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Exercise 1. Let (V, τ) be a topological vector space. Prove that if A ⊂ V is a convex set,
then A (closure of A ) is a convex set.

Exercise 2. Let (V, τ) be a topological vector space. Prove that if A ⊂ V is a convex set,
then Int(A ) (interior of A ) is a convex set.

Exercise 3. Let (V, τ) be a topological vector space and A ⊂ V a convex set such Int(A ) 6=
∅. Under these assumptions show that Int(A ) = A .

Exercise 4. Prove Jensen’s inequality. Let F : V → R be a convex function. Then for
every finite set u1, . . . , un ∈ V and λ1, . . . , λn ∈ [0, 1] such that λ1 + . . .+ λn = 1, we have

F (λ1u1 + . . .+ λnun) ≤ λ1F (u1) + . . .+ λnF (un).

Exercise 5. Let ϕ ∈ Γ0(R) an even function and ϕ∗ ∈ Γ0(R) the Legendre-Fenchel trans-
form of ϕ. Let (V, ‖ · ‖) be a Banach space and consider the functions F : V → R and
G : V → R defined by F (u) = ϕ(‖u‖) and G(u) = ϕ∗(‖u‖∗). Prove that F ∗ = G

Exercise 6. Let α, α∗ ∈ (1,+∞) be such that 1/α + 1/α∗ = 1. Prove that the functions

ϕ(t) ≡ 1

α
|t|α and ϕ∗(t) =

1

α∗
|t|α∗

belong to Γ0(V ) and are conjugate convex functions. Use the previous exercise to conclude
that if (V, ‖ · ‖) is a Banach space and F,G : V → R functions given by

F (u) =
1

α
‖u‖α and G(u) =

1

α∗
‖u∗‖α∗

∗ .

Then F and G are conjugate convex functions.

Exercise 7. Prove the Fenchel-Young Inequality. Let (V, τ) be a locally convex Haus-
dorff space and F : V → (−∞,+∞]. Show that for any u∗ ∈ V ∗ and u ∈ domF we
have

〈u, u∗〉 ≤ F (x) + F ∗(u∗).

Moreover the equality holds if and only if u∗ ∈ ∂F (u).
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Exercise 8. Let p, q ∈ (1,+∞) and suppose that 1/p + 1/q = 1. By using the function
F (u) = (1/p)‖u‖p obtain a direct proof of the following inequality

〈u, u∗〉 ≤ ‖u‖
p

p
+
‖u∗‖q

q
.

Exercise 9. Prove the following theorem. Let (V, ‖ · ‖) be a Banach space. Suppose that
F : V → R is a lower semicontinuous function. Prove that F is continuous over the interior
of its effective domain.

Exercise 10. Prove the Principle of Uniform Boundedness. Let (X, ‖ · ‖X) and
(Y, ‖·‖Y ) be Banach spaces and for each i ∈ I an idex set, let Ti : X → Y be a bounded linear
operator. Suppose that supi∈I ‖Ti(x)‖Y < +∞ for each x ∈ X. Then supi∈I ‖Ti‖ < +∞,
where ‖Ti‖ denotes de operator norm.

Exercise 11. Show that the Legendre-Fenchel transform of F : R→ R given by F (x) = ex

is the function

F ∗(u∗) =


u∗ log u∗ − u∗, if u∗ > 0;

0, if u∗ = 0;

+∞, if u∗ < 0.

Exercise 12. Let (V, τ) be a locally convex Hausdorff space and for each i ∈ I, an arbitrary
index set, let Fi : V → R be an arbitrary function. Prove that(

inf
i∈I

Fi
)∗

= sup
i∈I

F ∗i and
(

sup
i∈I

Fi
)∗ ≤ inf

i∈I
F ∗i .

Exercise 13. Prove the Extreme Value Theorem. Let (K, τ) be a Hausdorff compact
topological space and F : K → R be a lower semicontinuous function. Then

S ≡
{
u ∈ K : F (u) = inf

v∈K
F (v)

}
is a non-empty closed subset of K.

Exercise 14. Let (V, τ) be a locally convex Hausdorff space and A be a closed convex
subset of V . Suppose that F : A → R is a convex, lower semicontinuous, and proper
function. Prove that the so-called solution set

S =
{
u ∈ A : F (u) = inf

v∈A
F (v)

}
is a closed and convex set which is possibly empty.

Exercise 15. Let (X, d) be a non-empty compact metric space and (C(X,R), ‖ · ‖∞) be
the Banach space of all real-valued continuous functions on X endowed with the norm
‖f‖∞ ≡ supx∈X |f(x)|. We denote by B(X) the sigma-algebra on X, generated by the open
sets. Let M1(X) ≡ {µ : B(X) → R : µ is a probability measure}. Use the Riesz-Markov
Theorem and Banach-Alaoglu Theorem to prove that M1(X) is convex and compact subset,
with respect to the weak-∗-topolgy.
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Exercise 16. Let (V, ‖ · ‖) be a Banach space and F : V → R a convex function. Prove
that if F is continuous at u, then ∂F (u) is a non-empty, convex and weak-∗ compact of V ∗.
Moreover the relation v 7−→ ∂F (v) is locally bounded at u, that is, there exist M > 0 and a
neighborhood O of u ∈ V such that ‖u∗‖ ≤M , whenever v ∈ O and u∗ ∈ ∂F (v).

Exercise* 17. Let (V, ‖ · ‖) be a separable Banach space and F : V → R a continuous
convex function. Then the set of points u, where F ′(u) (Gâteaux derivative of F at u) exists
is a dense Gδ in V .

Exercise 18. For x = (x1, x2, . . .) ∈ `∞(N) define a seminorm F : `∞(N)→ R as follows

F (x) = lim sup
n→∞

|xn|.

Then F is continuous, but nowhere Gâteaux differentiable. Compare this example with the
previous exercise.

Exercise 19. Consider the Hilbert space `2(N) endowed with its natural norm.
(i) Prove that C ≡ {x = (x1, x2, . . .) ∈ `2(N) : |xn| ≤ 2−n} is compact and convex subset.
Consider the function

F (x) =

{
−
∑∞

n=1

(
1
2n

+ xn
) 1

2 , if x ∈ C ;

+∞, otherwise.

(ii) Prove that F is continuous and convex.
(iii) Prove that ∂F (x) = ∅ for any x ∈ C such that xn > −2−n for infinitely many n.
(iv) Conclude that F is lower semicontinuous, but not continuous at any point of C .

Exercise 20. Consider the function φ : [0,+∞)→ R given by

φ(t) =

{
0, if 0 ≤ t ≤ 1

2
;

2t− 1, if 1
2
≤ t.

From φ we define a function F : `2(N)→ R by

F (x) =
∞∑
n=1

φ
(∑
k≥n

x2k

)
.

Prove that F is continuous and convex on `2(N) but it is not bounded on the unit ball.
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