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Abstract

This work is concerned with the theory of graphical representa-
tion for the Ising and Potts models over general lattices with non-
translation invariant external field. We explicitly describe in terms of
the random-cluster representation the distribution function and, con-
sequently, the expected value of a single spin for the Ising and g¢-state
Potts models with general external fields. We also consider the Gibbs
states for the Edwards-Sokal representation of the Potts model with
non-translation invariant magnetic field and prove a version of the
FKG inequality for the so called general random-cluster model (GRC
model) with free and wired boundary conditions in the non-translation
invariant case.

Adding the amenability hypothesis on the lattice, we obtain the
uniqueness of the infinite connected component and the almost sure
quasilocality of the Gibbs measures for the GRC model with such
general magnetic fields. As a final application of the theory developed,
we show the uniqueness of the Gibbs measures for the ferromagnetic
Ising model with a positive power-law decay magnetic field with small
enough power, as conjectured in [8].
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1 Introduction

Graphical representations are extremely useful tools for the study of phase
transition in Equilibrium Statistical Mechanics. Fortuin and Kasteleyn [22],
marked the beginning of four decades of intense activity that produced a
rather complete theory for translation invariant systems. These representa-
tions were successfully employed to obtain non-perturbative and deep results
for Ising and Potts models on the hypercubic lattice using percolation-type
methods, namely the discontinuity of the magnetization at the phase transi-
tion point for the one-dimensional Ising and Potts models with 1/r? interac-
tions [3], the knowledge of the asymptotic behavior of the eigenvalues of the
covariance matrix of the Potts model [10], the Aizenman-Higuchi Theorem
on the Choquet decomposition of the two-dimensional Ising and Potts models
|1, 15, 16, 25, 32| and the proof that the self-dual point on the square lattice
psa(q) = /q/(1 4+ /q) is the critical point for percolation in the random-
cluster model (g > 1) [5], see also the review [40]. For a detailed introduction
to the random-cluster model we refer the reader to [18, 24, 27, 30].

The relationship between graphical representations and phase transitions
in Ising /Potts-type models is typically considered with respect to the random-
cluster model (RC model) and in view of the Edwards-Sokal coupling [20].



Most papers employing such representations use spin models with null or
translation invariant magnetic field, whereas we shall analyze graphical repre-
sentations of the Ising and Potts models under arbitrary and non-translation
invariant external fields, which is a significantly more complicated task for
several reasons: when general boundary conditions are considered, the FKG
property is harder to prove - as previously noticed by [7], this property does
not even hold for certain boundary conditions. In the absence of the mag-
netic field, phase transitions in the spin system can be directly detected by
the random-cluster representation, but now this relationship is subtle since
in some cases the phase transitions (in the percolation sense) in the random-
cluster model does not correspond to a transition in the corresponding spin
model. Such difficulties also appear in the analyses of Dobrushin-like states
[26], large ¢ order-disorder at the transition temperature [14] and the effect
of “weak boundary conditions” in the g-state Potts model [11].

Here the absence of symmetry brings questions regarding the color(s) of
the infinite connected component(s), which need not be addressed in the case
of null magnetic field, for instance. Furthermore, non-translation invariance
causes many technical issues when using basic results from the classical the-
ory of spin models and Ergodic Theory. To avoid confusion, on this paper
the terms phase transition and critical inverse temperature shall hereby be
solely employed to express changing in the number of the Gibbs measures
when the temperature varies.

This paper is motivated by some recent works on ferromagnetic Ising
model in non-uniform external fields [4, 8, 9, 33, 36, 37]. Here, we are inter-
ested in developing the theory of graphical representation for non-translation
invariant models whilst aiming for the problem of classifying which are the
positive magnetic fields such that the ferromagnetic Ising model on the square
lattice passes through a first order phase transition, in terms of its power law
decay exponent. The formal Hamiltonian of this model is given by

H(o) = —JZ 0i0j — Z hio;, (1)
{i.3} i

where the first sum ranges over the pairs of nearest neighbors. In this model,
if the magnetic field h = (h; : i € Z%) satisfies liminf h; > 0, it has been
proved [9] that for any positive temperature the set of the Gibbs measures is
a singleton, therefore for essentially bounded-from-below positive magnetic
fields the conclusion is similar to the one obtained by Lee and Yang [34]. In
|8], the authors considered a positive, decreasing magnetic field and employed
the Isoperimetric inequality and a Peierls-type argument to show that if the
magnetic field is given by h; = h*/|i|%, where h* is a positive constant, then
the model presents first order phase transition in every dimension d > 2, for



any fixed exponent o > 1. On the other hand, if & < 1, they proved by means
of a contour expansion that the uniqueness of the Gibbs measures holds at
very low and by other methods at very high temperatures, and conjectured
that the set of Gibbs measures at any positive temperature should be a
singleton. The authors in [8] justified why the extension of their results to
any positive temperature is not obvious by resorting to most of the known
techniques, but we prove as an application of the theory to be developed
that the conjecture holds true. This is done by extending some results of the
seminal work [7] to the non-translation invariant setting.

