \]

\[\pi \square_e \frac{\{ w : [s, \pi](p \to q) \}^3, \{ w : [s, \pi]p \}^2}{\frac{\{ w : [s, \pi]q \}^3, \{ w : [s, \pi]p \}^2}{\frac{\{ w : [s, \pi](p \to q) \}^3}{\frac{u : p \to q}{u : p \to e}}\frac{u : p}{u : q}}\frac{u : q}{\pi \square_i}}\frac{\pi \square_i}{\pi \square_i} \]
Anti-Prenex Normal Form

APNF
The modalities are moved inwards a formula and only applied to modal literals.
Anti-Prenex Normal Form

APNF

The modalities are moved inwards a formula and only applied to modal literals.

A formula χ is in Anti-Prenex Normal Form (APNF) if, and only if

Let φ and ψ be formula in the language of Petri-PDL.

1. χ is a modal term; or
2. χ is of the form $(\varphi \land \psi)$, $(\varphi \lor \psi)$, or $(\varphi \rightarrow \psi)$, and φ and ψ are in APNF;
3. χ is of the form $[s, \pi] \varphi$, φ is disjunctive, and φ is in APNF; or
4. χ is of the form $\langle s, \pi \rangle \varphi$, φ is conjunctive, and φ is in APNF.
Divided Separated Normal Form for Petri-PDL

PPDL
Separates the contexts

- formulae which are true only at the initial state
- formulae which are true in all states
Resolution based calculus

An RPG game
An *RPG* game

A player walks through scenarios, taking a key (token in K) in his hand (a token in H) to open doors.
Resolution based calculus

An RPG game
If his hand is busy (a token in B) he can not open the door.
Resolution based calculus

An RPG game
Is it possible that after three rounds the player has opened one door, has a free hand and still has two keys to continue?
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. p_0 $[I]$
2. $\neg p_0 \lor \neg[(KKKH), \pi]\neg p_1$ $[U]$
3. $\neg p_1 \lor \neg[(KKx), \pi]\neg p_2$ $[U]$
4. $\neg p_2 \lor \neg[(KKyO), \pi]\neg p_3$ $[U]$
5. $\neg p_3 \lor \neg p$ $[U]$
6. $\neg p_0 \lor [KKHO, \pi]p$ $[U]$
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \hspace{1cm} [I]
2. \(\neg p_0 \lor \neg[(KKKH), \pi] \neg p_1 \) \hspace{1cm} [U]
3. \(\neg p_1 \lor \neg[(KKx), \pi] \neg p_2 \) \hspace{1cm} [U]
4. \(\neg p_2 \lor \neg[(KKyO), \pi] \neg p_3 \) \hspace{1cm} [U]
5. \(\neg p_3 \lor \neg p \) \hspace{1cm} [U]
6. \(\neg p_0 \lor [KKHO, \pi] p \) \hspace{1cm} [U]
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \hspace{1cm} [I]
2. \(\neg p_0 \lor \neg[(KKKH), \pi] \neg p_1 \) \hspace{1cm} [U]
3. \(\neg p_1 \lor \neg[(KKx), \pi] \neg p_2 \) \hspace{1cm} [U]
4. \(\neg p_2 \lor \neg[(KKyO), \pi] \neg p_3 \) \hspace{1cm} [U]
5. \(\neg p_3 \lor \neg p \) \hspace{1cm} [U]
6. \(\neg p_0 \lor [KKHO, \pi] p \) \hspace{1cm} [U]

\[
\text{ser2} \quad D \lor \neg[s, \pi] l \\
\quad l_1 \lor \cdots \lor l_n \lor l \\
\quad \frac{D \lor \neg[s, \pi] \neg l_1 \lor \cdots \lor \neg[s, \pi] \neg l_n}{\in U}
\]
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. p_0
2. $\neg p_0 \lor \neg [(KKKH), \pi] \neg p_1$ \hspace{1cm} $[I]$
3. $\neg p_1 \lor \neg [(KKx), \pi] \neg p_2$ \hspace{1cm} $[U]$
4.
6. $\neg p_0 \lor [KKHO, \pi] p$ \hspace{1cm} $[U]$
7. $\neg p_2 \lor \neg [KKyO, \pi] p$ \hspace{1cm} $[U], (ser2), (4, 5)$
An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \([I]\)
2. \(\neg p_0 \lor \neg[(KKKH), \pi] \neg p_1 \) \([U]\)
3. \(\neg p_1 \lor \neg[(KKx), \pi] \neg p_2 \) \([U]\)
6. \(\neg p_0 \lor [KKHO, \pi]p \) \([U]\)
7. \(\neg p_2 \lor \neg[KKyO, \pi]p \) \([U], (ser2), (4, 5)\)
Towards reasoning about concurrency

