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Abstract

We study a class of potentials f on one sided full shift spaces over finite or countable alphabets,
called potentials of product type. We obtain explicit formulae for the leading eigenvalue, the
eigenfunction (which may be discontinuous) and the eigenmeasure of the Ruelle operator. The
uniqueness property of these quantities is also discussed and it is shown that there always exists
a Bernoulli equilibrium state even if f does not satisfy Bowen’s condition.

We apply these results to potentials f : {−1, 1}N → R of the form

f(x1, x2, . . .) = x1 + 2−γ x2 + 3−γ x3 + ...+ n−γ xn + . . .

with γ > 1. For 3/2 < γ ≤ 2, we obtain the existence of two different eigenfunctions. Both
functions are (locally) unbounded and exist a.s. (but not everywhere) with respect to the
eigenmeasure and the measure of maximal entropy, respectively.

1. Introduction

The theory of Gibbs states in physics and mathematics led to the notion of the pressure
function and its variational formula for dynamical systems (Ruelle 1967, [13] and Walters 1975,
[16]). Since then a variety of results has been published to clarify existence and uniqueness of
equilibrium states maximizing the pressure, and this note is in the same spirit.

The classical condition for uniqueness of the equilibrium state requires summable variations
and was relaxed by Bowen ([4]) using a condition which is named after him. This has been
further investigated by Walters 1978 ([18]) who introduced a slightly stronger condition, which
is referred to as Walters’ condition, see also [3]. Yuri in 1998 ([22]) coined the term weak
bounded variation and also showed uniqueness. For many classes of maps on compact spaces
uniqueness has been proved as well, as a recent examples for this, Climenhaga and Thompson
in 2013 ([7]) used a restricted Bowen condition, and Iommi and Todd ([9]) studied the existence
of phase transitions for grid potentials (see [12]) on full shift spaces. We finally mention Sarig’s
work in 2001 ([14]) which opened a new field of studying this question on countable subshifts
(the non-compact case) using Gurevic’ pressure, or, for a more general approach to pressure,
the notion introduced by Stratmann and Urbański in 2007 ([15]).

In expansive dynamical systems an equilibrium state always exists, leading to the problem
of uniqueness and continuity properties of the density of the equilibrium state with respect
to canonical measures. These canonical measures may be defined as conformal measures (in
many cases the eigenmeasure of the Ruelle operator associated to the normalized potential or
simply Gibbs measures on shift spaces) or - as we show below - product measures (for example
a Bernoulli measure on shift spaces).

In this note we deal with a dynamical system T : X → X where T denotes the shift
transformation on X = AN, where A is a finite or countable set, called the alphabet of the

2000 Mathematics Subject Classification 28Dxx (primary), 37D35, 37B10, 82B05 (secondary).

L. Cioletti, O.A. Lopes and M. Stadlbauer are partially supported by CNPq. M. Denker was partially funded
by CAPES Grant 158/2012–Pesquisador Visitante Especial.



Page 2 of 21 L. CIOLETTI, M. DENKER, A. O. LOPES AND M. STADLBAUER

dynamics, and where X is equipped with the product topology of pointwise convergence and
the associated Borel σ-field. We consider potential functions

f : X → R

which can be written in the form

f(x) =

∞∑
n=1

fn(xn), x = (xn)n∈N ∈ X

and call these functions of product type (see Section 3), where fn : A → R are fixed functions
so that the sum converges. Although f is given by a sum (possibly a series) the terminology
product type is convenient because the function g = exp(f) appearing in the Ruelle operator
can be naturally represented by a product (possibly an infinity product).

Given a function f : X → R the Ruelle operator

Lfφ(x) =
∑

T (y)=x

φ(y) exp f(y) (1.1)

acts on bounded measurable functions if Lf (1)(x) <∞ for all x ∈ X.
The initial motivation for the present note was to show the existence of positive measurable

eigenfunctions of Lf and obtain criteria for its continuity (see [19] for details). In Section 6.2, we
show that, for a continuous potential f less regular than a Bowen potential, the eigenfunction
might oscillate between 0 and ∞ on any open set (see Theorem 6.1).

If f is of product type, the function g = ef appearing in the Ruelle operator (1.1) has
indeed a product structure. It is not hard to see that Lf and its dual act on functions with a
product structure and product measures, respectively. These basic observations permit explicit
representations of eigenfunctions, conformal measures and equilibrium states (which are of
possible interest in connection with computer experiments or applications in mathematical
physics). There are examples of potentials of product type which belong to Bowen’s and
Walters’ class (see [19, 20]), but also examples having less regularity properties than potentials
in these two classes.

We consider the following classes of potentials of product type. We say that g = ef is `1-
bounded if (‖fk‖∞)k≥2 ∈ `1, i.e.

∑∞
k=2 ‖fk‖∞ <∞ and is summable if

∑
a∈A exp(f1(a)) <∞.

Moreover, g is a balanced potential, if
∑
a∈A fk(a) = 0 for all k ≥ 1. Note that the first condition

is equivalent to the condition that g(x1, x2 . . .)/ exp(f1(x1)) is uniformly bounded. Combined
with summability, this implies that ‖Llog g(1)‖∞ <∞, independently of A being finite or not.
A balanced potential may be considered as a kind of normal form for potentials of product
type.

These conditions on potentials of product type can be used to describe the properties of the
corresponding Ruelle operator. We obtain the following results for the existence of conformal
and equilibrium measures under rather weak assumptions. If ‖g‖∞ <∞, then there is an
explicitly given product measure which is 1/g-conformal (Theorem 3.1). Furthermore, if g is
summable and `1-bounded, then there exists an explicitly given Bernoulli measure which is an
equilibrium state.

In order to obtain uniqueness of these measures, we have to impose Bowen’s condition. We
say that g = ef is in Bowen’s class if log g is of locally bounded distortion (see Proposition
2.1). That is, there exists k ∈ N, referred to as index, such that

∞∑
m=k

∞∑
n=m

sup{|fn(a)− fn(b)| : a, b ∈ A} <∞.

If Bowen’s condition holds for k = 2, observe that a summable and balanced potential
automatically is locally bounded. Under these assumptions, we show that there exists an
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explicitly given continuous eigenfunction of Llog g (Theorem 4.1) and, if A is finite, that the
conformal measure and the equilibrium state are unique (Theorems 3.3, 4.2).

Beyond Bowen’s condition, the situation is very different. If A is finite and for some k,

∞∑
i=k

max
a∈A

( ∞∑
j=i

log gj(a)

)2

<∞, (1.2)

there are three canonical measures, first the conformal measure µ for 1/g, secondly the
equilibrium measure µ̃ and last the measure of maximal entropy ρ. All three measures are
Bernoulli (i.e. the coordinate process is independent) and µ and µ̃ are absolutely continuous
with respect to each other. Moreover, there exist functions hµ ∈ L1(X,µ) and hρ ∈ L1(X, ρ)
which may exist only almost surely, but these functions are eigenfunctions for the action of
the operator on L1(X,µ) and Lp(X, ρ) (for 1 ≤ p <∞), respectively. The relationship between
h and the equilibrium measure is explained by ergodicity of a natural operator on L1(X, ρ)
defined by µ̃.

In order to illustrate the results we will study an explicit example in Section 6. In there, we
consider the potential f : {−1, 1}N → R of the form

f(x1, x2, ...) = x1 + 2−γ x2 + 3−γ x3 + ...+ n−γ xn + ...

which is a summable, locally bounded and balanced potential for γ > 1. If γ > 2, then ef is in
Bowen’s class, and for 3/2 < γ ≤ 2, condition (1.2) is satisfied. For the latter case, we obtain
that hµ and hρ are locally unbounded and therefore discontinuous. Furthermore, for 1 < γ ≤
3/2, these eigenfunctions do not exist and the measures µ, µ̃ and ρ are pairwise singular.