The paper is organized in three parts: the first part presents the rele-
vant background material, including notation and the basic definitions of the
models to be treated in subsequent parts. The second part is comprised of
the theory on general finite graphs with free boundary conditions, the main
results of which are the extension of the Edwards-Sokal coupling for general
external fields and the explicit computation (in terms of the RC model) of
the distribution function of a single spin of the Ising model with general
external field and its expected values. These results are also generalized to
the ¢-state Potts model in general external fields. The third part is con-
cerned with the Potts, Edwards-Sokal and General random-cluster models in
the non-translation invariant external fields setting with general boundary
conditions. Tt is inspired by the reference 7], but extends their results to
non-translation invariant magnetic fields - a task that was occasionally non-
trivial. In some cases, their results were essentially proved for very general
fields and our work was simply to point out the necessary technical modifica-
tions. Fundamental results such as the FKG inequality required non-trivial
adaptations and for this reason we presented its detailed proof for both free
and wired boundary conditions in the so called general random-cluster model
(GRC model) with non-translation invariant external field. Even with null
external field, the random cluster measures lacked the key property of the
quasilocality of the Gibbs measures, although it is possible to have the said
property almost surely by assuming the uniqueness of the infinite connected
component. For a null magnetic field on the hypercubic lattice, this fact
was first proved in [38], however the geometry of the graph in this type
of question is very important because for some non-amenable graphs such
as regular trees even almost sure quasilocality fails, see [21, 29|. For the
random-cluster measures with translation invariant magnetic field, defined
over amenable graphs, almost quasilocality was shown in [7] for those mea-
sures having almost surely at most one infinite connected component. These
results were recovered here for GRC models with non-translation invariant
magnetic fields. The proofs of both the uniqueness of the infinite connected
component and of the quasilocality of the Gibbs measures are given and new
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ideas are introduced to circumvent the lack of translation invariance.

The conjecture stating the uniqueness of the Gibbs measures for the Ising
model with power-law-decay magnetic field (o < 1) is proved in the last sec-
tion of the third part. As a corollary of one of the main results of this part
(Theorem 11), we have obtained a characterization of the critical ! inverse
temperature [.(J,h) of the ferromagnetic Ising model given by (1) where
hi = h*/]i|*, with @ > 1 on the hypercubic lattice. Few facts are known
about this inverse critical temperature. For example, in the positive exter-
nal field case of the two-dimensional model (1) with the coupling constant
J=1and ), ,.h; < oo, it follows from the Onsager exact solution and
a general result [23] about summable perturbations of the Gibbs measures
that 8.(J,h) = log(1 4+ +/2). From [9] it follows that 8.(J,h) = +oc as long
as liminf hA; > 0 in any dimension. The last section contains the proof that
Be(J,h) is also trivial, i.e., B.(J,h) = 400 when h; = h*/|i|*, with o < 1.
The most interesting cases are those where we do have phase transition and
the magnetic field is given by h; = h*/|i|%, with 1 < a < 2 (not summable on
entire lattice). For such cases, to the best of our knowledge, the only known
fact about this critical point is that log(1 + v/2) < B.(1, h), which is derived
from the correlation inequalities. It is not known whether the Lieb-Simon
inequality [39, 35|, the Aizenman-Barsky-Fernandez Theorem |2| and other
characterizations of the critical point (for example, [19] Jcan be extended for
the case h; = h*/[i|*, with 1 < a < 2.

Part 1
Basic definitions and models

2 Background in graph theory

We say that a graph G = (V, E) is a countable graph if its vertex set V is
countable. As usual, a path v on G is an alternating sequence of vertices
and edges v = (vg, e1,v1, €2, ..., €n, V), such that v; # v; for all 0 < i,j <
n—1, v, € V\{v,v9,...,0,_1} and e; = {v;_1,v;} for 1 < j < n. In
case vg = v, we say that ~ is a closed path or a circuit. The vertices vy
and v, of v are called initial and final vertices, respectively. We say that
x,y € V are connected if x = y or there is a path v on G so that x = v,
and y = v,, denoted x <= y, and whenever it is clear from context, we

Lin case B.(J,h) = +oo we mean that the set of the Gibbs measures is a singleton for
all 0 < 8 < +o0.



shall remove the subscript G from the notation. The length of a path v =
(vo, €1,v1,€3,...,€n,v,) is defined as |y| = n.

