O Teorema de Lee-Yang

Paulo Cupertino Lima *
17 de maio de 2004

1 Introdução

O termo "transição de fase" no presente contexto será usado para indicar uma dependência não-analítica da energia livre em relação às variáveis termodinâmicas, por exemplo, o campo magnético.

Como um exemplo de transição de fase mencionaremos um sistema magnético onde, experimentalmente, a situação é a seguinte: se um campo magnético h é aplicado a um magneto (numa direção particular) a uma temperatura baixa ($T < T_c$, onde T_c é a temperatura de Curie) o magneto adquire uma magnetização M(h,T) (derivada da energia livre em relação a h). Se o campo magnético é desligado, ficará uma magnetização residual ou expontânea $m_o(T) = \lim_{h \to 0_+} M(h,T)$, desde que $T < T_c$. Quando $T \ge T_c$, não existe nenhuma magnetização expontânea e m_o anula-se subitamente em $T = T_c$. As fases abaixo e acima de T_c são chamadas de ferromagnética e paramagnética, respectivamente.

O Teorema de Lee-Yang é um resultado que estabelece a analiticidade da energia livre em h para $Re h \neq 0$, ou em termos da fugacidade $z = e^{-2\beta h}$, para $|z| \neq 1$, onde β é o inverso da temperatura.

A fim de estudar a energia livre, nos restringiremos ao modelo de Ising, que é um modelo matemático que simula a transição de Curie da fase ferromagnética para a fase paramagnética.

2 Definições e Resultados

O Modelo de Ising. Seja Λ um subconjunto finito de \mathbb{Z}^d . A cada ponto de

 $^{^*}$ Conferência apresentada na III Reunião Regional da Sociedade Brasileira de Matemática na UFMG 5, 6 e 7 de maio de 1993

 $i \in \Lambda$ associamos uma "variável de spin" σ_i assumindo valores ± 1 . Pares de vizinhos próximos de Λ são denotados por (ij). Uma configuração de spins $\sigma = \{\sigma_i\}_{i \in \Lambda}$ é um elemento de $\{-1, +1\}^{|\Lambda|}$, onde $|\Lambda| = Card(\Lambda)$. Definimos o Hamiltoniano, $H_{\Lambda}(\sigma)$, de uma configuração $\sigma = \{\sigma_i\}_{i \in \Lambda}$, como

$$H_{\Lambda}(\sigma) = -\sum_{(ij)} J(\sigma_i \sigma_j - 1) - \sum_{i \in \Lambda} h(\sigma_i - 1)$$
(1)

onde $J \geq 0$. O primeiro termo representa a interação entre os spins e o segundo termo representa a interação dos spins com o campo magnético, h.

As funções partição, Z_{Λ} , e energia livre por volume, f_{Λ} , são definidas como

$$Z_{\Lambda}(h) = \sum_{\sigma} e^{-\beta H_{\Lambda}(\sigma)} \tag{2}$$

е

$$f_{\Lambda}(h) = \frac{1}{|\Lambda|} \ln Z_{\Lambda} \tag{3}$$

respectivamente, onde a soma em (2) é feita sobre todas as configurações de spins σ .

Observação 1 A definição acima de $H_{\Lambda}(\sigma)$, difere da usual apenas por um fator de normalização que não afeta as propriedades de analiticidade que estaremos interessados em estudar.

O problema matemático associado com transições de fase só se manifesta no limite termodinâmico, isto é, no limite em que o tamanho do sistema, $|\Lambda|$, tende a infinito, por exemplo, no sentido de van Hove (veja definição no Apêndice A).

Lema 1 Seja Z_{Λ} definida em (2) com h real. Se $\Lambda_n \to \infty$ no sentido de van Hove, então o limite

$$f = \lim_{n \to \infty} f_{\Lambda_n}$$

existe e será denotado por f, a energia livre do sistema.

Prova. Pela primeira desigualdade de Griffiths [2], a seqüência $\{f_{\Lambda}\}$ é monótona crescente, por outro lado, $f_{\Lambda} \leq 2\beta |h|$.