The paper is structured as follows. In Section 2, we recall the regularity classes of Bowen,
Walters and Yuri adapted to the setting of potentials of product type. In our setting, the
classes of Bowen and Walters coincide, and in particular, the existence of conformal measures
and continuous eigenfunctions for finite A could also be obtained by results in [19]. For
completeness, we give conditions for a potential of product type to be in Yuri’s class, although
we do not prove results under this regularity hypothesis in this paper. This is due to the fact
that the results by Yuri rely on a tower construction whose associated potential is of bounded
variation - or, from a more abstract viewpoint, on the existence of an isolated critical set or
isolated indifferent fixed points.

In Section 3, we then provide a very general condition for the existence of a conformal
measure and a condition for uniqueness. These results essentially rely on the observation that
the Radon-Nikodym derivative of a measure of product type is a function of product type, and
an ergodicity argument, respectively. In Section 4, we explicitly construct eigenfunctions and
equilibrium states, including the existence only ρ-almost everywhere when Bowen’s condition
is not satisfied and where ρ denotes the measure of maximal entropy. This is extended in the
following section to the action of the Ruelle operator on L1(X, ρ′) for certain product measures
and a condition for the uniqueness of h is given. Section 6 is then dedicated to the analysis of
the above mentioned example.

2. Regularity classes of potentials

In order to adapt the conditions by Bowen, Walters and Yuri to functions of product type
we begin specifying a metric on X = AN. For (xn), (yn) ∈ X, let

d(x, y) = 2−max{n:xk=yk∀k≤n}.

As it is well known, d generates the product topology of pointwise convergence and (X, d) is a
complete metric space which is compact if and only if A is finite. The cylinder sets form a basis
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of this topology, where, for a k-word (x1, . . . , xk) ∈ Ak, the associated cylinder set is defined
by [x1, . . . , xk] := {(yn)n≥1 ∈ X : yi = xi∀i = 1, . . . , k}.

The shift on X is defined by T : X → X, (x1, x2, . . .) 7→ (x2, . . .) and, as it is well known, is
a continuous transformation which expands distances by 2. In order to put emphasis on the
underlying topology and Borel σ-algebra, we will refer to (X,T ) as a topological Bernoulli shift
over the alphabet A.

Using a slightly different notation as in [19], for a function φ : X → R we let

varn(φ) := sup{|φ(x)− φ(y)| : d(x, y) ≤ 2−n}

denote the variation of φ over cylinders of length n. Then φ has summable variations ([17]) if

∞∑
n=1

varn(φ) <∞.

To simplify the notation we write Sn(φ) = φ+ ...+ φ ◦ Tn−1. In the sequel we define some
regularity classes in terms of the decay of varn(·). We say that a function φ : X → R belongs
to

(1) Walters’ class ([19]) if limk→∞ supn∈N varn+k(Sn(φ)) = 0,
(2) Bowen’s class ([4]) if ∃ k ∈ N such that supn∈N varn+k(Sn(φ)) <∞,
(3) Yuri’s class ([22]) if limn→∞

1
nvarn(Sn(φ)) = 0.

It has been remarked in [19] that the definition of Bowen’s class given here is equivalent to
Bowen’s original definition. Observe that for shift spaces, Walters’ condition is equivalent to
equicontinuity of the family {Sn(φ)) : n ≥ 1}, whereas Bowen’s condition provides a uniform
local bound on the local distortion of (Sn(φ))n≥1. Yuri’s condition is also known as weak
bounded variation ([22]). We now deduce necessary conditions for functions of product type
to belong to these classes. Assume that f : X → R is of the form

f((xn)n≥1) =

∞∑
n=1

fn(xn),

where (fn : A → R)n≥1 is a sequence such that
∑
n fn(xn) converges for all x = (xn)n≥1 ∈ X

and set

vn(f) := sup{|fn(a)− fn(b)| : a, b ∈ A}, sn(f) :=
∑
k>n

vk(f).

Proposition 2.1. For f of product type as above, the following holds.

(i) If
∑∞
n=1 sn(f) <∞ then f has summable variation.

(ii) If
∑∞
n=k sn(f) <∞ for some k ∈ N, then f belongs to Bowen’s and Walters’ class.

(iii) If limm→∞
1
m

∑m
n=1 sn(f) = 0, then f belongs to Yuri’s class.

Proof. For x = (xn)n≥1, y = (yn)n≥1 with xj = yj for all j ≤ m+ k, it follows that

|Sm(f)(x)− Sm(f)(y)| =

∣∣∣∣∣∣
m−1∑
j=0

∞∑
n=1

fn(xn+j)− fn(yn+j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m−1∑
j=0

∞∑
n=m−j+k+1

fn(xn+j)− fn(yn+j)

∣∣∣∣∣∣
≤

m∑
l=1

∞∑
n=l+k+1

vn(f) =

m∑
l=1

sl+k(f).
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Hence, varm+k(Sm(f)) ≤
∑m
l=1 sl+k(f) ≤

∑
l>k sl(f). Assertions 2 and 3 easily follow from this

estimate. The assertion 1 is shown similarly.

Example 1. Assume that ‖fn‖∞ � n−γ for some γ > 1, where an � bn stands for the
existence of C > 0 with an ≤ Cbn for all n ∈ N. As γ > 1, it follows that

∑
n ‖fn‖∞ <∞.

Moreover, the estimate vn(f) ≤ 2‖fn‖∞ ≤ 2n−γ implies that sn(f)� n1−γ . In particular,∑m
n=1 sn(f)� n2−γ . Hence, if γ > 2, then f has summable variation and is in Bowen’s and

Walters’ class, and if γ > 1, then f is in Yuri’s class.

Example 2. In order to see that this classification through γ is sharp, we consider the
specific example f : {−1, 1}N → R of the form f(x) =

∑
n xnn

−γ . Then, for x = (xn)n≥1 and
y = (yn)n≥1 with xj = yj for all j ≤ m+ k and xj = 1 and yj = −1 for all j > m+ k, one
obtains as in the proof of Proposition 2.1 that, for γ 6= 2,

Sm(f)(x)− Sm(f)(y) =

m∑
l=1

∞∑
n>l+k

fn(1)− fn(−1) = 2

m∑
l=1

∑
n>l+k

n−γ

�
m∑
l=1

(l + k + 1)1−γ �
∣∣(k + 2)2−γ − (m+ k + 2)2−γ

∣∣ .
By the same argument, it follows that Sm(f)(x)− Sm(f)(y)� log(m+ k + 2)− log(k + 2) for
γ = 2. Hence, for this particular choice of f , it follows that f is in Bowen’s or Walters’ class if
and only if γ > 2. Furthermore, f is in Yuri’s class if and only if γ > 1.

3. Conformal measures of product type

3.1. Existence

Conformal measures are used to denote the existence of probability measures µ with a
prescribed Jacobian J = dµ ◦ T/dµ. In this section we study their existence and uniqueness for a
given potential f of product type, where the Jacobian is given by J = e−f . Hence if g : X → R+

is a given positive function (also called a potential), f = log g is the potential for the associated
Ruelle operator Lf (see below), and g is said to be of product type if the associated f is of this
type, in particular, g can be written in the form g(x) =

∏∞
n=1 gn(xn) (x = (xn)n≥1), where the

gn are uniquely determined up to non-zero constants. In analogy to product type functions, we
also call a product measure µ = ⊗∞i=1µi on X = AN a measure of product type, where µi are
probability measures on A. Such probability measures are sometimes called Bernoulli measure.
These product measures are uniquely defined by their values on cylinders:

µ([a1, . . . , an]) =

n∏
i=1

µi(ai) a1, ..., an ∈ A.