Bruno Lopes

Concurrency

Petri nets

A logical approach

Petri-PDL

Model Checker

Examples

Ongoing

References

Contact

Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \([\mathcal{I}]\)

2. \(\neg p_0 \lor \neg [(KKKH), \pi] \neg p_1 \) \([\mathcal{U}]\)

3. \(\neg p_1 \lor \neg [(KKx), \pi] \neg p_2 \) \([\mathcal{U}]\)

6. \(\neg p_0 \lor [KKHO, \pi] p \) \([\mathcal{U}]\)

7. \(\neg p_2 \lor \neg [KKyO, \pi] p \) \([\mathcal{U}], (ser2), (4, 5)\)

comp

\[
D \lor \neg [s, \pi] l \in \mathcal{U}
\]

if \(\eta \subseteq \pi \) and for any \(\pi_b \in \pi \),

\[
D' \lor [f(s, \pi_b), \eta] l \in \mathcal{U}
\]

\[
D \lor \neg [s, \pi] \neg D' \in \mathcal{U}
\]
Resolution based calculus

An RPG game
Modelling in Petri-PDL and applying APNF and DSNF we have

1. p_0 \hspace{1cm} [I]
2. $\neg p_0 \lor \neg [(KKKH), \pi] \neg p_1$ \hspace{1cm} [U]
6. $\neg p_0 \lor [KKHO, \pi] p$ \hspace{1cm} [U]
8. $\neg p_1 \lor \neg [KKx, \pi] p$ \hspace{1cm} [U], (comp), (7, 3)
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \hspace{1cm} [I]
2. \(\neg p_0 \lor \neg [(KKKH), \pi] \neg p_1 \) \hspace{1cm} [U]
6. \(\neg p_0 \lor [KKHO, \pi]p \) \hspace{1cm} [U]
8. \(\neg p_1 \lor \neg [KKx, \pi]p \) \hspace{1cm} [U], (comp), (7, 3)
Resolution based calculus

An RPG game
Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \[I \]
2. \(\neg p_0 \lor \neg [KKKH, \pi] \neg p_1 \) \[U \]
6. \(\neg p_0 \lor [KKHO, \pi] p \) \[U \]
8. \(\neg p_1 \lor \neg [KKx, \pi] p \) \[U \], \((\text{comp}), (7, 3)\)

\(\text{comp} \)

if \(\eta \subseteq \pi \) and for any \(\pi_b \in \pi \),

\[D \lor \neg [s, \pi] l \in U \]
\[D' \lor [f(s, \pi_b), \eta] l \in U \]
\[D \lor \neg [s, \pi] \neg D' \in U \]
Resolution based calculus

An RPG game
Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \hspace{2cm} \([I]\)
6. \(\neg p_0 \lor [KKHO, \pi]p \) \hspace{2cm} \([U]\)
9. \(\neg p_0 \lor \neg [KKKH, \pi]p \) \hspace{2cm} \([U], (\text{comp}), (8, 2)\)
Resolution based calculus

An RPG game
Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) [I]
6. \(\neg p_0 \lor [KKHO, \pi]p \) [U]
9. \(\neg p_0 \lor \neg [KKKH, \pi]p \) [U], (comp), (8, 2)
An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) [\(I \)]
6. \(\neg p_0 \lor [KKHO, \pi]p \) [\(U \)]
9. \(\neg p_0 \lor \neg [KKKH, \pi]p \) [\(U \), (comp), (8, 2)]

\[\begin{align*}
\text{ures} \quad D &\lor m \quad \in U \\
D' &\lor \neg m \quad \in U \\
\text{rames} \quad D &\lor D' \quad \in U
\end{align*}\]
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \([I]\)
10. \(\neg p_0 \) \([U],(ures),(9,6)\)
An *RPG* game

