DLR-EQUATIONS FOR LOCAL FUNCTIONS AND
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ABSTRACT. We shown that the validity of the DLR equations for bounded local
functions can extended for any bounded measurable functions (with respect
to the o-algebra generated by the cylinder sets) for Gibbs measures specified
by Quasilocal Specifications with parameter set Z% and finite state space E.
This is an expository article and we remark that non content here is new.

1. INTRODUCTION

The aim of this short note is to present, in details, a particular case of the
Theorem 4.17 and Remark 4.21 of the reference [1]. Here we work on compact
configuration spaces, more precisely, those given by an infinite cartesian product
of a fixed finite set. Such spaces are chosen in order to simplify the argument and
avoid the use of topological nets in the proof.

The paper has three sections and the main result is presented in the last one.
In the next section we introduce the basic definitions about specifications and then
we present a classical characterization of the so callled DLR Gibbs Measures. In
the third section, after a brief discussion about quasilocality for functions and
specifications we prove the Theorem 3.4, which is the main result of this work.

We refer the reader to [1] for a comprehensive exposition of the Theory of Gibbs
Measures.

2. SPECIFICATIONS AND DLR GiBBS MEASURES

Let E C R be a finite set and Q = EZ° = {(w;)icga : w; € E Vi € Z4}. For
a subset A C Z? we use the notation |A| to denote its cardinality. In order to
lightening the notation, from now on, we use the Greek letters A and I" exclusively
to denote finite subsets of Z¢. For a fixed i € Z? consider the coordinate function
X; : Q — E given by X;(w) = w; and for any non-empty set A let Fp = o(X; :
i € A) the o-algebra generated by the collection {X;};ca. We define Fpe being
o(UpFr : T' C A°) and finally we define F = a(UpFa).

A function v, : F x Q — [0,1] is called a proper probability kernel from Fyc
to F, if the following conditions are satisfied:

e YA (-|w) is a measure on (92, F) for any fixed w € £;
e yA(A[') is Fpe-measurable for any fixed A € F.
e YW (ANBlw) =1p(w)ya(Alw), for any A € F, B € Fpe and w € Q.
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We say that a family v = (7)scz« is consistent if for all A € F and w € ), we
have

/ Ya(A])dyr(-lw) = yr(A|w), whenever § C A CT.
Q

The lhs above is denoted in [1] simply by yrvya(AJw). In this notation the consis-
tency defined above reads yrypy = A, for any pair of non-empty sets A C T

Definition 2.1. A specification with parameter set Z? and state space E is a
family v = (7)acza of proper probability kernels v from Fpe to F which satisfy
the consistence condition yryx = 41, when § C A C T

We denote the set of all probability measures defined on (2, F) by £(Q,F).
Now we are ready to define the set of the Gibbs Measures.

Definition 2.2 (Gibbs Measures). Given a specification v with parameter set Z¢
and state space E. The set of all probability measures defined by

MMFmW@ZWMAw)u—w&}

9G(v) := PO F) :
() {MG ( ) for all A€ F and A C Z4.

is called the set of the Gibbs Measures determined by the specification . Each
element p € 9(v) is called a Gibbs measure.

Theorem 2.3. Suppose that v = (Ya)acze is a specification with parameter set Z¢
and state space E and p € P (2, F). Then the following statements are equivalent:

(1) e (v);

(2) for all A€ F and A C Z%, we have p(A) = [, va(Alw) du(w) := pya(A);

(8) There is a cofinal collection ! {Ty, : |To| < +o00, V a € I}, (i.e., directed by
inclusion and for any finite A C Z% there is an index o € I so0 that A C T'y,)
satisfying:

H(A) = /Q 0 (A1) dpr(w) = pr, (A).

Proof. 1) implies 2). If y € 4(v) then follows from the definition of 4(v) and the
basic property of the conditional expectation that

H(A) = /Qu(AvAc)(w) dpi(w) = /Qwuw) dpu(w) = prn(A),

for any A € F. Now we prove that 2) implies 1). Let A € F and B € Fp.. Using
the hypothesis and that v, is a proper probability kernel we get that

W(ANB) = /Q 7a(AN Blw) dp(w) = /Q L () (Alw) dpa(w).

From the basic properties of the conditional probability and the previous equality
we get

[ e @nAIFs) @) duw) = A0 B) = [ 1n)ma(Afe) dufw).
Q Q

From the above equation we have for any B € Fj. that
[ 1) AIFre) ) = ma(A)] die) =0,

Imost used cofinal collection in this context is {[—n,n]¢ N Z% : n > 1}.
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Since the two functions in the brackets are Fjc-measurable their difference is also
Fac-measurable so we can take B in the above equation as being B = {w € Q :
(A Fpe)(w) — ma(Alw) > 0}. With this choice of B it follows from the above
equation that p(B) = 0. Analogously the set where this difference is negative has
also p measure zero. Therefore u(A|Fpc)(w) = ma(Alw) p— a.s..