Recall from [8] that a Borel probability measure µ on (X,B) is φ-conformal if there exists
λ > 0,

µ(T (A)) = λ

∫
A

φdµ

for all measurable sets A such that the shift map T : X → X restricted to A is injective. If the
Ruelle operator L− log φ acts on continuous functions its dual operator also acts on finite signed
measures, and it is well known that a measure µ is φ-conformal if and only if L∗− log φ(µ) = λµ,
for some λ > 0. Also note that λ usually is equal to the spectral radius of L− log φ.
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Theorem 3.1. Let (X,T ) be a topological Bernoulli shift over a finite or countable
alphabet A and let g =

∏∞
n=1 gn be a potential of product type.

(i) There exists at most one conformal measure µ of product type for g which is positive
on open sets. This measure µ is given by

µn(a) =

(∑
b∈A

n∏
i=1

gi(a)

gi(b)

)−1
for all n ∈ N, a ∈ A. (3.1)

(ii) If infx∈X g(x) > 0, then a conformal measure of product type for g exists and is positive
on open sets.

Proof. We begin with the proof of the first assertion. Let µ = ⊗∞i=1µi be a product measure
which is positive on open sets, in particular on each cylinder set. In order that it is conformal
for g, that is

µ(T [a1, . . . , an]) = µ([a2, . . . , an]) = λ

∫
[a1,...,an]

g(x)µ(dx)

for every cylinder set [a1, . . . , an], it is necessary and sufficient that

1 = µ(T [a]) = λ

∫
[a]

g1(x1)µ1(dx1)

∞∏
i=2

gi(y)µi(dy) (3.2)

for some λ > 0 and

µ1(a2) . . . µn−1(an) = µ(T ([a1, . . . , an]))

= λ

n∏
i=1

gi(ai)µi(ai)

∞∏
i=n+1

∫
gi(y)µi(dy) (3.3)

for any a1, . . . , an ∈ A. Varying a ∈ A in equation (3.2) yields

g1(a)µ1(a) = g1(b)µ1(b)

and hence

µ1(a) =

(
g1(a)

∑
b∈A

1

g1(b)

)−1
. (3.4)

The similarly equations (3.3) yield

µn(a) =
µn−1(a)

gn(a)

(∑
b∈A

µn−1(b)

gn(b)

)−1
. (3.5)

It follows that the conformality equalities (3.2) amd (3.3) uniquely determine the conformal
measure (which is positive on open sets and a product measure), hence the uniqueness of µ.
Moreover, by (3.3),

µn(a)

µn(b)
=
gn(b)

gn(a)
· µn−1(a)

µn−1(b)
.

Hence, the first part of the theorem follows by induction.

For the proof of the second part, note that the uniform lower bound on g is equivalent to
∞∑
i=1

log ‖g−1i ‖
−1
∞ > −∞.
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Hence, for any sequence of measures µi on A,∫
X

g(x)

∞∏
i=1

µi(dx) =

∞∏
i=1

∫
A
gi(u)µi(du) ≥

∞∏
i=1

‖g−1i ‖
−1
∞ > 0.

Hence the equations (3.2) and (3.3) show that the conformal product measure is well defined
and positive on open sets.

Due to the constructive proof above, it is possible to obtain explicit expressions for the
measure and the associated parameter λ.

Corollary 3.2. If infx g(x) > 0, then for every t ∈ R, the function g(t) = gt satisfies
infx g

t(x) > 0 as well and the conformality parameter λt satisfies

λt =
∑
c∈A

1∏∞
i=1 g(t)i(c)

for all t where the denominator does not vanish.

Proof. We may put t = 1. Inserting (3.1) into equation (3.2) yields

1 = λ

(∑
b∈A

g1(b)−1

)−1 ∞∏
i=2

∫
gi(u)µi(du).

Now by equation (3.1) ∫
gndµn =

∑
b∈A

gn(b)µn(b) =

(∑
b∈A

µn−1(b)

gn(b)

)−1
and by bachward induction over m∫

gndµn . . .

∫
gm−1dµm−1 =

(∑
b∈A

µm−1(b)

gn(b) . . . gm(b)

)−1 ∫
gm−1dµm−1.

Using (3.5)

gm−1(c)µm−1(c) = µm−2(c)
µm−1(b)gm−1(b)

µm−2(b)
∀ b ∈ A

and summing over c it follows that∫
gm−1dµm−1 =

µm−1(b)gm−1(b)

µm−2(b)
,

so the following identity holds∫
gndµn . . .

∫
gm−1dµm−1 =

(∑
b∈A

µm−1(b)

gn(b) . . . gm(b)

µm−2(b)

µm−1(b)gm−1(b)

)−1

=

(∑
b∈A

µm−2(b)

gn(b) . . . gm−1(b)

)−1
.

Taking m = 3 it follows that∫
gndµn...

∫
g2dm2 =

(∑
b∈A

µ1(b)

gn(b)...g2(b)

)−1
.
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Since by (3.4) ∑
c∈A

g1(c)−1 =
1

µ1(b)g1(b)

for every b ∈ A we obtain∑
c∈A

1

g1(c)

∑
b∈A

µ1(b)

gn(b)...g2(b)
=
∑
b∈A

1

gn(b)...g1(b)
,

and therefore the claim follows by taking n→∞.

3.2. Uniqueness

Uniqueness of conformal measures requires a stronger hypothesis. We prove

Theorem 3.3. Let the alphabet A be finite and suppose that gi : X → R+ (i ≥ 0, g0 a
constant) satisfy

∞∑
i=0

∞∑
k=i

log max{‖gk‖∞, ‖g−1k ‖∞} <∞. (3.6)

Then there exists exactly one conformal measure for the product type function g(x) =
g0
∏∞
i=1 gi(xi). Moreover, this measure is ergodic.

Proof. Let

Ki =

∞∏
k=i

max{‖gk‖2∞, ‖g−1k ‖
2
∞}, i ≥ 2.

Since (3.6) implies the existence condition for a conformal measure of product type, Theorem
3.1, guarantees a conformal measure for g which is of product type. Denote it by µ and assume
there is another conformal measure ν.

We claim that both measures are equivalent, provided ν([a])
µ([a]) ∈ [K−11 ,K1]. In order to show

this by induction, assume that for fixed n ∈ N and all cylinder sets [a1, . . . , an]

n+1∏
i=1

K−1i ≤ µ([a1, . . . , an])

ν([a1, . . . , an])
≤
n+1∏
i=1

Ki.

Then for any cylinder [a1, . . . , an+1] we have that

T ([a1, . . . , an+1]) = [a2, . . . , an+1]

and hence

ν([a2, . . . , an+1]) = λ

∫
[a1,...,an+1]

∞∏
i=1

gi(xi)ν(dx)

= λ

n+1∏
i=1

gi(ai)

∫
[a1,...,an+1]

∞∏
i=n+2

gi(xi)ν(dx).

The analogue equality holds replacing ν by µ and hence

µ([a1, . . . , an])

ν([a1, . . . , an])
=

∫
[a1,...,an+1]

∏∞
i=n+2 gi(xi)ν(dx)∫

[a1,...,an+1]

∏∞
i=n+2 gi(xi)µ(dx)

≤ Kn+2
µ([a1, . . . , an+1])

ν([a1, . . . , an+1])
,
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and a similar lower estimate holds interchanging µ abd ν. This shows that

n+2∏
i=1

K−1i ≤ K−1n+2

µ[a1, . . . , an])

ν([a1, . . . , an])
≤ µ[a1, . . . , an+1])

ν([a1, . . . , an+1])

≤ Kn+2
µ[a1, . . . , an])

ν([a1, . . . , an])
≤
n+2∏
i=1

Ki.

Since K =
∏∞
i=1Ki <∞, the claim is proved.

Next we show that a conformal measure ν satisfies ν([a]) > 0 for each a ∈ A. Indeed, let
b ∈ A with ν([b]) > 0. Then for any a ∈ A

ν([b]) = ν(T [ab]) =

∫
[ab]

g(x)µ(dx)

and hence ν([a]) ≥ ν([ab]) > 0 since g does not vanish.
It follows that any two conformal measures are equivalent since A is finite.