A graph G is said to be a connected graph if any two vertices i,j € V
are connected, otherwise we say that G is disconnected. The connected
component of x € V' is the vertex set C, = {y € V : y <» z}. The distance
dg(x,y) between x,y € V is defined by dg(z,y) = 0if z = y; da(z,y) = +o0
if z ¢ C, and dg(z,y) = inf{|y| : 7 is a path connecting x to y}, if z € C,.

A graph H = (V,E) is a subgraph of G = (V,E)if V C V and E C E.
A subgraph H of GG is an induced subgraph if it has the same vertex set as
G and a random subgraph of G is an induced subgraph such that the edges
are chosen randomly.

Any infinite countable connected graph L. = (V, E) will be called a lattice
and from now on a finite subgraph of I will be denoted by G = (V, E)). The
vertex set V' will sometimes be called the volume V.

There are several definitions for the boundary of a vertex set V' contained
in L. In this work, the boundary is defined as follows.

Definition 1 (Boundary of V). The boundary of an arbitrary vertex set V
in L is defined by OV = {i € V\V : dp(:,V) = 1}, where dy, is the distance
on the lattice L. See Figure 3.

Figure 1: Ezamples of boundary of V in three different lattices. The boundary of
V' in each case is the vertex set colored pink.

3 The Ising model on countable graphs

Let L = (V,E) be an arbitrary lattice and X the standard configuration space
of the Ising model, i.e.,

Y={o=(0;:i€V):0,€{-1,41}, Vie V} = {-1,+1}".

This configuration space has a standard metric, for which the distance be-
tween any pair of configurations o,w € () is given by

o, = w;, Vi € B(o,r) and }

1 .
d(o,w) = 55, and R = inf {r >0: 3 j € 9B(o,r) such that o; # w;

= om



where B(o,r) is the open ball in L of center 0 € V (fixed) and radius r >
0. Since the metric d induces the product topology on X, it follows from
Tychonoff’s Theorem that (X, d) is a compact metric space. As a measure
space, we always consider ¥ endowed with the Borel o-algebra (%), which
is generated by the open sets on (X, d).

The Hamiltonian of the Ising model on a finite volume V' C L with
boundary condition p € ¥ is given by

AT 0) == Y Jyoioj =Y hioi— Y Jyouy, 2)

ijev ieV i€V, jeav

{i,j}€E {i.j}€E
where the coupling constant J = (J;; : {i,j} € E) € [0,+00)" satisfies the
regularity condition ).y Ji; < +00, Vi € V and the magnetic field is h =
(h;i:i€V)eRY.

JjEV

Gibbs measures. For any fixed finite volume V' and boundary condition
i, we define the (finite) set of configurations compatible with p outside V' as
being the set of configurations X, = {0 € ¥ : 0, = p; for i € V\ V}. The
Gibbs measures of the Ising model on the finite volume V' with boundary
condition g at the inverse temperature 5 > 0 is the probability measure
Moy @ B(X) — R given by

s exp ( — ﬁ%i’f{/lsmg(a)), ifoe Xy

Ag,h,v({g}) =
0, otherwise

where ﬁ%"is‘i}lg is a normalizing constant called the partition function given
by
,Isin ,Isin
ffﬂlfh,vg = Z exp ( - ﬁf%’#fv g(0>)'
UGE@
We denote by gﬁlsmg(] ,h) the set of infinite-volume Gibbs measures which
is given by the closure of the convex hull of the set of all the weak limits

limy;, 4y )\ghv, where V,, C V,, .1 and p runs over all possible sequences of
boundary conditions.

The Ising model with free boundary condition. The Gibbs measure
of the Ising model on a finite subgraph G' C L with free boundary condition



is given by

Asnv({o}) = p (= BH5%(0)),

D@plsing X
ﬁ7h7v
where ,@”;S,in\% is the partition function and the Hamiltonian is given by

i
%75‘1/ng = — Z Jij O'Z'O'j — th ;.
lij}eE =%

The expected value of a random variable f : ¥ — R, with respect to )‘g,h,v

is given by
,BhV Zf ﬁhv ({o}).

cesl;

4 The Potts model with inhomogeneous mag-
netic field

Let ¢ € Z" be a fixed positive integer. The state space of the g-state Potts
model on the lattice L is defined as

S, ={6=(6,:i€V):6,€{1,2,...,q}, VieV} ={1,2,...,¢}".