Dada uma configuração de spins $\sigma = {\sigma_i}_{i \in \Lambda}$, seja

$$S = \{i \in \Lambda : \sigma_i = -1\},\$$

isto estabelece uma correspondência biunívoca entre as configurações de spins $\sigma \in \{-1,+1\}^{|\Lambda|}$ e os subconjuntos $S \subset \Lambda$. Se definirmos $z=e^{-2\beta h}$ e

$$A_{ij} = \left\{ \begin{array}{l} e^{-2\beta J}, \ i \in S, \ j \in \Lambda - S \ \mathrm{e} \ |i-j| = 1 \\ 1, \ \mathrm{caso} \ \mathrm{contrário}. \end{array} \right.$$

Então, teremos

$$Z_{\Lambda} = \sum_{\sigma} e^{\beta \sum_{(ij)} J(\sigma_{i}\sigma_{j}-1)+\beta \sum_{i\in\Lambda} h(\sigma_{i}-1)}$$

$$= \sum_{S\subset\Lambda} z^{Card(S)} \left(\prod_{i\in S} \prod_{j\in\Lambda-S} A_{ij}\right)$$

$$= \mathcal{P}_{|\Lambda|}(z,\ldots,z).$$

Teorema 1 [4] Seja $(A_{ij})_{i\neq j}$ uma família de números reais tais que $-1 \le A_{ij} \le 1$, $A_{ij} = A_{ji}$ para i = 1, ..., n. Seja \mathcal{P}_n o seguinte polinômio

$$\mathcal{P}_n(z_1, z_2, \dots, z_n) = \sum_{S} z^S \left(\prod_{i \in S} \prod_{j \in S'} A_{ij} \right)$$
 (4)

onde a soma é sobre todos os subconjuntos $S = \{i_1, \ldots, i_s\}$ de $\{1, \ldots, n\}$, $z^S = z_{i_1} \ldots z_{i_s}$ e S' é o complemento de S em $\{1, \ldots, n\}$. Então $\mathcal{P}_n(z_1, \ldots, z_n) = 0$ e $|z_1| \geq 1, \ldots, |z_{n-1}| \geq 1$ implica $|z_n| \leq 1$.

Observação 2 Adotaremos a seguinte convenção: $A_{ij} = 1$ se S ou S' for vazio.

Corolário 1 (Lee-Yang). Seja Z_{Λ} definida por (2), então $Z_{\Lambda}(h) \neq 0$ para $Re \ h \neq 0$.

Prova. Seja $|\Lambda| = n$ então $Z_{\Lambda} = \mathcal{P}_n(z, \dots, z) \equiv \mathcal{P}_n(z)$ (veja apêndice A), logo, $Z_{\Lambda} = 0$ se, e somente se, $\mathcal{P}_n = 0$. Segue-se da definição de \mathcal{P}_n que $\mathcal{P}_n(z^{-1}) = z^{-n}\mathcal{P}_n(z)$; portanto, $\mathcal{P}_n(z) = 0$, implica $\mathcal{P}_n(z^{-1}) = 0$.

Suponha que $\mathcal{P}_n(z) = 0$. Então temos as seguintes possibilidades: ou (i) $|z| \ge 1$ e pelo Teorema 1, devemos ter $|z| \le 1$, logo, |z| = 1, ou (ii) $|z^{-1}| \ge 1$ e

como $\mathcal{P}_n(z^{-1}) = 0$, pelo Teorema 1, devemos ter $|z^{-1}| \le 1$, portanto, |z| = 1. Logo, $\mathcal{P}_n(z) = 0$ implica |z| = 1, ou seja $Re \, h = 0$.