Next we claim that every conformal measure ν is ergodic: if A ∈ B satisfies T−1(A) = A
and ν(A) > 0, then it is easy to see that ν(· ∩A)/µ(A) is a conformal measure as well. Then
T−1(Ac) = Ac and so ν(· ∩Ac)/ν(Ac) is conformal if ν(A) < 1. Both measures are singular,
contradicting what has been shown so far. Hence ν(A) = 1 and ν is ergodic.

Assume now there is another conformal measure ν which by the previous steps has to be
absolutely continuous with respect to µ. Then there is a function h > 0, such that, dν = h · dµ
by the Radon-Nikodym theorem. Since

ν([a1, . . . , an]) =

∫
[a1,...,an]

h(x)µ(dx)

= λ

∫
[a,a1,...,an]

h(T (x))g(x)µ(dx)

= λ

∫
[a,a1,...,an]

h(T (x))

h(x)
g(x)ν(dx)

and

ν([a1, . . . , an]) = λ

∫
[a,a1,...,an]

g(x)ν(dx)

we obtain, letting n→∞ that ν a.s. h(T (x)) = h(x). Now, for every interval I the set A(I) =
{x ∈ X : h(x) ∈ I} is invariant. For each η > 0 there is one interval I of length η which has
positive measure, hence the conditional measure of ν restricted to this set A(I) is conformal,
and so ν(A(I)) = 1. Letting the interval shrink to a point c through a sequence of intervals
A(I) of measure 1, we see that h = c is constant a.s., finally this implies c = 1 and ν = µ.

Corollary 3.4. In case the alphabet is infinite then there is only one conformal measure
with

0 < inf
a∈N

µ([a])

ν([a])

where µ is the unique conformal measure of product type.

Proof. In this case the previous proof shows that ν is absolutely continuous with respect
to µ.
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4. Eigenfunctions of product type

We now analyse the (point) spectrum of the action of the Ruelle operator on functions of
product type. In order to do so, we extend previous definitions to functions g : X → R+ of
product type. We say that a measurable function g : X → R+ of product type is `1-bounded if

∞∑
k=2

‖ log gk‖∞ <∞, (4.1)

and remark that this condition implies that log g is absolutely convergent. Moreover, g is
called summable if

∑
a∈A g1(a) <∞. Observe that g is always summable if A is finite, and

that `1-boundedness in combination with summability implies that ‖Llog g(1)‖∞ <∞.
Furthermore, we use balanced forms for functions h of product type, which are defined by

h((xi)i∈N) = h0
∏
hi(xi) where h0 > 0 and

∏
a∈A hi(a) = 1 for all i ∈ N. In particular, if A

is finite and h is `1-bounded, then h always can be written in balanced form. Moreover, for
a function g =

∏∞
n=1 gn in balanced form, it follows that ‖ log gn‖∞ ≤ vn(log g) ≤ 2‖ log gn‖∞

for all n ∈ N. Hence, Bowen’s condition for log g with index 2 is equivalent to

∞∑
m=2

∞∑
n=m

‖ log gn‖∞ <∞. (4.2)

Recall from [19] that Bowen’s condition has a variety of important consequences when X
is compact, like e. g. uniqueness of the equilibrium state, the conformal measure and the
eigenfunction of the Ruelle operator. Therefore, the main novelty of the following result is the
fact that it is possible to explicitly determine the eigenfunction and the maximal eigenvalue.
We remark that the eigenvalue coincides with the one from Corollary 3.2 for the 1/g-conformal
measure, even though the construction below relies on the hypothesis that g is in balanced
form.

Theorem 4.1. Let (X,T ) be a topological Bernoulli shift over a finite or countable
alphabet A and g a function in balanced form. Then, the Ruelle operator L = Llog g maps
a balanced function h =

∏
hk with |

∑
a g1(a)h1(a)| <∞ to a balanced function.

(i) If L(h) = λh, for h =
∏
hk in balanced form and some λ > 0, then

λ = g0
∑
a∈A

∞∏
k=1

gk(a), hi(a) =
∏
k>i

gk(a) ∀i ∈ N, a ∈ A.

(ii) If g satisfies Bowen’s condition (4.2) of index 2, then the function h(x) =
∏∞
i=1 hi(xi),

with hi as above, is defined for all x ∈ X. Furthermore, if g is summable, then λ <∞.

Proof. We first show how the Ruelle operator L = Llog g acts on the set of balanced
functions. In order to do so, observe that if h = 1 and h is in balanced form, then all the
entries of h have to be equal to one. In particular, there exists at most one balanced form of a
function. For h in balanced form, we have

L(h)(x) =
∑
a∈A

g(ax)h(ax) = g0h0
∑
a∈A

g1(a)h1(a)

∞∏
i=1

gi+1(xi)hi+1(xi). (4.3)

Hence, provided that
∑
a g1(a)h1(a) is finite, the balanced form of L(h) is given by (L(h))0 =

g0h0
∑
a∈A g1(a)h1(a) and (L(h))i = gi+1hi+1 for all i ∈ N.

Proof of (i). Assume that L(h) = λh, for h in balanced form with h0 = 1. It follows from (4.3)
that L(h) = λh implies that λ = g0

∑
a∈A g1(a)h1(a) and hi = gi+1hi+1 for all i ∈ N. Hence,
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by induction,

hi =
∏
k>i

gk (∀i ∈ N), λ = g0
∑
a∈A

∞∏
i=1

gk(a).

Proof of (ii). Bowen’s condition implies that
∑
i≥2 log gi is an absolutely convergent series.

Hence, h(x) exists for all x ∈ X. In order to show the existence of λ, note that by summability,

λ = g0
∑
a∈A

∞∏
k=1

gk(a) ≤ g0
(∑

a∈A g1(a)
)
e
∑∞

k=2 ‖ log gk‖∞ <∞.

Since
∏
k gk(a) > 0, it follows from this that λ exists.

Observe that the theorem does not state that the space of balanced functions of product
type is L-invariant due to the fact that the sum

∑
a∈A g1(a)h1(a) might be not well defined if

A is infinite. In order to construct an invariant function space in this case one has to consider
subclasses of potentials and functions of product type. For example, it easily follows from the
argument in the first part of the above proof that, if g =

∏
i gi is summable and ‖gi‖∞ <∞

for all i, then Llog g acts on the space

{f =
∏
ifi : ‖gi‖∞ <∞ ∀i = 1, 2, . . .}.

The main motivation of this note is to consider potentials beyond Bowen’s condition. In
particular, it will turn out that Bowen’s condition is a sharp condition for the existence of
a continuous eigenfunction h. However, the situation with respect to measures is somehow
satisfactory, as it is possible to explicitly construct conformal measures and equilibrium states
for `1-bounded potentials. In order to do so, we first have to introduce the action of Llog g on
measures and the notions of pressure and equilibrium states.

If g is `1-bounded and summable, then log g is locally uniformly continuous and
‖Llog g(1)‖∞ <∞. Moreover, by a standard calculation, Llog g acts on uniformly continuous
functions. In particular,

∫
hdL∗log gµ =

∫
Llog g(h)dµ, for bounded continuous functions h,

defines an operator L∗log g on the space of finite signed Borel measures on X.
We now recall the definition of the pressure for countable state Markov shifts from [15]. As

it is shown in there, the pressure P (log g) defined by

P (log g) := lim
n→∞

1

n
log

∑
a∈An

sup
x∈[a]

n−1∏
i=0

g ◦ T i(x)

exists by subadditivity, but is not necessarily finite. However, as shown below, P (log g) <∞
for `1-bounded, summable potentials g. Also recall that, if A is finite and log g is continuous,
the variational principle ([16])

P (log g) = sup{hm(T ) +
∫

log g dm : m probability with m = m ◦ T−1}

holds, with hm(T ) denoting the Kolmogorov-Sinai entropy. Furthermore, if m is an invariant
probability measure which realizes the supremum, m is referred to as an equilibrium state.
However, note that this notion is only applicable if A is finite since it is unknown whether a
variational principle holds for general locally bounded, summable potentials.