To define a g-state Potts model with magnetic field, we fix a family of coupling
constants J = (J;; : {i,7} € E) € [0,00)F and magnetic fields h = (hip:i€
Vip=1,...,q) € RV x-.-xR". The Hamiltonian on a finite volume G with
boundary condition i € X, is given by

(%;:Lqp‘;)ttb 5’ Z Jz] 501 5 Z Z l P 501 » Z Jij(s&i,ﬂj’ (3)

i,jEV p=1 i€V i€V, jeoV
{i,j}€E {i,j}€E
where 05, 5, is the Kronecker delta function.

The Gibbs measure of Potts model on a finite volume G with boundary
condition i is defined analogously to the Ising model. We consider the set
of all Compatible configurations with the boundary condition /i, i.e., Eg,v =
{6 € g :0; = fi; for i € V\V} and define the Gibbs measure on the

volume G Wlth boundary condition [ as the probability measure 7r6 hay OO
(24, #(%,)) such that

Sabom oxp (= BAN(8)), i 6 e By,

Shar@ =0

0, otherwise



where QFB A }LLP;t‘zS is the partition function. The free boundary condition case

can be treated similarly to the previous section. The expected value of a
random variable f : ¥, — R in this model is denoted by W;B . ,(f). The set
of infinite-volume Gibbs measures is defined similarly to the previous section

and denoted by %ﬁPOttS(J,iz).

Remark 1. In general, we use h to denote the magnetic field. In the special
case where ¢ = 2 and the magnetic field satisfies hi1 = —h;2 = h; we drop
the hat from notation h and write the Hamiltonian, for example in the free
boundary condition case, as follows

otts [ A hl
HESE(6) == > Tiibors, = Y 5 (0650 = 0s,). (4)

{iJ)€E iev

Proposition 1. Fiz a finite graph G = (V, E) and assume that the magnetic
field of the 2-state Potts model satisfies h;y = —h;o = h; for all i € V. If
o € {1,2}V denotes the configuration obtained from o € {—1,1}V using the
spins identification —1 <> 2 and 1 <> 1, then we have for any 5 > 0 that

Ag,h,\/({a}) = Wgﬁ,h,Q,V({&D'

5 The random-cluster model with external field

This section is devoted to the ¢ = 2 inhomogeneous random-cluster models
on a finite graph G = (V, E'). The general random-cluster model in external
field will be introduced in the Section 9, more precisely by the expression (9).
The state space over which these models are defined is the cartesian product
{0,1}¥. A generic element of this space will be denoted by w and called an
edge configuration. We say that an edge e is open in the configuration w
if w, = 1, and we otherwise say e is closed. Given w € {0,1}¥, its set of
open edges is denoted by n(w) = {e € F : w, = 1}. We say that a path
v := (vo, €1, V1, €2, ..., €n,U,) on the graph G is an open path on w if all of
its edges belong to n(w), i.e., we,, =1, Vi=1,... n.

Two distinct vertices z,y € V are said to be connected in w if there
exists an open path v := (vg, e1,v1, €9, ...,€,,v,) on this edge configuration
such that vo = z and v, = y. If x,y € V are connected on w, we write
x <> y. A subgraph H of G is connected on w if any pair of vertices of H
can be connected through a open path entirely contained in H. The open
connected component of a vertex € V' is defined by C(w) ={y €V 1z <
yin w}U{x}. The set C,(w) is called the open connected component of z in
the configuration w.



To define the probability measure of the random-cluster model with ex-
ternal field we fix two families p = (p;; € [0,1] : {i,j} € E) € [0,1]F and
h = (h; :i€V)eRY. For convenience we will assume that the family p is
given by a family of coupling constants J = (J;; € [0, +o0] : {i,j} € E) and
the inverse temperature 5 > 0 so that p;; = 1 —exp(—23J;;). Following [17],
the probability measure of the random-cluster model with external field h on
the finite volume G is defined for each w € {0,1}¥ by

k(w,G)

(
bonc(w) = g%h%BJ(w) [ 2cosh (A(Ku())),

D a=

where h(Ko(w)) = B ek, (o)li» with the sets Ki(w), ..., Kywg)(w) being
composed by the connected components of (V,n(w)), By(w) representing the
Bernoulli factors