Modelling in Petri-PDL and applying APNF and DSNF we have

\[
\begin{array}{ll}
1. & p_0 \quad [I] \\
10. & \neg p_0 \quad [U], (ures), (9, 6)
\end{array}
\]
Resolution based calculus

An RPG game

Modelling in Petri-PDL and applying APNF and DSNF we have

1. \(p_0 \) \([I]\)

10. \(\neg p_0 \) \([U], (ures), (9, 6)\)

\[
\text{ires} \quad C \lor l \in I \cup U
\]
\[
C' \lor \neg l \in I
\]
\[
\therefore C \lor C' \in I
\]
Resolution based calculus

An RPG game
Modelling in Petri-PDL and applying APNF and DSNF we have

11. ⊥ [I], (ires), (10, 1)
Marked Petri nets characteristics

- There is no way to control fire rate
- There is no way to model different timings
Marked Petri nets characteristics

- There is no way to control fire rate
- There is no way to model different timings

Extend Petri net model
Stochastic Petri nets
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
An example...

Two processes: I/O bound and CPU bound
Towards reasoning about concurrency
Bruno Lopes
Concurrency
Petri nets
A logical approach
DS3
Model Checker
Examples
Ongoing
References
Contact

An example...

Two processes: I/O bound and CPU bound

\[
\begin{array}{c}
p_1 \\
\downarrow \quad \downarrow \\
T_1 \quad T_2 \\
\downarrow \\
p_2 \\
\downarrow \\
T_2 \\
\downarrow \\
p_3 \\
\downarrow \\
T_3 \\
\downarrow \\
p_4 \\
\downarrow \\
T_3 \\
\downarrow \\
p_5 \\
\end{array}
\]
An example...}

Two processes: I/O bound and CPU bound
Frame: $\mathcal{F} = \langle W, R_\pi, M, (\Pi, \Lambda), \delta \rangle$

- W is a non-empty set of states
- R_π is a binary relation on W for each program π
- M is a function $M : W \rightarrow S$ that returns a sequence of names for each state
- Π a stochastic Petri net program
- Λ a function $\Lambda : \Pi \rightarrow \mathbb{R}^+$
- δ a delay function $\delta : W \times \Pi \rightarrow \mathbb{R}^+$
Truth probability of a modality

\[\mathcal{M}_3, w \models \langle s, \pi_b \rangle \varphi \]

\[
\Pr(\mathcal{M}_3, w \models \langle s, \pi_b \rangle \varphi \mid \delta(w, \Pi)) = \frac{\delta(w, \pi_b)}{\sum_{\pi_b \in \Pi : f(s, \pi_b) \neq \epsilon} \delta(w, \pi_b)}
\]
1 Concurrency

2 Petri nets

3 A logical approach
 PDL
 Petri-PDL
 DS_3

4 Model Checker

5 Examples

6 Ongoing
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

Rock-Paper-Scissors

\[\Pi : \]
\[ct_3g_1g_2 \circ g_1t_1r_1 \circ g_1t_1s_1 \circ \]
\[g_1t_1p_1 \circ g_2t_1r_2 \circ g_2t_1s_2 \circ \]
\[g_2t_1p_2 \circ r_1s_2t_2w_1 \circ r_1p_2t_2w_2 \circ \]
\[r_1r_2t_2d \circ s_1r_2t_2w_2 \circ s_1s_2t_2d \circ \]
\[s_1p_2t_2w_1 \circ p_1r_2t_2w_1 \circ \]
\[p_1s_2t_2w_2 \circ p_1p_2t_2d. \]
Towards reasoning about concurrency
Bruno Lopes
Concurrency Petri nets
A logical approach Model Checker Examples Ongoing References Contact

Rock-Paper-Scissors

\[\Pi: \text{Does it always have a winner?} \]
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