The construction of an equilibrium state for topological Bernoulli shifts is based on the
following observation which reveals the independence from the existence of the eigenfunction
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h. Namely, a formal calculation gives, for x = (xi)i∈N, that

g(x)h(x)

λ · h ◦ T (x)
=
g(x)

λ

∞∏
i=1

hi(xi)

hi(xi+1)
=
g(x)h1(x1)

λ

∞∏
i=1

hi+1(xi+1)

hi(xi+1)

=
g(x)h1(x1)

λ
∏∞
i=1 gi+1(xi+1)

=

∏∞
i=1 gi(x1)∑

a∈A
∏∞
i=1 gi(a)

=: g̃(x). (4.4)

Hence, even though the function h might not exist, the quotients h/h ◦ T and g̃ = gh/(λh ◦ T )
are well defined for summable, locally bounded g.

The following theorem now provides explicit constructions of conformal measures and
equilibrium states as well as a partial answer to the existence of the eigenfunction. If the
sequence (log hi)i∈N, with (hi) as above is square summable, then the eigenfunction h exists
a.e. with respect to the Bernoulli measure of maximal entropy, but not necessarily with respect
to the conformal measure (see the class of examples in Section 6).

The motivation for the following definition, equivalent to (1.2) above, is to provide a sufficient
condition for this property. We say that g has `2-bounded tails if there exists k ∈ N such that

∞∑
i=k

sup
a∈A

( ∞∑
j=i

log gj(a)

)2

<∞, (4.5)

Theorem 4.2. Let (X,T ) be a topological Bernoulli shift over a finite or countable
alphabet A and let g be a `1-bounded, summable potential function. Furthermore, let λ be
as in Theorem 4.1 and assume that µ = ⊗∞n=1µn is a measure of product type and µ̃ is the
Bernoulli measure with weights {µ̃0(a) : a ∈ A}, where

µn(a) :=

n∏
i=1

gi(a)

/∑
b∈A

n∏
i=1

gi(b) , µ̃0(a) :=

∞∏
i=1

gi(a)

/∑
b∈A

∞∏
i=1

gi(b) .

(i) We have L∗log g(µ) = λµ, L∗log g̃(µ̃) = µ̃, log λ = P (log g) and

P (log g) = hµ̃(T ) +
∫

log gdµ̃.

If A is finite, then µ̃ is an equilibrium state.
(ii) If g is in balanced form, A is finite and, for some k > 1, (4.5) holds, then h(x) defined

as in Theorem 4.1 exists for almost every x ∈ X with respect to the (1/|A|, . . . , 1/|A|)-
Bernoulli measure on X. Furthermore, Llog g(h) = λh.

Proof. As it is well known, L∗log g(µ) = λµ if and only if µ is 1/g-conformal. Hence, by the
first part of Theorem 3.1, we have that µ is given by µn as in the statement of the theorem.
In order to verify that λ is as in Theorem 4.1, note that by bounded convergence,∫

Llog g1dµ = g0
∑
b∈A

g1(b)

∞∏
i=1

∫
gi+1(xi)dµi(xi)

= g0
∑
b∈A

g1(b)

∞∏
i=1

∑
a∈A g1(a) · · · gi+1(a)∑
a∈A g1(a) · · · gi(a)

= g0 lim
i→∞

∑
a∈A

g1(a) · · · gi+1(a) = g0
∑
a∈A

∞∏
i=1

gi(a).

Hence, L∗log g(µ) = λµ with λ as in Theorem 4.1. In order to show that L∗log g̃(µ̃) = µ̃, note that
g̃ as defined in (4.4) only depends on the first coordinate and in particular is of product type
and locally bounded. Furthermore, it follows from Llog g̃(1) = 1 that g̃ is summable. Hence,
L∗log g̃(µ̃) = µ̃ again by the first part of Theorem 3.1.
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We now establish P (log g) = hµ̃(T ) +
∫

log g dµ̃ by proving that hµ̃(T ) = log λ−
∫

log gdµ̃
and P (log g) = log λ. As µ̃ is a Bernoulli measure we obtain

hµ̃(T ) = −
∫

log µ̃([x1])µ̃(d(x))

= −
∑
a∈A

µ̃0(a)

(
log

∞∏
i=1

gi(a)− log
∑
b∈A

∞∏
i=1

gi(b)

)

= log
∑
b∈A

∞∏
i=1

gi(b)−
∞∑
i=1

∑
a∈A

log gi(a)µ̃0(a) = log λ−
∫

log gdµ̃.

In order to show that P (log g) = log λ, note that `1-boundedness implies for x, y ∈ [a1, . . . , an]
that there exists C > 0 such that

log

n−1∏
k=0

g(T k(x))

g(T k(y))
≤ 2

n−1∑
k=0

∑
i≥k

‖ log gi‖∞ ≤ Cn.

Hence, Lnlog g(1)(x) = e±CnLnlog g(1)(y) for all x, y ∈ X. Since log n/n→ 0, we have

P (log g) = lim
n→∞

1

n
logLnlog g(1)(x) = lim

n→∞

1

n

∫
logLnlog g(1)dµ

= lim
n→∞

1

n
log

∫
1d(Lnlog g)∗(µ) = log λ.

Hence, assertion 1 is proven. In order to show assertion 2, let ρ denote the (1/|A|, . . . , 1/|A|)-
Bernoulli measure on X, the measure of maximal entropy. Write ρ = ⊗ρi, the product of the
equidistribution ρi on A. With respect to this measure, and since g is balanced it follows that,
for all j ≥ k, ∫

log hjdρ =

∫
log hj(a)dρj(a) =

∑
i>j

∫
log gi(a)dρj(a) = 0.

We now consider (hi)i∈N as a stochastic processes on the probability space (X, ρ). In particular,
the above implies that E(log hj) = 0. Furthermore, for the variances of log hj , we obtain

Var(log hj) =

∫
(log hj)

2dρ ≤ max
a∈A

(log hj(a))2 = max
a∈A

(∑
i>j log gi(a)

)2
.

Hence, the summability condition implies that
∑
j>k Var(log hj) <∞. As a consequence of

Kolmogorov’s three series theorem (as in [11, Corollary 3 on p. 87]), it follows that log h =∑
j≥1 log hj converges ρ-a.s. The remaining assertion Llog g(h) = λh follows as in Theorem 4.1.

The existence of h in the second part of the above theorem is based on the fact that the log
of a balanced function has zero integral with respect to the measure of maximal entropy. By
considering a suitable scaling of h, an analogous result holds with respect to µ. The existence
of this function is equivalent to the equivalence of the measures µ and µ̃.

Theorem 4.3. Let (X,T ) be a topological Bernoulli shift over a finite or countable
alphabet A, let g be a `1-bounded, summable potential function of product type and let µ
and λ be as in Theorem 4.2.

(i) There is at most one h ∈ L1(X,µ) with Llog g(h) = λh and
∫
hdµ = 1.

(ii) If (4.5) holds for some k ∈ N, then the function

hµ((xj)) =

∞∏
j=1

∑
a∈A

∏j
l=1 gl(a)∑

a∈A
∏∞
l=1 gl(a)

∞∏
l=1

gl+j(xj) (4.6)
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is in L1(X,µ). Furthermore,
∫
hµdµ = 1, Llog g(hµ) = λhµ and dµ̃ = hµdµ.

(iii) The function hµ exists µ-a.s.. Moreover,
∫
hµdµ > 0 if and only if µ and µ̃ are equivalent.

If
∫
hµdµ = 0, then µ̃ and µ are singular measures.