Proposição 1 A energia livre f existe e é analítica em h para Re $h \neq 0$. **Prova.** Considere a seguinte função

$$g_{\Lambda}(h) = Z_{\Lambda}(h)^{\frac{1}{|\Lambda|}} = e^{f_{\Lambda}(h)},$$

então

$$g_{\Lambda}(h) \le 2e^{2\beta|h|}. (5)$$

Seja \mathcal{D} uma região limitada e simplesmente conexa, no plano complexo h, com um segmento do eixo real e positivo de h em seu interior. Pelo Lema 1, $\lim_{|\Lambda|\to\infty} g_{\Lambda}$ existe neste segmento, o qual será denotado por g. Além disso, de (5), existe uma constante $E(\mathcal{D}, \beta)$ tal que

$$g_{\Lambda}(h) \le E(\mathcal{D}, \beta)$$
 (6)

para todo $h \in \mathcal{D}$ e Λ e pelo Corolário 1, para cada Λ na seqüência $\{Z_{\Lambda}\}$ nenhum zero de Z_{Λ} , portanto de g_{Λ} , ocorre em \mathcal{D} . Então g pode ser extendida a uma função analítica g(h) em \mathcal{D} e, em particular, analítica no segmento do eixo real h dentro de \mathcal{D} . Em qualquer região limitada \mathcal{D}' em \mathcal{D} a seqüência $\{g_{\Lambda}(h)\}$, definida por continuação analítica através do eixo real positivo em \mathcal{D} , converge uniformente para g(h).

De fato, pelo Teorema de Vitali [3] (veja apêndice B), a seqüência de funções analíticas g_{Λ} definidas por (5) a qual é limitada em \mathcal{D} e converge numa porção do eixo h real dentro de \mathcal{D} , converge para uma função analítica no interior de \mathcal{D} e converge uniformemente em \mathcal{D}' (que podemos assumir simplesmente conexo). Pelo Teorema de Hurwitz [3] (veja apêndice B), o limite, g, não tem zeros no interior de \mathcal{D} (ela não pode ser zero em toda parte, visto que g_{Λ} nunca é menor que 1 para h real). Consequentemente, seu logarítmo f, é analítico no interior de \mathcal{D} e limitado em \mathcal{D}' . A convergência uniforme de $e^{f_{\Lambda}}$ em \mathcal{D}' guarante que f_{Λ} também converge uniformemente.

3 Prova do Teorema 1

Seja $\Delta_n = \{1, \dots, k\}$, então,

$$\mathcal{P}(z_1^{-1}, \dots, z_n^{-1}) = \sum_{S \in \Delta_n} z^{-S} \prod_{i \in S} \prod_{j \in \Delta_n - S} A_{ij}$$

$$= z^{-\Delta_n} \sum_{S \in \Delta_n} z^{\Delta_n - S} \prod_{i \in S} \prod_{j \in \Delta_n - S} A_{ij}$$

$$= z^{-\Delta_n} \sum_{\tilde{S} \in \Delta_n} z^{\tilde{S}} \prod_{i \in \Delta_n - S} \prod_{j \in \tilde{S}} A_{ij}$$

$$= z^{-\Delta_n} \sum_{\tilde{S} \in \Delta_n} z^{\tilde{S}} \prod_{i \in \Delta_n - S} \prod_{j \in \tilde{S}} A_{ji}, \quad A_{ij} = A_{ji}$$

$$= z^{-\Delta_n} \sum_{\tilde{S} \in \Delta_n} z^{\tilde{S}} \prod_{j \in \tilde{S}} \prod_{i \in \Delta_n - S} A_{ji},$$

$$= z^{-\Delta_n} \mathcal{P}_n(z_1, \dots, z_n)$$

$$\equiv z_1^{-1} \dots z_n^{-1} \mathcal{P}_n(z_1, \dots, z_n),$$

portanto,

$$\mathcal{P}(z_1^{-1}, \dots, z_n^{-1}) z_1^{-1} \dots z_n^{-1} \mathcal{P}_n(z_1, \dots, z_n). \tag{7}$$

Adotaremos a seguinte convenção: quando S ou $S' = \Delta_n - S$ em (4) for conjunto vazio, o coeficiente correspondente será 1, portanto, $\mathcal{P}_o \equiv 1$.

Podemos assumir que $A_{ij} \neq 0, \pm 1$, se a proposição for provada neste caso ela sera válida no caso geral por continuidade.