The statement 2) implies 3) is obvious. We proceed to 3) implies 2). Since
{To : Ta|l < 400, ¥ a € I} is a cofinal sequence, for any given A there is an
index o € I such that A C I'y, := I From the hypothesis we have y = pryr.
By integrating the kernel v, with respect to this measure we obtain the measure
uya = (yr)ya. We claim that (uvyr)ya = pyr. Let A € F. By definition

(2.1) (jm)7a (A) = / A (Alw) d(pr) ().

By standard arguments of the Measure Theory, we know that there exist a sequence
of Fpe-measurable simple functions ¢,, such that ¢,(w) T ya(Alw) for all w € .
By using several times the Monotone Convergence Theorem in the equation (2.1)
and the consistency of the specification v we obtain

(h0)7a (A) = / T (Alw) d(piye) (@) = T | pn(w) d(pr) @)
Q Q

n—roo

= lim pyr(en)

= lim Qw(sanlw)du(W)

n—oo

- / (A (A w) dpa(w)
Q

- /Q r(Aln) ds(w)
= uyr(4).

Piecing together the equations obtained above and use the hypothesis we arrive
at pya = (pyr)ya = pr = p. O

3. QUASILOCALITY AND THE MAIN RESULT

Definition 3.1. A real function f : @ — R is called a local function if f is
Fa-measurable for some finite A. For each A we denote by £, the space of all
bounded Fj-measurable local functions. Let .Z = Up.ZA denote the set of all
bounded local functions.

Definition 3.2. A function f : £ — R is said to be quasilocal if there is a
sequence (fp)nen in & such that || f — fullcc — 0, when n — oo. Here | - [ is the
sup-norm. We write .Z for the space of all bounded quasilocal functions.

Definition 3.3. We say that a given specification v = (7a)acza s quasilocal if,
for each finite A C Z¢ and f € £ the mapping

wH/Qf(n)d%(n\w),

is quasilocal. This mapping will be denoted simply by va f.
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Theorem 3.4. Suppose that 7 is a quasilocal specification with parameter set Z.°
and state space E. Then p € 9(v) if and only if

w(A) = / YA (Alw) du(w), Y A€ Fp and all A C Z with |A| < +oo0.
Q

Proof. We first assume that p € 4(). Then it follows from the elementary prop-
erties of the conditional expectation that

u(A) = / Ya(Alw) du(w), ¥V A€ Fpand all A C Z¢ with [A| < +oo.
Q

Conversely, suppose that the above equality holds true. Let A, = {[-n,n]N
74 n > 1}. We first prove that, when n — oo, we have pyy, — p, where
the convergence is in the weak sense. To prove this weak convergence we fix a
continuous function f : Q0 — R. Since the state space E is finite we can assure that
any local function is continuous and therefore any function in .# is continuous. A
stronger result holds C(Q) = Z. Therefore there is a sequence (fx)ren in £ so
that |[fx — flloc — 0. Let ng € N the smaller integer for which fi € £, . Given
€ > 0, there is ko € N so that for any k& > ko we have || fr — f|lcc < &. On the other
hand, for any n € N we get from the triangular inequality that

lya, (f) = w(H)] < pya, (IF = Fel) + loya, (Fr) — 1(f)]-

The first term on rhs is bounded by ¢ for any n € N and k = ko. If n > ny, then
follows from the hypothesis that pvya, (fx) = p(fr). So the second term in rhs in
the above inequality is also smaller than € as long as n > ng,. Since ¢ is arbitrary
we have that pvya, (f) = u(f), Vf € C(Q).

The next step is to prove that DLR equations are satisfied, i.e., u(A) = pya(4)
for all A and A € F. First let us fix A and f € Z. Using the quasilocality of the
specification 7 we can assure that the function v, (f) is quasilocal and therefore
continuous, so it follows from the weak convergence established above that

() = ()] = T (a9 () — (uva ()

| B n

The consistency of the specification, implies that the second term on rhs above
(for large enough n, so that A C A,,) satisfies the following equality (uvya,)(f) =
(uya,, )va(f) which in turn implies that |puya(f) — p(f)] = 0.

By taking f = 1¢, where C' C 2 is a cylinder event, we have from the previous
result that pya(C) = p(C). In other words, the restriction of both measures pys
and p to the algebra of the cylinder sets coincide. By the Carathéodry Extension
Theorem both measures have an unique extension to the o-algebra generated by
the cylinder sets and this conclude the proof.
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