Biw)y= [I v I (—py) (5)

{i,5}wij=1 {%,j}:wij=0

and 23", being the partition function

k(w,G)
Liwa= Y Bsw) ] 2cosh (h(Kq(w))).

we{0,1}F

From now on, in order to ease the notation, we shall omit the w-dependence
from the components K (w), . . ., Kiw,q)(w) and simply write K7, ..., Kiw,q)-

Part 11
Free boundary conditions

6 The Edwards-Sokal Coupling

In this section we present the Edwards-Sokal model on a finite graph G' =
(V,E). The configuration space of this model is given by the cartesian
product {—1,+1}V x {0,1}¥. A pair of configurations ¢ € {—1,+1}" and
w € {0,1}¥ are deemed consistent if w;; =1 = 0; = 0;, V {4,j} € E. The
indicator function of the consistency of a pair (o,w) € {—1,+1}V x {0,1}*,
is denoted by

Afo,w) = ]1{(5,n)e{—1,+1}vx{0,1}E: if 7;;=1 then gizgj}(U, w).

10



g; =

1, if VZ,] , Wij :1:>Ji:Jj
Ao,w) = 0
0, otherwise

Figure 2: An example of spin-edge compatible configuration.

Similarly to the previous section, we fix § > 0, coupling constants J and
magnetic field h, and put p;; = 1—exp(—2/5J;;). In the Edwards-Sokal model,
the probability of a configuration (o,w) on a finite volume G = (V, E) C L
is defined by

v (0,9) = =2 By()M0,0) X exp (8 b (5ot — b0 1) ),

= ¥ES
"@i’uhﬂ i€V

where Bj represents the Bernoulli factors introduced in (5), d,,,, is Kro-
necker’s delta function and ,,%;’E,EG is the partition function.

Lemma 1. Let G = (V, E) be a finite graph and consider the 2-state Potts
model on G with free boundary condition and Hamiltonian given by (4). Sup-
pose that p;; = 1—exp(—205J;5) and & is obtained from o as in the Proposition
1. Then

exXp ( B 25(%?20,%38(&) + Z{i,j}eE Jij))

Z ( H pijéo'i,aj H (1— pij)) X €Xp (5 ZiEV hi<50i71 - 507;,71))-

w {i,j}:wijZI {i,j}:wijzo

Proof. Using the relation between ¢ and o, we first obtain the following
equality

exp (- 2B8(A, 5V (0) + D (ijyeE Jij))

exXp (Qﬂ(Z{i,j}eE Jij<50'i70'j - 1) + ZieV hi%(5¢7i,1 - (5U¢,—1)))'

11



By using that p;; = 1 — exp(—2f.J;;) and the elementary properties of the
exponential, a straightforward computation shows that the above expression
equals

H (pijécri,crj + (1 - pz‘j)) X €Xp (5 ZieV hi((so'i:l - 502'771))-
{i,j}€FE
By expanding the product in the above expression we get
Z( H pijdai,aj H (1 - pzj)) X exXp (6 ZiEV hi(éai,l - 501-,—1))-
E'CE {ij}eE’ {i,j}€E\E’

Since the collection of all the induced subgraphs of G is in bijection with
{0, 1}% we can rewrite the last expression as follows

Z ( H pij(sai,oj H (1 - ng)) X exp (ﬁ EiGV hi(aoi,l - 501‘,71))
w {#,j}wij=1 {,j}:wi;j=0
which completes the proof. O

Lemma 2. Under the hypothesis of Lemma 1 we can show that there exists
a constant C = C(B,G) > 0 so that

Potts - ES
Zoghoyv = CZpha-

Proof. Observe that

Ly = 2 e (- 204351(0))
6e{1,2}V
1 .
= 5 X e (= 2BUB0) + Cppes )):
5e{1,2}V

where C' = exp(28)_y; yep Jij) > 0. From Lemma 1 it follows that the
right-hand-side above is equal to

C Z( H pij(sai,aj H (1 - pij))xexp (6 Ziev hi(éanl - 501‘,—1))

o,w {i,j}:wl‘j=1 {i,j}:wij:O

OZ( H Dij H (1- pz‘j))A(Ua w)X exp (5 >icv hil0g 1 — 5@-,—1))

g,w {i,j}:wijzl {i,j}:wi]’:O

CY  By(w)A(o,w) x exp (BY ey hi(0o1 = 00,11)) = CZpng. O

12



Lemma 3. Let G be a finite graph and fiz an edge configuration w € {0,1}.
If h(Ko) = B ik, i, where Ky, ..., Kyw.q) denote the connected compo-
nents of (V,n(w)) we have

k(w,G)