A seguir, listaremos os quatro primeiros polinômios

$$\mathcal{P}_{0} = 1$$

$$\mathcal{P}_{1}(z_{1}) = 1 + z_{1}$$

$$\mathcal{P}_{2}(z_{1}, z_{2}) = 1 + A_{12} z_{1} + A_{21} z_{2} + z_{1} z_{2}$$

$$\mathcal{P}_{3}(z_{1}, z_{2}, z_{3}) = 1 + A_{12} A_{13} z_{1} + A_{21} A_{23} z_{2} + A_{31} A_{32} z_{3} + A_{13} A_{23} z_{1} z_{2} + A_{12} A_{32} z_{1} z_{3} + A_{21} A_{31} z_{2} z_{3} + z_{1} z_{2} z_{3}.$$

Note que $\mathcal{P}_1(z_1)=0$ implica $|z_1|=1$. Isto prova a proposição para n=1. Além disso, $\mathcal{P}_2(z_1,z_2)=0$ implica que

$$z_1 = -\frac{1 + A_{21}z_2}{A_{12} + z_2} \equiv -\frac{A + Cz_2}{B + Dz_2} \tag{8}$$

que é uma transformação de Möbius que leva $z_2 = \infty$ em $z_1 = -A_{12} = -C/D$. Mostraremos que se $\mathcal{P}_2(z_1', z_2') = 0$ e $|z_1'| \geq 1$ então, $|z_2'| \leq 1$. De fato, se $|z_2'| > 1$ (podemos assumir que $|z_1'| > 1$), tomaríamos uma reta, Γ , passando por z_2' e que não cortasse o círculo unitário $|z_2| = 1$, nem passe por $z_2 = -A_{12} = -B/D$. A imagem de Γ pela transformação (8) é um círculo no plano z_1 o qual passa por $z_1 = -A_{12} = -C/D$ e por $z_1 = z_1'$ que são as imagens de $z_2 = \infty$ e $z_2 = z_2'$, respectivamente, como |-C/D| < 1 e $|z_1'| \geq 1$, a imagem de Γ é um círculo que intersecta o círculo unitário em dois pontos, seja z_1'' um destes pontos e z_2'' o ponto de Γ que é levado neste. Com isso, teríamos encontrado pontos z_1'' e z_2'' , tais que, $\mathcal{P}_2(z_1'', z_2'') = 0$, com $|z_1''| = 1$ e $|z_2''| > 1$. De (7), temos a seguinte propriedade: $\mathcal{P}_2(z_1^{-1}, z_2^{-1}) = z_1^{-1} z_2^{-1} \mathcal{P}_2(z_1, z_2)$, portanto,

$$\mathcal{P}_2(z_1'', z_2''^{*-1}) = \mathcal{P}_2((z_1''^*)^{-1}, (z_2''^*)^{-1})) = z_1''^{*-1} z_2''^{*-1} \mathcal{P}_2(z_1'', z_2'')^* = 0,$$

logo, z_1'' é imagem de $z_2''^{*-1}$ através de (8), como esta é injetiva, teríamos que $z_2'' = z_2''^{*-1}$, o que não pode acontecer, visto que z_2'' estanto em Γ tem módulo maior do que 1.

Se fizermos $\mathcal{P}_3(z_1, z_2, z_3) = 0$, teremos

$$z_2 = -\frac{A + Cz_3}{B + Dz_3},\tag{9}$$

onde

$$A = 1 + A_{12}A_{13}z_1,$$

$$B = A_{12}A_{23} + A_{13}A_{23}z_1,$$

$$C = A_{12}A_{32} + A_{31}A_{32}z_1,$$

$$D = A_{21}A_{31} + z_1.$$

Se z_1, z_2, z_3 são tais que $\mathcal{P}_3(z_1, z_2, z_3) = 0, |z_1|, |z_2| \ge 1$. Então,

$$D = A_{21}A_{31} \left(1 + A_{21}^{-1} A_{31}^{-1} z_1 \right) = A_{21}A_{31} \mathcal{P}_1(\xi_1), \quad \xi_1 \equiv A_{21}^{-1} A_{31}^{-1} z_1$$

com $|\xi_1| > 1$, como $\mathcal{P}_1(\xi_1) \neq 0$, temos $D \neq 0$.