Instituto de Computação

Petri-PDL model checker

```
mod PETRI-PDL is
  sort Place Places BasicProg Prog Net .
  subset Place < Places .
  subset BasicProg < Prog .

  op _t1_ : Place Place -> BasicProg [prec 30] .
  op __t2__ : Place Place Place -> BasicProg [prec 30] .
  op _t3__ : Place Place Place -> BasicProg [prec 30] .
  op _+_ : Prog Prog -> Prog [assoc comm prec 40] .
  op _-_- : Places Prog -> Net .

  vars A B C : Place . var W : Places . var P : Prog .

  rl [t1] : A W , A t1 B => B W , A t1 B .

  rl [t1] : A W , A t1 B + P => B W , A t1 B + P .

endm
```
Model checking
“Rock-Paper-Scissors”

1 mod VALUATION is
2 inc PETRI–PDL–MODEL–CHECKER.
3 ops c g1 g2 s1 s2 r1 r2 p1 p2 w1 w2 d : \rightarrow \text{Place}.
4 ops p q : \rightarrow \text{Formula}.
5 eq valuation(w1) = p. eq valuation(w2) = q. eq valuation(d) = ((\neg p)(\neg q)).
6 endm

1 reduce in VALUATION : modelCheck(\neg < c,(g1 t1 r1 + g1 t1 p1 + g1 t1 s1 +
2 g2 t1 r2 +
3 g2 t1 p2 + g2 t1 s2 + ((((((((
4 s1 s2 t2 d + s1 p2 t2 w1) + s1 r2 t2 w2) + p1 s2 t2 w2) + p1 p2 t2 d) +
5 p1 r2 t2 w1) + r1 s2 t2 w1) + r1 p2 t2 w2) + r1 r2 t2 d) + c t3 g1 g2 > (\neg (p \lor q)), 4, mt–placeslistset).
2 rewrites: 1139 in 24ms cpu (25ms real) (45942 rewrites/second)
3 result PPDLModel: ppdlModel(false, c \rightarrow g1 g2 \rightarrow g1 s2 \rightarrow s1 s2 \rightarrow d)
Model checking

“Rock-Paper-Scissors”

```
mod VALUATION is
  ops c g1 g2 s1 s2 r1 r2 p1 p2 w1 w2 d : --> Place .
  ops p q : --> Formula .
  eq valuation(w1) = p . eq valuation(w2) = q . eq valuation(d) = ((¬ p) (¬ q) ) .
endm

reduce in VALUATION : modelCheck(¬ < c,(g1 t1 r1 + g1 t1 p1 + g1 t1 s1 +
g2 t1 r2 +
g2 t1 p2 + g2 t1 s2 + ((((((s1 s2 t2 d + s1 p2 t2 w1) + s1 r2 t2 w2) + p1 s2 t2 w2) + p1 p2 t2 d) +
p1 r2 t2 w1) + r1 s2 t2 w1) + r1 p2
t2 w2) + r1 r2 t2 d) + c t3 g1 g2 > (¬ (p ∨ q)), 4, mt–placeslistset) .
rewrites: 1139 in 24ms cpu (25ms real) (45942 rewrites/second)
result PPDLModel: ppdlModel(false, c --> g1 g2 --> g1 s2 --> s1 s2 --> d)
```

No!
Gives a counterexample
1 Concurrency

2 Petri nets

3 A logical approach
 PDL
 Petri-PDL
 DS_3

4 Model Checker

5 Examples

6 Ongoing
Example: a SPN model for agents
Example: a multi-agent scenario

Scenario
Example: a multi-agent scenario

Scenario

A_1, A_2, A_3 and A_4 are agents that must collect and process some data from the resource centre r.
Example: a multi-agent scenario

Scenario

A_1 and A_2 can not make the full process and needs that A_3 or A_4 completes the computation.
Example: a multi-agent scenario

Scenario

A_3 and A_4 have a faster processor than A_1 and A_2.
Example: a multi-agent scenario

Scenario

A_1 and A_2 are in a shared memory system, but the clock of the processor of A_1 is faster then A_2.
Example: a multi-agent scenario

Formalizing
Controlling the clock difference:
Example: a multi-agent scenario

Formalizing
Controlling the clock difference: set adequate values to λ.
Example: a multi-agent scenario