Proof. (i) In order to show uniqueness, we will identify λ−1Llog g with the transfer operator.
As it was noted above, `1-boundedness and summability imply that λ−1Llog g acts on uniformly
continuous functions. It now follows from the conformality of µ that λ−1Llog g acts as the
transfer operator on L1(X,µ), that is

∫
ψλ−1Llog g(φ)dµ =

∫
ψ ◦ T · φdµ for all ψ ∈ L∞(X,µ)

and φ ∈ L1(X,µ). A further important ingredient is exactness, that is triviality of the tail
σ-field

⋂
n>1 T

−nB modulo µ. As µ is a product measure, it follows from Kolmogorov’s 0-1 law
that T is exact. Hence, by Lin’s criterion for exactness ([10], Th. 4.4)

lim
n→∞

‖λ−nLnlog g(φ)‖1 = 0

for all φ ∈ L1(X,µ) with
∫
φdµ = 0. In particular, if Llog g(h) = λφ and

∫
h dµ = 0, then ‖h‖1 =

0. Hence, if h1, h2 satisfy Llog g(hi) = λhi and
∫
hidµ = 1, then ‖h1 − h2‖1 = 0. This proves the

uniqueness of h.
(ii) In order to show that hµ exists, we employ Kolmogorov’s three series theorem as

in [11, Corollary 1 on p. 84]. Hence we have to show that |
∑ ∫

log h
(j)
µ dµj | <∞ and∑ ∫

(log h
(j)
µ )2dµj <∞, for

h(j)µ := ∆j

∞∏
l=1

gl+j(xj), where ∆j :=

∑
a∈A

∏j
l=1 gl(a)∑

a∈A
∏∞
l=1 gl(a)

.

By construction of µ, we have
∫
h
(j)
µ dµj = 1 and, by Jensen’s inequality,

∫
log h

(j)
µ dµj ≤ 0. In

order to prove summability of the first sum, it therefore suffices to obtain a lower bound which
follows from∫

log h(j)µ dµj =

∫∑
l>j

log gldµj − log
1

∆j
≥

∫∑
l>j

log gldµj + 1− 1

∆j

=

∫∑
l>j

log gldµj +

∑
a∈A

∏j
l=1 gl(a)(1−

∏
l>j gl(a))∑

a∈A
∏j
l=1 gl(a)

=

∫∑
l>j

log gl + 1−
∏
l>j

gl dµj = o

(
sup
a

(1−
∏
l>j gl(a))2

)
where we used log(1 + x)− x = o(x2) in the last identity. Hence, if (4.5) holds, then∑ ∫

log h
(j)
µ dµj is summable. Using a similar argument, it easily can be seen that log ∆j ∼∫∑

l>j log gldµj . Hence, if (4.5) holds, then
∑ ∫

(log h
(j)
µ )2dµj is summable. In particular, hµ

exists µ-a.s. by the three series theorem whereas it follows from
∫
h
(j)
µ dµj = 1 that

∫
hµdµ = 1.

In order to show that dµ̃ = hµdµ it suffices to show that µ̃([w]) =
∫
[w]
hµdµ, for each n ∈ N

and w = (w1, . . . , wn) with wj ∈ A. It follows from the product structure that∫
[w]

hµdµ =

n∏
j=1

∫
[wj ]

h(j)µ dµj =

n∏
j=1

∆j

∏j
l=1 gl(wj)∑
a

∏j
l=1 gl(a)

∞∏
l=1

gl+j(wj) = µ̃([w]).

Hence, hµ = dµ̃([w])/dµ. As λ−1Llog g acts as the transfer operator and dµ̃ = hµdµ is invariant,
it follows for each test function φ ∈ L∞(X,µ), that∫

φλ−1Lf (hµ)dµ =

∫
φ ◦ T · hmdµ =

∫
φhmdµ.

Hence, Lf (hµ) = λhµ.
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(iii) In order to prove the third part of the theorem, we will make use of the fact, that the shift
space X is a Besicovitch space and therefore, a measure differentiation theorem holds (see [2]).
That is, the function

Dµ(µ̃)((xj)) = lim
n→∞

µ̃([x1, . . . , xn])

µ([x1, . . . , xn])

exists and is finite µ-a.e.. Moreover, Dµ(µ̃) is the Radon-Nikodym derivative dµ̃ac/dµ, where
µ̃ac is the absolutely continuous part of µ̃ with respect to µ.

In order to apply the result, observe that Dµ(µ̃) = 0 implies that µ̃ and µ are singular
measures. However, if

∫
Dµ(µ̃)dµ = µ̃ac(X) > 0, it follows from ergodicity of µ̃ that µ̃ac = µ̃

and from

µ̃([x1, . . . , xn])

µ([x1, . . . , xn])
=

n∏
j=1

∏∞
l=1 gl(xj)/(

∑
a

∏∞
l=1 gl(a))∏j

l=1 gl(xj)/(
∑
a

∏j
l=1 gl(a))

=

n∏
j=1

∆j

∞∏
l=1

gl+j(xj)

that Dµ(µ̃) and hµ are equal µ-a.s.. It follows from ergodicity of µ that Dµ(µ̃) > 0 a.s.

5. Eigenfunctions in L1-spaces

The Ruelle operator Lf with f ∈ C(X) acts on classes of measurable functions modulo any
Bernoulli measure ρ on X of the form ρ = ⊗∞i=1ρ0, where ρ0 is any probability measure on A.
Indeed, note that ρ is a shift invariant and ergodic measure on (X,T ). Let φ, ψ be two functions
which agree ρ almost surely. Let A = {φ = ψ}. Then ρ(A) = 1 and because of invariance of ρ
we may assume that T−1(A) ⊂ A. Then by definition Lfφ = Lfψ on A (if the operator is well
defined for these functions), so that Lf maps equivalence classes of measurable functions into
such classes.

In this section we always assume that the alphabet A is finite. Then the Ruelle operator
is always well defined on measurable functions. When the Ruelle operator is well defined in
case of an infinite alphabet the following results can be adapted. The first theorem is a slightly
modified and extended result from Theorem 4.2, part 2.

Theorem 5.1. Let g = ef =
∏∞
i=0 gi be a balanced potential function.

1. The Ruelle operator Lf defines canonically a bounded linear operator on Lp(X, ρ) for all
1 6 p ≤ ∞, where ρ = ⊗∞i=1ρ0 is any stationary Bernoulli measure.

2. Assume that g has `2-summable tails, that is for some k > 1,

M :=

∞∑
i=k

max
a∈A

( ∞∑
j=i

log gj(a)

)2

<∞,

and that ρ is a stationary Bernoulli measure with∫
log gk(x)ρ(dx) = 0 ∀k ≥ 1.

Then the function h : X → R+ ∪ {∞} defined by

h((xi)i∈N) =

∞∏
i=1

hi(xi) hi(a) =
∏
k>i

gk(a) a ∈ A

belongs to Lp(X, ρ) for every 1 ≤ p <∞ and is an almost surely positive eigenfunction of
Lf : Lp(X, ρ)→ Lp(X, ρ) with eigenvalue

λ = g0
∑
a∈A

∞∏
k=1

gk(a).
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Proof. 1. We need to show that Lf sends Lp(X, ρ) into itself. Indeed, let 1 6 p <∞ be fixed
and ϕ ∈ Lp(X, ρ). Bounding f from above by its supremum norm and using the triangular
inequality we get

|Lf (ϕ)(x)|p = |
∑
a∈A

ϕ(ax)g(ax)|p ≤ ‖g‖p∞
∑
a∈A
|ϕ(ax)|p.

By the hypothesis ∫
X

|ϕ(x)|pdρ(x) < +∞

and since ρ is a Bernoulli measure,∑
a∈A

∫
X

|φ(ax)|pρ(dx) = |A|
∫
X

|φ(x)|pρ(dx) <∞,

thus proving that Lf sends Lp(X, ρ) to itself in case 1 ≤ p <∞. The case p =∞ is trivial
because the Ruelle operator is just a finite sum of a product of two uniformly bounded functions.

This estimate also shows that Lf can be considered as a bounded operator acting on Lp(X, ρ)
for 1 ≤ p ≤ ∞.

