A Relational Theorem on the Correctness of General Recursive Programs

Jaime A. Bohórquez V.
jbohorqu@escuelaing.edu.co
Escuela Colombiana de Ingeniería

Mai 2, 2006
A Relational Theorem on the Correctness of General Recursive Programs

Agenda

1. Context
2. Regular Operators
3. Correctness of Regular Recursive Programs
4. Applications
5. Conclusions
Identify programs and specifications with their associated input-output relations on a space state Σ.

A programming theory may be developed within the framework of Tarski’s relational calculus where programs and specifications (possibly non-deterministic) are considered as logical predicates.

Look at recursive program definitions as fixed point equations associated to relational operators, whose solutions include the input-output relations corresponding to such programs.

Conditions (boolean expressions on Σ) correspond to relations whose domains coincide with the set of those initial states in which the condition holds, and which relates each member of its domain onto any final state whatsoever.
Continuous Operators

According to Knaster-Tarski theorem for a continuous relational operator \(f \) (function from relations to relations on \(\Sigma \)) the equation \(X = f.X \) has a solution on \(\Sigma \) (a complete lattice). There may be many solutions; the least of them is \(\mu f \), the least fixed point of the operator \(f \).
The continuity of \(f \) implies that \(\mu f \) can be constructed as the union of a series of approximations obtained by its iteration:

\[
\mu f = \bigcup_{n>0} f^n. O
\]

where \(f^0.R = R \)
and \(f^{n+1}.R = f(f^n.R) \) for all \(n \geq 0 \) and relation \(R \).
The Correctness Problem for a Recursive Program

Correctness Problem

Given the program (by its source text) which computes a function f with domain D ($D \subseteq \Sigma$) and given its specification in terms of a predicate S describing the desired relationship between its initial and final values, *find* non restrictive *regularity conditions* on its text to prove it correct with respect to S by a well-founded induction on a covering of D.
A Relational Theorem on the Correctness of General Recursive Programs

Regular Operators

Agenda

1. Context
2. Regular Operators
3. Correctness of Regular Recursive Programs
4. Applications
5. Conclusions
Every recursive program computing a function f with domain a subset of Σ, is an instance of the following abstract scheme:

$$f.s = \textbf{if } b.s \rightarrow q.s$$
$$\quad \Box c.s \rightarrow h(f, M.s)$$
$$\textbf{fi}$$

where

- s symbolizes the initial state of program f.
- conditions b and c correspond (initially) to all non-recursive and all recursive cases of its domain,
- $q.s$ is the final value given by f in the non recursive cases
- $h(f, M.s)$ involves at least one recursive invocation of f on a set of states $M.s$.
For a relational operator f corresponding to the program scheme above we may assume the existence of a relation Q and a relational operator \hat{h} fulfilling the following for all relation R,

$$f . R = Q \cup \hat{h} . R$$

with

(a) $QL \cap (\hat{h} . L)L = O$
(b) $\hat{h} . O = O$
The fact that the recursive program scheme above allows calculating the values of (program) function f by stages suggests both

i) requiring the associated operator f to be continuous

ii) defining the following concept:

Inductivity

Given an operator f, a relation R and a sequence of conditions $\langle c_n \rangle_{n \geq 0}$, we say that f is inductive over R through the given sequence if

$$f \cdot R \cap c_{n+1} = f(R \cap c_n)$$

for all $n \geq 0$.
The regularity conditions we looked for are the following:

Definition of Regular Operators

A continuous operator f is *regular* if it fulfills the following *regularity conditions*:

There exist a relation Q and an operator h such that

(a) $f.R = Q \cup h.R$ for all relation R.

(b) $Q L \cap (h. L)L = O$

(c) $h. O = O$

(d) h is inductive over every *fixed point* of f, through the sequence of conditions $\langle (f^n. O)L \rangle_{n>0}$.

The inductivity of h over any fixed point K of f through the ascending chain $\langle (f^m. O)L \rangle_{m>0}$ is equivalent to the inductivity of f over K through the same chain.
Proposition 1

For a *continuous* operator f, satisfying regularity conditions (a), (b) and (c) and K *fixed point* of f, the following three properties are equivalent:

(i) f is inductive over K through ascending chain $\langle (f^n \cdot O)L \rangle_{n>0}$.
(ii) $K \cap (f^n \cdot O)L = f^n \cdot O$ for all natural n.
(iii) $K \cap \mu fL = \mu f$, and sequence $\langle f^n \cdot O \rangle_{n>0}$ is stable.