Note que ∞ é levado em $z_2 = -C/D$ através da transformação (9). Logo, para esta escolha de z_2 (z_1 o mesmo de antes), temos

$$0 = C + Dz_2 = A_{31}A_{32} + A_{12}A_{32}z_1 + (A_{21}A_{31} + z_1)z_2$$

= $A_{31}A_{32} \left(1 + A_{12}A_{31}^{-1}z_1 + A_{21}A_{32}^{-1}z_2 + A_{31}^{-1}z_1A_{21}A_{32}^{-1}z_2\right)$
= $A_{31}A_{32}\mathcal{P}_2(\xi_1, \xi_2),$

onde $\xi_1 = A_{31}^{-1}A_{31}^{-1}z_1$ e $\xi_2 = A_{31}^{-1}A_{32}^{-1}z_2$. Assim, como $|\xi_1| = |A_{31}^{-1}A_{31}^{-1}z_1| > 1$, logo, $|\xi_2| \leq 1$, portanto, $|-C/D| = |z_2| < |\xi_2| \leq 1$. Vamos supor o Teorema não fosse verdade para n=3, ou seja que houvesse z_1', z_2', z_3' , tais que $\mathcal{P}_3(z_1', z_2', z_3') = 0$ e $|z_1'| \geq 1$, $|z_2'| \geq 1$ e $|z_3'| > 1$. Fixe o valor de z_1' acima (vamos assumir que $|z_2'| > 1$), portanto, estamos fixando os coeficientes A, B, C, D, ou seja, estaremos nos referindo à mesma transformação de Möbius. Vimos que $D \neq 0$ e que a transformação leva ∞ em -C/D, com $|-C/D| \leq 1$. Usando a mesma idéia anterior, podemos encontrar z_3'' fora do círculo unitário tal ele seja levado em z_2'' através de (9) e $|z_2''| = 1$. Se $|z_1| = 1$, estamos feito, senão olhamos para a transformação de Möbius

$$z_1 = -\frac{A + Cz_3}{B + Dz_3},\tag{10}$$

onde os coeficientes agora dependem de z_2'' , como $|z_2''|=1$, então $D\neq 0$. Esta transformação z_3'' em z_1'' e ∞ em -C/D, $|-C/D|\leq 1$. Usando a construção anterior, podemos encontrar z_3''' fora do círculo unitário e z_1''' no círculo unitário, tal que este seja a imagem de z_3''' através da transformação (10). Com isso teriamos encontrado z_1''' , $z_2''' = z_2'' = z_3'''$, tais que $\mathcal{P}_3(z_1''',z_2''',z_3''')=0$ e $|z_2'''|=|z_1'''|=1$ e $|z_3'''|>1$, o que nos leva a uma contradição, pois, $\mathcal{P}_3(z_1^{-1},z_2^{-1},z_3^{-1})=z_1^{-1}z_2^{-1}z_3^{-1}\mathcal{P}_3(z_1,z_2.z_3)$ e teríamos $z_1'''=z_1'''^{*-1}$, impossível, visto que $|z_1'''|>1$.

Esta é a estratégia que usaremos na demonstração por indução (para $n \ge 4$).

Lema 1 Suponha que a Proposição seja verdadeira para n-1 e n-2. Defina A, B, C e D como funções de z_{i_s} , $i_s \in \Delta_{n-1} - k \equiv X$, por

$$\mathcal{P}_n(z_1, \dots, z_n) = A + Bz_k + Cz_n + Dz_k z_n, \tag{11}$$

então $D \neq 0$ and $\mathcal{P}_n(z_1, \ldots, z_n) = 0$ define a seguinte transformação de Möbius:

$$z_k = -\frac{A + Cz_n}{B + Dz_n} \tag{12}$$

que leva ∞ em $z_k = -\frac{C}{D}$, com $|z_k| < 1$.