2. We first show that h is almost surely finite. Similarly to the proof of Theorem 4.2 the
random variables log hj satisfy

∫
log hjdρ = 0 and

Var(log hj) ≤ max
a∈A

∑
i>j

log gi(a)

2

.

Again by Kolmogorov’s three series theorem ([11, p. 87])
∑∞
i=1 log hi converges ρ a.s..

We show next that the moment generating function for H =
∑∞
n=1 log hn exists on R. Since

log hn(x) ≤ maxa∈A
∑
i>n gi(a) it follows from independence of log hn that that for p ≥ 2

E|H|p ≤ (M2p−2)1/2(EH2)1/2 ≤Mp−1
∞∑
n=1

E(log hn)2 ≤Mp

whence

EetH =

∞∑
n=0

tn

n!
EHn ≤

∞∑
n=0

(tM)n

n!
<∞.

In particular, for p ∈ N
Ehp = EepH <∞

and h ∈ Lp(X, ρ).
The proof is completed similar to the one given in Theorem 4.1.

We finally turn towards uniqueness questions of the eigenfunction h. We assume that the
alphabet A is finite.

The uniqueness of the eigenfunction h with respect to the eigenvalue λ takes the following
form. Recall that

µ0(a) = λ−1
∞∏
l=1

gj(a) a ∈ A

defines the equilibrium product measure. The operator

Pµ0
ψ(x1, x2, ...) =

∑
a∈A

ψ(a, x1, x2, ...)µ0(a)

acts on measurable functions and on ρ-equivalence classes in L1(X, ρ), whence Pµ0 will be
considered as an operator on L1(X, ρ).
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Theorem 5.2. Let A be a finite alphabet and ρ be a product measure as in the previous
theorem and g = ef be a balanced potential with `2-summable tails. Then the Ruelle operator
Lf : L1(X, ρ)→ L1(X, ρ) has (up to multiplication by constants) exactly one eigenfunction
h ∈ L1(X, ρ) with respect to the eigenvalue

λ = g0
∑
a∈A

∞∏
k=1

gk(a)

if and only if Pµ0 is ergodic (i.e. has only one eigenfunction for the eigenvalue 1 up to
multiplication by constants).

Proof. We only need to show uniqueness. Let φ ∈ L1(X, ρ) be an eigenfunction for the
eigenvalue λ. Let X1, X2, ... denote the i.i.d. coordinate process determining ρ. Then

φ(X1, X2, ...) = λ−1Lfφ(X1, X2, ...)

= λ−1
∑
a∈A

φ(a,X1, X2, ...)

∞∏
k=1

gk+1(Xk)g1(a)

and dividing by h(X1, X2, ...) yields

φ(X1, X2, ...)

h(X1, X2, ...)
= λ−1

∑
a∈A

φ(a,X1, X2, ...)

h(X1, X2, ...)

∞∏
k=1

gk+1(Xk)g1(a)

= λ−1
∑
a∈A

φ(a,X1, X2, ...)∏∞
k=1

∏∞
j=k+2 gj(Xk)

g1(a)

= λ−1
∑
a∈A

φ(a,X1, X2, ...)

h(a,X1, X2, ...)

∞∏
l=1

gl(a)

= Pµ0

φ

h
(X1, X2, ...)

Therefore φ/h is an eigenfunction for the eigenvalue 1 (note that Pµ01 = 1). Thus if Pµ0 is
ergodic, φ/h is constant.

Conversely, the above equation shows that if Pµ0
has another eigenfunction ψ, then ψh is

an eigenfunction for Lf , proving the theorem.

6. The leading example

We return to the class of potentials defined in Example 2. Recall that it uses the alphabet
A = {−1, 1} and potentials of the form

f(x) =

∞∑
n=1

xn
nγ
, γ > 1. (6.1)

Observe that g(x) := e−f(x) satisfies infx g(x) = exp(−
∑
n n

γ) > 0, whence the potential of
product type g is bounded from below. We also have that g is balanced and `1-bounded.
Hence, we obtain explicit expressions for the conformal measure, the equilibrium state and
λ by applying Theorems 3.1, 4.1 and 4.2. In here, ζ(γ) refers to the Riemann ζ-function
ζ(γ) :=

∑∞
j=1 j

−γ .
(1) The conformal measure µ = ⊗∞i=1µi is of product type, where

µi({1}) =
exp(

∑i
j=1 j

−γ)

2 cosh(
∑i
j=1 j

−γ)
, µi({−1}) =

exp(−
∑i
j=1 j

−γ)

2 cosh(
∑i
j=1 j

−γ)
. (6.2)
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(2) The conformality parameter is equal to λ = 2 cosh(ζ(γ)).
(3) The equilibrium state µ̃ = ⊗∞i=1µ̃i is a Bernoulli measure (that is a µ̃i = µ̃j for all i, j).

The measure µ̃0 := µ̃i is given by

µ̃0({1}) =
exp(ζ(γ))

2 cosh(ζ(γ))
, µ̃0({−1}) =

exp(−ζ(γ))

2 cosh(ζ(γ))
. (6.3)

6.1. Bowen’s class (γ > 2)

Recall that it has been shown above that f is in Bowen’s class if and only if γ > 2. In
this situation, we obtain a stronger result. Namely, by Theorem 3.3, the measure µ above is
the unique conformal measure. In particular, λ is also uniquely determined by L∗f (µ) = λµ.
Moreover, the function h((xi)) =

∏
i≥1 hi(xi) defined by

hn(xn) := exp(αnxn), αn :=

∞∑
j=n+1

j−γ , (6.4)

is an eigenfunction of product type. This function is the unique function with Lf (h) = λh,
and the equilibrium state is given by, as usual, dµ̃ = hdµ. It is worth noting that for γ > 2,
Walters showed in [19] that a Perron-Frobenius theorem holds in a more general situation.
Furthermore, the main result in [5] is applicable to our example and implies polynomial decay
of Lf for these parameters of γ.

6.2. The case 3/2 < γ ≤ 2

We now consider the case of 3/2 < γ ≤ 2 which is related to the second case of Theorem
4.2 and Theorem 4.3. Namely, as the coefficients hn defined in (6.4) satisfy | log hn| ∼ n1−γ ,
it follows that

∑
m>n | log hm|2 ∼ n2−2γ . Hence,

∑
n

∑
m>n | log hm|2 converges iff 2γ − 2 > 1

which is equivalent to γ > 3/2. Therefore, if γ > 3/2, the function

hρ(x) = exp

( ∞∑
i=1

αixi

)
, (6.5)

is ρ-almost surely well defined, where ρ = ⊗∞i=1ρ0 is the Bernoulli product measure with
parameter 1/2 on X = {−1, 1}N. With respect to µ, it follows from Theorem 4.3 that

hµ(x) = exp

( ∞∑
i=1

αixi + log
cosh(

∑i
j=1 j

−γ)

cosh(ζ(γ))

)
(6.6)

is µ-almost surely well defined. Furthermore, both functions satisfy the functional equation
Lf (h) = λh, for λ = 2 cosh(ζ(γ)).

Theorem 6.1. Let 1 < γ ≤ 2 and µ as in (6.2) and µ̃ as in (6.3).

(i) If 3/2 < γ ≤ 2, then hρ(x) =∞ for µ-a.e. x ∈ X, and hµ(x) = 0 for ρ-a.e. x ∈ X.
(ii) If γ > 3/2, then µ and µ̃ are absolutely continuous, and dµ̃ = hµdµ.
(iii) If 1 < γ ≤ 3/2, then µ, µ̃ and ρ are pairwise singular.
(iv) If 3/2 < γ ≤ 2, then, for any open set A, we have

ess-infρ{hρ(x) : x ∈ A} = ess-infµ{hµ(x) : x ∈ A} = 0,

ess-supρ{hρ(x) : x ∈ A} = ess-supµ{hµ(x) : x ∈ A} =∞.