Definition of a *Stable* sequence of relations

A sequence of relations $\langle R_n \rangle_{n \geq 0}$ is *stable* whenever

$$m < n \Rightarrow R_n \cap R_mL = R_m$$

for all natural numbers m and n.
Deterministic Programs are (easily) Regular

Inductivity condition is non restrictive for recursive programs defining (partial) functions:
if in scheme equation

\[f \cdot R = Q \cup h \cdot R \]

\(Q \) is a *univalent* relation and \(h \) is *closed on univalent relations*; necessarily, \(f \) is also closed on these relations and \(\mu f \) becomes a partial function. Therefore,

- if every fixed point of \(f \) is univalent (at least on the domain of \(\mu f \)) then necessarily, all of them coincide with \(\mu f \) on \(\mu f L \) and
- since the chain of *partial functions* \(f^n. O \) must be stable, by last proposition \(f \) satisfies inductivity condition (d).
Proof of Proposition 1

(i) f is inductive over K through ascending chain $\langle (f^n \cdot O)L \rangle_{n>0}$.

(ii) $K \cap (f^n \cdot O)L = f^n \cdot O$ for all natural n.

Proof of (i) \equiv (ii):

"⇒" By induction on n. Case $n=1$ is easy. Suppose $n>1$.

\[
K \cap (f^n \cdot O)L \\
= \langle K \text{ fixed point of } f \rangle \\
f \cdot K \cap (f^n \cdot O)L \\
= \langle \text{Hypothesis (i)} \rangle \\
f(K \cap (f^{n-1} \cdot O)L) \\
= \langle \text{Inductive hypothesis} \rangle \\
f(f^{n-1} \cdot O) \\
= \langle \text{Definition of } f^n \rangle \\
f^n \cdot O
\]
Proof of Proposition 1

(i) f is inductive over K through ascending chain $\langle (f^n \cdot O)L \rangle_{n>0}$.
(ii) $K \cap (f^n \cdot O)L = f^n \cdot O$ for all natural n.

Proof of (i) \equiv (ii):

```
\[ f(K \cap (f^m \cdot O)L) \]
\[ = \langle (\text{ii}) \rangle \]
\[ f \cdot f^m \cdot O \]
\[ = \langle f \circ f^m = f^{m+1} ; (\text{ii}) \rangle \]
\[ K \cap (f^{m+1} \cdot O)L \]
\[ = \langle K \text{ fixed point of } f \rangle \]
\[ f \cdot K \cap (f^{m+1} \cdot O)L \]
```
(ii) \(K \cap (f^n \cdot O)L = f^n \cdot O \) for all natural \(n \).

(iii) \(K \cap \mu f L = \mu f \), and sequence \(\langle f^n \cdot O \rangle_{n>0} \) is stable.

Proof of (ii) \(\equiv \) (iii):

“\(\Rightarrow \)” a)

\[
K \cap \mu f L = \langle f \text{ continuous operator} \rangle \\
K \cap (\bigcup_{m>0} f^m \cdot O)L = \langle \text{‘} \circ \text{‘ and ‘} \cap \text{‘ distributes over ‘} \bigcup \text{‘} \rangle \\
(\bigcup_{m>0} K \cap (f^m \cdot O)L) = \langle \text{Hypothesis (ii)} \rangle \\
(\bigcup_{m>0} f^m \cdot O) = \langle f \text{ continuous operator} \rangle \\
\mu f
\]
Proof of Proposition 1

(ii) \(K \cap (f^n \cdot O)L = f^n \cdot O\) for all natural \(n\).

(iii) \(K \cap \mu f L = \mu f\), and sequence \(\langle f^n \cdot O \rangle_{n>0}\) is stable.

Proof of (ii) \(\equiv\) (iii):

\[\Rightarrow\] b) Suppose \(m < n\) then

\[
f^n \cdot O \cap (f^m \cdot O)L \]

\[
= \langle (ii) \rangle \]

\[
K \cap (f^n \cdot O)L \cap (f^m \cdot O)L \]

\[
= \langle \langle (f^n \cdot O)L \rangle_{n>0} \text{ ascending chain ; } m < n \rangle \]

\[
K \cap (f^m \cdot O)L \]

\[
= \langle (ii) \rangle \]

\[
f^m \cdot O
\]
(ii) \(K \cap (f^n \cdot O)L = f^n \cdot O \) for all natural \(n \).

(iii) \(K \cap \mu f \mathcal{L} = \mu f \), and sequence \(\langle f^n \cdot O \rangle_{n>0} \) is stable.