Prova do Lemma 1. Assuma a hípótese de indução para n-1 e n-2 e que $|z_i| \ge 1$, para todo $i \in X$. Note que por definição $\mathcal{P}_n(z_1, \ldots, z_n) = A + Bz_k + Cz_n + Dz_kz_n$, em Dz_kz_n temos os conjuntos da forma $S \cup \{k, n\}$, onde $S \subset X$, então,

$$Dz_k z_n = \sum_{S \subset \Delta_X} z_k z_n z^S \left(\prod_{i \in S \cup \{k,n\}} \prod_{j \in \Delta_n - (S \cup \{k,n\})} A_{ij} \right)$$
$$= z_k z_n \sum_{S \subset X} z^S \left(\prod_{i \in S \cup \{k,n\}} \prod_{j \in X - S} A_{ij} \right),$$

usamos que $\Delta_n - (\{k, n\} \cup S) = X - S$, portanto,

$$D = \sum_{S \subset X} z^{S} \left(\prod_{j \in X - S} A_{k,j} A_{nj} \right) \left(\prod_{i \in S} \prod_{j \in X} A_{ij} \right)$$

$$= \left(\prod_{j \in X} A_{kj} A_{nj} \right) \sum_{S \subset X} z^{S} \left(\prod_{i \in S} A_{k}^{-1} A_{ni}^{-1} \right) \left(\prod_{i \in S} \prod_{j \in X - S} A_{ij} \right)$$

$$= \left(\prod_{j \in X} A_{kj} A_{nj} \right) \sum_{S \subset X} \left(\prod_{i \in X} (z_{i} A_{k}^{-1} A_{ni}^{-1}) \left(\prod_{i \in S} \prod_{j \in X - S} A_{ij} \right) \right)$$

$$= \left(\prod_{j \in X} A_{k,j} A_{nj} \right) \sum_{S \subset X} \left(\prod_{i \in S} \xi_{i} \right) \left(\prod_{i \in S} \prod_{j \in X - S} A_{ij} \right), \quad \xi_{i} \equiv z_{i} A_{k}^{-1} A_{ni}^{-1}$$

$$= \left(\prod_{j \in X} A_{kj} A_{nj} \right) \sum_{S \subset X} \xi^{S} \left(\prod_{i \in S} \prod_{j \in X - S} A_{ij} \right)$$

$$= \left(\prod_{j \in X} A_{k,j} A_{nj} \right) \mathcal{P}_{n-2}(\{\xi_{i}\}_{i \in X}),$$

logo, como para todo $i \in X$, $|z_i| \ge 1$ e $|A_{ij}| < 1$, segue-se que $|\xi_i| > |z_i| \ge 1$, então, pela hipótese de indução, que assumimos válida para n-2, $\mathcal{P}_{n-2}(\{\xi_i\}_{i\in X}) \ne 0$, o que implica que $D \ne 0$.

Note que em $Cz_n + Dz_kz_n$ temos os termos de \mathcal{P}_n que contém z_n , ou seja, são provenientes de conjuntos da forma $S \cup \{n\}$, onde $S \subset \Delta_{n-1}$, ou seja,

$$Cz_n + Dz_k z_n = \sum_{S \subset \Delta_{n-1}} z^S z_n \prod_{i \in S \cup \{n\}} \prod_{j \in \Delta_n - (S \cup \{n\})} A_{ij}$$
$$= z_n \sum_{S \subset \Delta_{n-1}} z^S \prod_{i \in S \cup \{n\}} \prod_{j \in \Delta_{n-1} - S} A_{ij}.$$

Logo,

$$C + Dz_{k} = \sum_{S \subset \Delta_{k}} z^{S} \prod_{i \in S \cup \{n\}} \prod_{j \in \Delta_{k} - S} A_{ij}$$

$$= \left(\prod_{j \in \Delta_{k}} A_{nj} \right) \sum_{S \subset \Delta_{k}} \left(\prod_{i \in S} A_{ni}^{-1} z_{i} \right) \prod_{i \in S} \prod_{j \in \Delta_{k} - S} A_{ij}$$

$$= \left(\prod_{j \in \Delta_{k}} A_{nj} \right) \mathcal{P}_{k}(\xi_{1}, \dots, \xi_{k}),$$

onde $\xi_i = A_{ni}^{-1} z_i$. Portanto, se fizermos $z_k = -\frac{C}{D}$, teremos,