In particular, neither hρ nor hµ can be extended to a (locally) continuous function.
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Proof. The first assertion is an application of Kolmogorov’s three series theorem as in [11,
p. 87]. By a direct calculation,

Eµi(log h(i)ρ ) =

∫
αix dµi(x) = αi

exp(
∑i
j=1 j

−γ))− exp(−
∑i
j=1 j

−γ))

2 cosh(
∑i
j=1 j

−γ)

= αi tanh(
∑i
j=1 j

−γ) ∼ tanh(ζ(γ))
(γ−1) i1−γ

Varµi(log h(i)ρ ) =

∫
(αix)2 dµi(x)− (αi tanh(

∑i
j=1 j

−γ))2 = α2
i (1− tanh2(

∑i
j=1 j

−γ))

=
α2
i

cosh2(
∑i
j=1 j

−γ)
∼ i2−2γ

(γ − 1)2 cosh2(ζ(γ))

For 3/2 < γ ≤ 2, it follows that
∑
iEµi

(log h
(i)
ρ ) =∞ and

∑
i Varµi

(log h
(i)
ρ ) <∞. This then

implies that
∑∞
i=1(log h

(i)
ρ − Eµi(log h

(i)
ρ )) converges µ-a.s. ([11, p. 87]). Hence, hρ =∞ µ-a.s.

In order to prove the statement for hµ with respect to ρ, we apply the same arguments. Namely,
the assertion follows from

Eρ

(
log h(i)ρ + log

cosh(
∑i
j=1 j

−γ)

cosh(ζ(γ))

)
= log

cosh(
∑i
j=1 j

−γ)

cosh(ζ(γ))
∼ − tanh (ζ(γ))i1−γ

γ − 1

and Varρ(log h
(i)
µ ) = Varρ(log h

(i)
ρ ) = α2

i .
The second and the third are applications of Theorem 4.3 and the three series theorem as

in [11, p. 88]. Namely, we have that

Varµi
(log h(i)µ ) = Varµi

(log h(i)ρ ) ∼ i2−2γ

(γ − 1)2 cosh2(ζ(γ))
.

Hence, if γ ≤ 3/2, then log hµ does not exist in (−∞,∞). However, hµ exists by Theorem 4.3
also in this case, but might be equal to 0. Hence, hµ = 0 and µ and µ̃ are pairwise singular.
Assertion (iii) then follows from the obvious fact that ρ is singular with respect to both µ and
µ̃. Furthermore, part (ii) is a consequence of Theorem 4.3 as hµ > 0 for γ > 3/2.

It remains to show the last part. We begin with the proof for hρ. As A is open, there exist m ∈
N and a1, . . . , am ∈ {−1, 1} such that [a1, . . . , am] ⊂ A. In order to show that ess-supρhρ(x) =
∞, it remains to show that, for all M > 0,

ρ ({x ∈ [a1, . . . , am] :
∑∞
i=1 αixi > M}) > 0.

In order to do so, note that γ ≤ 2 implies that
∑∞
i=1 αi =∞. Hence, for each M > 0, there

exists n > m such that −α1 − . . .− αm + αm+1 + . . .+ αn > M . For C := {x ∈ [a1, . . . , am] :
xm+1 = . . . = xn = 1}, we have

ρ
(
C ∩

{∑∞
i=n+1 αixi > 0

})
≤ ρ (

∑∞
i=1 αixi > M) .

Observe that the events C and {
∑∞
i=n+1 αixi > 0} are independent, that ρ(C) = 2−n and that,

by symmetry, ρ({
∑∞
i=n+1 αixi > 0}) ≥ 1/2. Hence,

ρ
(
C ∩

{∑∞
i=n+1 αixi > 0

})
= ρ(C) · ρ({

∑∞
i=n+1 αixi > 0}) ≥ 21−n > 0.

Hence, ess-supρ{hρ(x) : x ∈ A} ≥ eM . The proof of ess-infρ{hρ(x) : x ∈ A} = 0 follows by
substituting C with {x ∈ [a1, . . . , am] : xm+1 = . . . = xn = −1}, where n is chosen such that
α1 + . . .+ αm − (αm+1 + · · ·+ αn) < −M .

In order to prove the local unboundedness of hµ, we make use of (ii). Namely, in order
to obtain that ess-supµhµ(x) =∞, it suffices to show that, for [a1, . . . , am] ⊂ A and wn :=
(a1, . . . , am, 1, 1, . . . , 1) ∈ Am+n, we have

lim
n→∞

∫
[wn]

hµdµ

µ([wn])
= lim
n→∞

µ̃([wn])

µ([wn])
= lim
n→∞

µ̃([a1 · · · am])

µ([a1 · · · am])

µ̃([1, . . . , 1])

µ([1, . . . , 1])
=∞,
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where (1, . . . , 1) stands for the word of length n with all entries equal to one. In order to verify
this condition, note that log(cosh(

∑j
l=1 l

−γ)/cosh(ζ(γ))) ∼ − tanh(ζ(γ))
∑∞
l=j+1 l

−γ . Hence,

m+n∑
j=m+1

log
µ̃j(1)

µj(1)
=

m+n∑
j=m+1

log
exp

∑∞
l=1 l

−γ

2 cosh(ζ(γ))
− log

exp
∑j
l=1 l

−γ

2 cosh(
∑j
l=1 l

−γ)

=

m+n∑
j=m+1

 ∞∑
l=j+1

l−γ + log
cosh(

∑j
l=1 l

−γ)

cosh(ζ(γ))


�

m+n∑
j=m+1

(1− tanh(ζ(γ)))

∞∑
l=j+1

l−γ
n→∞−−−−→∞.

Hence, ess-supµhµ(x) =∞. The proof of ess-infµhµ(x) = 0 is the same.

We turn our attention to h as an element of L1(X, ρ). The following results are Theorems
5.1 and 5.2 adapted to our example.

Theorem 6.2. For γ > 3/2 and h as in (6.5), the following holds.

(i) The Ruelle operator Lf defines canonically a bounded linear operator on Lp(X, ρ) for
all 1 6 p ≤ ∞.

(ii) The function h defined above belongs to Lp(X, ρ) for every 1 ≤ p <∞ and is the unique
eigenfunction of Lf : Lp(X, ρ)→ Lp(X, ρ) with eigenvalue λ = 2 cosh(ζ(γ)) if and only
if the operator

Pφ(x1, x2, ...) =
1

λ
[φ(1, x1, x2, ...)exp(ζ(γ)) + φ(−1, x1, x2, ...)exp(−ζ(γ))]

acting on L1(X, ρ) is ergodic.
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15. B. O. Stratmann and M. Urbański. Pseudo-Markov systems and infinitely generated Schottky groups.

Amer. J. Math., 129(4): 1019–1062, 2007.



SPECTRAL PROPERTIES OF THE RUELLE OPERATOR Page 21 of 21

16. P. Walters. A variational principle for the pressure of continuous transformations. Amer. J. Math. 97(4):
937–971, 1975.

17. P. Walters. Ruelle’s operator theorem and g-measures. Trans. Amer. Math. Soc. 214: 375–387, 1975.
18. P. Walters. Invariant measures and equilibrium states for some mappings which expand distances, Trans.

Amer. Math. Soc. 236: 121–153, 1978.
19. P. Walters. Convergence of the Ruelle operator for a function satisfying Bowens condition. Trans. Amer.

Math. Soc., 353(1): 327–347 (electronic), 2001.
20. P. Walters. Regularity conditions and Bernoulli properties of equilibrium states and g-measures. J.

London Math. Soc. (2), 71(2): 379–396, 2005.
21. P. Walters. A natural space of functions for the Ruelle operator theorem. Ergodic Theory Dynamical

Systems, 27(4): 1323–1348, 2007.
22. M. Yuri. Zeta functions for certain non-hyperbolic systems and topological Markov approximations.

Ergodic Theory Dynamical. Systems, 18(6): 1589–1612, 1998.

L. Cioletti
Departamento de Matemática, UnB
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