Proof of (ii) \(\equiv \) (iii):

“\(\Leftarrow \)"

\[
K \cap (f^n \cdot O)L
= \langle \text{“f continuous” } \Rightarrow (f^n \cdot O)L \subseteq \mu f \mathcal{L} \rangle \\
K \cap \mu f \mathcal{L} \cap (f^n \cdot O)L
= \langle \text{(iii)} \rangle \\
\mu f \cap (f^n \cdot O)L
= \langle \text{“f continuous”; range splitting} \rangle \\
((\bigcup_{m \leq n} f^m \cdot O) \cup (\bigcup_{m > n} f^m \cdot O)) \cap (f^n \cdot O)L
= \langle \cap \text{ distributes over } \cup \text{ twice}; (iii) \rangle \\
(\bigcup_{m \leq n} f^m \cdot O) \cup f^n \cdot O
= \langle \\langle (f^n \cdot O)L \rangle_{n>0} \text{ ascending chain} \rangle \\
f^n \cdot O
\]
A Relational Theorem on the Correctness of General Recursive Programs
Correctness of Regular Recursive Programs

Agenda

1. Context
2. Regular Operators
3. Correctness of Regular Recursive Programs
4. Applications
5. Conclusions
Definition
Relation P is defined by a *regular recursive scheme* associated to operator f, whenever

- P is a relation representing a program, and
- $P = \mu f$ i.e. P is the *minimum solution* of the fixed point equation associated to a *regular operator* f.

If relation P represents a *program* and a relation S represents a *specification*, the expression $P \subseteq S$ means that program P *meets* specification S.
Correctness Criterion

Proposition 2

If P is a program defined by a *regular recursive scheme* associated to an operator f via equation $f.R = Q \cup h.R$ (i.e. $P = \mu f$) then, there exists an ascending chain of conditions $\langle b_n \rangle_{n \geq 0}$ with union equal to PL, $b_0 = QL$, and such that

$$P \subseteq S \equiv Q \subseteq S \land (\forall n \mid n \geq 0 : P \cap b_n \subseteq S \Rightarrow h(P \cap b_n) \subseteq S)$$

This proposition gives an induction scheme for proving that program P satisfies S.

In fact, this scheme may be generalized to well founded relations on the classes determined by a covering on the domain of P.
Correctness Criterion

Partial Proof of prop. 2

Let $b_n = (f^{n+1} \cdot O)L$ for all non-negative n.

The equivalence is proved as follows:

\[
P \subseteq S \\
\equiv \quad \langle P = \mu f ; \ \text{definition of } b_n ; f \ \text{regular} ; \ \text{prop. 1} \rangle \\
\quad (\bigcup n \mid n \geq 0 : P \cap b_n) \subseteq S \\
\equiv \quad \langle \ \text{Set Theory} \rangle \\
\quad (\forall n \mid n \geq 0 : P \cap b_n \subseteq S) \\
\equiv \quad \langle \ \text{Induction on } n \rangle \\
\quad P \cap b_0 \subseteq S \ \land \ (\forall n \mid n \geq 0 : P \cap b_n \subseteq S \ \Rightarrow \ P \cap b_{n+1} \subseteq S) \\
\equiv \quad \langle P \cap b_0 = Q ; P = \mu f ; \ \text{proposition 1} \rangle \\
\quad Q \subseteq S \ \land \ (\forall n \mid n \geq 0 : P \cap b_n \subseteq S \ \Rightarrow \ f(P \cap b_n) \subseteq S) \\
\equiv \quad \langle f \cdot R = Q \cup h \cdot R \rangle \\
\quad Q \subseteq S \ \land \ (\forall n \mid n \geq 0 : P \cap b_n \subseteq S \ \Rightarrow \ h(P \cap b_n) \subseteq S)
General Correctness Theorem

If P is a program defined by a recursive scheme associated to a monotonic operator f via equation $f.R = Q \cup h.R$, then, for all well founded set $(\mathbb{C}, \sqsubseteq)$ with \mathbb{C} a countable family of conditions with union equal to PL, and ‘\sqsubseteq’ a well founded relation on \mathbb{C} such that

(i) $(\forall u \in \mathbb{C} \mid : u \subseteq QL \lor u \subseteq PL \cap \overline{QL})$

(ii) $(\forall u \in \mathbb{C} \mid u \subseteq PL \cap \overline{QL} : P \cap u \subseteq h(\bigcup v \mid v \sqsubseteq u : P \cap v))$

we have the equivalence of the following two propositions:

a) Program P satisfies specification S.