$$0 = C + Dz_k = \left(\prod_{j \in \Delta_{n-1}} A_{nj}\right) P_{n-1}(\xi_1, \dots, \xi_{n-1}),$$

ou seja, $P_{n-1}(\xi_1,\ldots,\xi_{n-1})=0$, como $|z_i|\geq 1$, para todo $i\in\Delta_{n-2}$, então, $|\xi_i|>|z_i|\geq 1$, $i\in\Delta_{n-2}$ e, pela hipótese de indução, que assumimos válida para n-1, $|\xi_{n-1}|\leq 1$, ou seja,

$$|-C/D| = |z_{n-1}| = |A_{n\,n-1}\xi_{n-1}| < |\xi_{n-1}| \le 1.$$

Note que $z_k = -C/D$ é a imagem de ∞ pela transformação de Möbius que leva z_n em z_k .

Suponha que o teorema a ser provado não fosse verdade, então existem $z'_{n-1}, \ z'_n$ tais que $\mathcal{P}_n(z_1, \dots, z_{n-2}, z'_{n-1}, z'_n) = 0$ e $|z_1| \geq 1, \dots, |z_{n-2}| \geq 1, |z'_{n-1}| \geq 1|$ e $|z'_n| > 1$. Pelo Lema 3, com k = n - 1, segue-se que a transformação (11) leva z'_n , ∞ em $z'_{n-1}, z_{n-1} = -\frac{C}{D}$, tal que $|z_{n-1}| < 1$. Portanto, podemos encontrar z''_n tal que $|z''_n| > 1$ e a sua imagem z''_{n-1} satisfaça $|z''_{n-1}| = 1$. De fato, se $|z_{n-1}| = 1$ faça $z''_{n-1} = z'_{n-1}$ e $z''_n = z'_n$ e estamos feito. Caso contrário, visto que $|z'_n| > 1$, podemos escolher uma reta Γ passando por z'_n mas não passando por $-\frac{B}{D}$, tal que ela não intercepte o círculo unitário $|z_n| = 1$, ou seja $|z_n| > 1$ para todo z em Γ . A imagem de Γ através de (11) será um círculo passando sobre $-\frac{C}{D}$ e z'_{n-1} e como $|\frac{C}{D}| < 1$ e $|z'_{n-1}| > 1$ este círculo intercepta o círculo unitário $|z_{n-1}| = 1$ em dois pontos, tome um deles, e chame-o de z''_{n-1} e seja z''_n a sua imagem inversa, como z''_n está em Γ , $|z''_n| > 1$. Portanto, temos

$$|z_1| \ge 1, \dots, |z_{n-2}| \ge 1, |z''_{n-1}| = 1 \quad e \quad |z''_n| > 1$$
 (13)

$$\mathcal{P}_n(z_1, \dots, z_{n-2}, z_{n-1}'', z_n'') = 0. \tag{14}$$

A seguir aplicando-se o Lema 1 com k=n-2, e obteremos $|z_{n-2}'''|=1$ e $|z_n'''|>1$, tais que $\mathcal{P}_n(z_1,\ldots,z_{n-3},z_{n-2}''',z_{n-1}'',z_n''')=0$. Podemos repetir este procedimento para $k=n-3,n-4,\ldots,1$ e encontraremos números $\overline{z}_1,\ldots,\overline{z}_n$

$$\mathcal{P}_n(\overline{z}_1, \dots, \overline{z}_n) = 0 \tag{15}$$

 $\operatorname{com} |\overline{z}_1| = 1, \ldots, |\overline{z}_{n-1}| = 1, |\overline{z}_n| > 1$. De (7), como $\overline{z_1}^* = \overline{z_1}^{-1}, \ldots, \overline{z_{n-1}}^* = \overline{z_{n-1}}^{-1}$, onde * é a operação de conjugação, obtemos

$$\mathcal{P}_{n}(\overline{z_{1}}, \dots, \overline{z_{n-1}}, (\overline{z_{n}}^{*})^{-1}) = \mathcal{P}_{n}((\overline{z_{1}}^{*})^{-1}, \dots, (\overline{z_{n}}^{*})^{-1})
= (\overline{z_{1}}^{*})^{-1} \dots (\overline{z_{n}}^{*})^{-1} \mathcal{P}_{n}(\overline{z_{1}}^{*}, \dots, \overline{z_{n}}^{*})
= (\overline{z_{1}}^{*})^{-1} \dots (\overline{z_{n}}^{*})^{-1} \mathcal{P}_{n}(\overline{z_{1}}, \dots, \overline{z_{n}})^{*} = 0. (16)$$