Formalizing
$\mathcal{D}S_3$ formula:
Example: a multi-agent scenario

Formalizing

DS_3 formula: $\langle \{rrrrm\}, rmt_2 A_1 \circ rmt_2 A_2 \circ rt_1 A_3 \circ rt_1 A_4 \circ A_1 t_3 A_3 m \circ A_2 t_3 A_3 m \circ A_1 t_3 A_4 m \circ A_4 t_3 A_4 m \rangle p.$
Example: a multi-agent scenario

Formalizing
Can A_1 and A_2 compute some data in parallel?
Example: a multi-agent scenario

Formalizing

Can A_1 and A_2 compute some data in parallel? Look at the result of the firing function.
Example: a multi-agent scenario

Formalizing

From a world \(w \) is it possible that \(A_1 \) collect some data to process?
Example: a multi-agent scenario

Formalizing

From a world w is it possible that A_1 collect some data to process? Compute

$$\text{Pr}(\mathcal{M}, w \models \langle s, \text{rmt}_2 A_1 \rangle \top | \delta(w, \text{rmt}_2 A_1 \odot \text{rmt}_2 A_2 \odot \text{rt}_1 A_3 \odot \text{rt}_1 A_4 \odot A_1 t_3 A_3 m \odot A_2 t_3 A_3 m \odot A_1 t_3 A_4 m \odot A_4 t_3 A_4 m)),$$
Example: a multi-agent scenario

Formalizing

From a world w is it possible that A_1 collect some data to process? Compute $\frac{\delta(w, rmt_2 A_1)}{\sum \delta(w, \pi_b)}$.

\[\pi_b \in \Pi : f(s, \pi_b) \neq \epsilon \]
Example: a multi-agent scenario

Formalizing

Are agents A_1 and A_2 overheading agents A_3 and A_4?
Example: a multi-agent scenario

Formalizing
Are agents A_1 and A_2 overheading agents A_3 and A_4? Verify if $\sum \delta(v_i, A_1 t_1 A_3 \odot A_1 t_1 A_4 \odot A_2 t_1 A_3 \odot A_2 t_1 A_4)^1 > \sum \delta(v_i, rt_1 A_3 \odot rt_1 A_4)^1$.

\[1 \]
Multi-agent Environment for Reasoning in Logic and Inferring Numerically (MERLIN)

1. a1 ← agent()
2. a2 ← agent()
3. a3 ← agent()
4. a4 ← agent()
5. setDataCenters(1)
6. send(a1, a3)
7. send(a1, a4)
8. send(a2, a3)
9. send(a2, a4)
10. collect(a1, freq=.5, shared=1)
11. collect(a2, freq=.5, shared=1)
12. collect(a3, freq=1)
13. collect(a4, freq=1)

http://github.com/blopesvieira/Merlin
Multi-agent Environment for Reasoning in Logic and Inferring Numerically (MERLIN)

```
1 > setResource(a1, 1)
2 > prToSend("a1", "a3")
3 [1] 0.4
```
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

1 Concurrency

2 Petri nets

3 A logical approach
PDL
Petri-PDL
DS₃

4 Model Checker

5 Examples

6 Ongoing
Towards reasoning about concurrency

Bruno Lopes

Concurrency
Petri nets
A logical approach
Model Checker
Examples
Ongoing
References
Contact

Ongoing...

- Automatic theorem prover
- Model checking framework for Dynamic Logics
- Studies on the computational complexity of the logics
Special thanks
Profa. Daniele Nantes
References I

References II

Bruno Lopes, Mario Benevides, and Edward Hermann Haeusler.
Propositional dynamic logic for Petri nets.

Bruno Lopes, Mario Benevides, and Edward Hermann Haeusler.
Reasoning about Multi-Agent Systems Using Stochastic Petri Nets.
Cláudia Nalon, Bruno Lopes, Edward Hermann Haeusler, and Gilles Dowek.
A calculus for automatic verification of Petri Nets based on Resolution and Dynamic Logics.
Contact information

Bruno Lopes (bruno@ic.uff.br)
http://www.ic.uff.br/~bruno
Instituto de Computação
Universidade Federal Fluminense
Niterói - RJ, Brazil