b) $(\forall v \mid v \subseteq QL : P \cap v \subseteq S) \wedge$

$(\forall v \mid v \subseteq PL \cap \overline{QL} :$

$(\forall u \mid u \sqsubseteq v : P \cap u \subseteq S) \Rightarrow h(\bigcup u \mid u \sqsubseteq v : P \cap u) \subseteq S)$
Agenda

1. Context
2. Regular Operators
3. Correctness of Regular Recursive Programs
4. Applications
5. Conclusions
Remember our recursive program scheme:

Abstract Recursive Scheme

\[
\begin{align*}
f.s &= \textbf{if } b.s \rightarrow q.s \\
&\quad \Box c.s \rightarrow h(f, M.s) \\
&\quad \textbf{fi}
\end{align*}
\]
Applying the Correctness Theorem

Restricting the application of previous theorem to functions (like f) requires finding a well founded relation ‘\sqsubseteq’ on the domain of f for which

$$c.s \land t \in M.s \Rightarrow t \sqsubseteq s$$

for all states s and t.

Besides this, regularity conditions above reduce to two (reasonable) conditions holding for all state $s \in \Sigma$:

1. $\neg(b.s \land c.s)$
2. $b.s \Rightarrow \text{dom } q.s$
This function $A(x, y)$ is defined for natural numbers x and y by

$$A(x, y) = \begin{cases}
 y+1 & \text{if } x=0 \\
 A(x-1, 1) & \text{if } y=0 \\
 A(x-1, A(x, y-1)) & \text{otherwise}
\end{cases}$$

This function is clearly defined by a regular inductive scheme. The usual lexicographic order relation on $\mathbb{N} \times \mathbb{N}$ (noted with ‘≺’) is a well founded relation satisfying the requirement given above:

$$(x-1, 1) \prec (x, y) \quad \text{if } x \neq 0 \land y = 0.$$

$$(x, y-1), (x-1, A(x, y-1)) \prec (x, y) \quad \text{if } x \neq 0 \land y \neq 0.$$
McCarthy’s 91 function

This function is defined for natural number x by

$$g.x = \begin{cases} x > 100 & \rightarrow x - 10 \\ x \leq 100 & \rightarrow g(g(x+11)) \end{cases}$$

This recursive scheme is regular. Partial order ‘\sqsubseteq’ on \mathbb{Z} defined as

$$x \sqsubseteq y \equiv y \leq 100 \land y < x$$

for all integers x and y, allows to apply our theorem. \sqsubseteq is a well founded relation such that

- if $x > 100$ then x is \sqsubseteq-minimal,
- $x+11 \sqsubseteq x$ if $x \leq 100$ and
- $g(x+11) \sqsubseteq x$ if $x \leq 100$.
McCarthy’s 91 function

If
\[g.x = \text{if } x > 100 \rightarrow x - 10 \]
\[\Box x \leq 100 \rightarrow g(g(x + 11)) \]
\fi

we may prove by induction on \((\mathbb{Z}, \sqsubseteq)\) that for all integer \(x\),
\[g.x = f.x \]

where

\[f.x = \text{if } x > 101 \rightarrow x - 10 \]
\[\Box x \leq 101 \rightarrow 91 \]
\fi

Since \(g.101 = 101 - 10 = 91 = f.101\), by definition of \(f\) and \(g\), it is enough to show that \(g.x = f.x\) for \(x \leq 100\).
\begin{align*}
g.x &= \langle \text{Definition of } g ; x \leq 100 \rangle \\
g(g(x+11)) &= \langle x+11 \sqsubseteq x ; \text{Inductive Hypothesis} \rangle \\
g(f(x+11)) &= \langle \text{Definition of } f ; x \leq 100 \rangle \\
\begin{cases}
 g(x+1) & \text{if } 100 < x+11 \leq 111 \\
 g(91) & \text{if } x < 90
\end{cases} \\
&= \langle \text{Ind. Hypothesis} \rangle \\
&= \langle \text{Definition of } f \rangle \\
91 &= \langle \text{Definition of } f ; x \leq 100 \rangle \\
f.x &
\end{align*}
A Relational Theorem on the Correctness of General Recursive Programs

Conclusions

Agenda

1. Context
2. Regular Operators
3. Correctness of Regular Recursive Programs
4. Applications
5. Conclusions
Final Conclusions

- We have found reasonable *regularity conditions* to ask of the code of a recursive program to prove it correct with respect to a given specification.

- (terminating) *Deterministic* recursive programs fulfill these regularity conditions.

- The correctness proof of a recursive program may be done by *induction on a well founded relation on its domain* induced by the values on which the program recurs (according to its code).