Comparando com (15) nos leva $\overline{z_n} = (\overline{z_n}^*)^{-1}$ em contradição, visto que $|\overline{z_n}| > 1$.

4 APÊNDICES

4.1 Apêndice A - Convergência no sentido de van Hove

Dado
$$a = (a_1, ..., a_d) \in \mathbb{Z}^d$$
, com $a_1 > 0, ..., a_d > 0$, defina
$$\Lambda(a) = \{x \in \mathbb{Z}^d : 0 < x_1 < a_i, i = 1, ..., d\}.$$

Se $\Lambda(a)$ é transladado por um vetor $na = (n_1 a_1, \dots, n_d a_d)$ com $n \in \mathbb{Z}^d$, o resultado é o conjunto $\Lambda_n = \Lambda(a) + na$ e a família $\{\Lambda_n\}_{n \in \mathbb{Z}^d}$ forma uma partição de \mathbb{Z}^d . Para todo $\Lambda \in \mathbb{Z}^d$ defina $N_a^+(\Lambda)$ como número de conjuntos Λ_n , tais que $\Lambda_n \cap \Lambda \neq \emptyset$ e $N_a^-(\Lambda)$ como número de conjuntos Λ_n , tais que $\Lambda_n \subset \Lambda$.

Definição 1 Os conjuntos Λ tendem a infinito no sentido de Van Hove se

$$\lim N_a^-(\Lambda) = +\infty \quad e \quad \lim N_a^-(\Lambda)/N_a^+(\Lambda) = 1,$$

para todo a.

4.2 Apêndice B

Neste apêndice, enunciaremos os Teoremas de Vitali e de Hurwitz (veja referência [3]).

Teorema de Vitali. Seja $g_n(z)$ uma sequência de funções analíticas numa região \mathcal{D} ; e

$$|g_n(z)| \leq M$$

para todo n e z em \mathcal{D} , e suponha que $g_n(z)$ tenda a um limite quando $n \to \infty$, em um conjunto com ponto de acumulação dentro de \mathcal{D} . Então, $g_n(z)$ tende uniformemente a um limite em qualquer região limitada por um contorno no interior de \mathcal{D} , o limite sendo, portanto uma função analítica de z.

Teorema de Hurwitz Seja $g_n(z)$ uma sequëncia de funções analíticas numa região \mathcal{D} limitada por uma curva fechada simples e $g_n(z) \to g(z)$ uniformemente em \mathcal{D} . Suponha que g(z) não é identicamente nula. Seja z_o um ponto no interior de \mathcal{D} . Então, z_o é um zero de g(z) se, e somente se, é um ponto de acumulação do conjunto de zeros das funções $g_n(z)$, pontos que são zeros de uma infinidade de valores de n sendo contados como pontos de acumulação.

Referências

- [1] Lee, T. D., Yang, C. N. Statistical Theory of Equations of state and Phase Transitions II. Lattice Gas and Ising Model Physical Review 87, number 3 (1952)
- [2] Glimm, James e Jaffe Arthur, Quantum Physics Functional Integral Point of View, Springer-Verlag, 1981.
 Braga, Gastão de Almeida - Seminário apresentado na Regional da
 - Braga, Gastao de Almeida Seminario apresentado na Regional da S.B.M Viçosa, 21 a 23/11/90
- [3] Titchmarsh, E.C *The Theory of Functions* 2nd ed., Oxford University Press, New York (1939).
- [4] Ruelle, David Statistical Mechanics, Rigorous Results, W.A.Benjamin, Inc. (1969).
- [5] Israel, R. B. Convexity in the Theory of Lattice Gas Princeton University Press (1979).