Z A(o,w) x exp (8 Z hi(0i1 — 0oy—1)) H 2 cosh (h(K,)) .

oe{-1,4+1}V %

Proof. For a fixed w, if K1,..., Kj,q) denotes the decomposition of V' on
its connected components, we get

k(w,@)
Z hi(éai,l - O'L —1 Z Z h aZ - O’l —1)~
eV a=1 €K,

For each spin configuration o € {—1,1}" so that the pair (o, w) € {—1,1}" x
{0,1}¥ satisfies A(o,w) = 1, we have that the value of all the spins in the
same component has the same sign, see Figure 2. From the elementary
properties of the exponential function we obtain the following equality

A(U7w> X exp (6 Ziev hi(dghl - 501',—1))

k(w,G)

(o,w) X H exp BZ%K hi(0i1 — gi-1))-

Since V = (w G)Ka, we have a natural bijection between the following
spaces:

k(w,@)

{-1,+1}" and H{ 1,1},

For sake of simplicity, we denote a generic element of the cartesian product
k(w,@) ) .
[1F“9 =1, 1} K by (OKys -3 OKyiy)s Where o, = (0714 € Kj), Vj =
1,.. .,k(w,G) In this way we can simply write 0 = (0g,, ... ,aKk(wm). By

abusing the notation, we write

13



Using the previous observations and h;(0,,1 — s, —1) = hio; we obtain

D Afo,w) x exp (B ey hildo,1 — 05,-1))

k(w,G)

= Z H A(0 g, w)exp (5 ZieKa higi)

(ory "”’UKk(w,G)) a=1

k(w,G)

(w,G
— H Z A0 ko, w)exp (5 ZieKu hiUi)'

a=1 OKq

Because of the consistency condition, for each fixed «, the sum appearing on
the right-hand-side above has exactly two non zero terms where the spins in
K, take the values £1. Therefore the above expression reduces to

k(w,G)
H 2 cosh (5 Z hi),
a=1

i€Ka
thus the lemma is proved. O

Lemma 4. For any finite graph G = (V,E), p = (pij : 4,5 € V), h = (h; :
ieV) and B >0 we have

ES RC
Zohc = Zpha

Proof. The proof of this lemma is trivial given the above results. It is enough
to change the sum order of the partition function of the Edwards-Sokal model,
apply Lemma 3 and finally use the definition of the partition function of the
random-cluster model as we show below

L = Y Bi(w)> Alo,w) x exp (B ey hildo,1 — 00,-1))

k(w,G)
= Y By(w) [] 2cosh(h(K,)) = 25
w a=1

]

In the sequel we prove the main result of this section. The technicalities
of the proof were worked out in the previous lemmas and now the remaining
task is to simply piece them together.

14



Theorem 1 (The marginals of vpp ). Let G = (V. E) be a finite graph,
B>0,p=(py:i,j€V) as above and h = (h; : i € V) an external field.
Then

(1) Z Vphc(o,w) = Agnv(0) (spin-marginal of vpp )
wef{0,1}£

(2) Z Vphc(0,w) = ¢pnc(w). (edge-marginal of vph.c)
oce{-1,+1}V

Proof. We first prove (1). Using the definition of Bernoulli factors By, and
Lemma 2 with C' = exp(28_y; j1ep Jij) > 0, we obtain

Z Vphc(o,w)
w

QPES ZBJ (0,w) X exp (5 ZZEV i(0s, 1 501-,—1))

p.h,G

C
= 966?2120’?; v Z (H{i,j}:wijzl pij(SUiij H{i,j}:wij:()(l - pl])) X

w

x exp (B ey hi(0o,1 = 0o, 1))

By applying Lemma 1, it follows that the rhs above is equal to
C Potts A~

Potts exp ( 2B(, h,2,V (6) + Z{ZJ}GE Jz])) = Taph2v(0) = Aghv(0).
28,h,V

To prove (2) it is enough to use Lemmas 3 and 4 as follows

> tpnclow) = %@ D Afo,w) x exp (B ey hildo,1 = 05,-1))

o p’hvG

,G)
_ gl H 2 cosh (h(K,)) = dpnc(w).

p,h,G
O

Corollary 1 (Conditional measure of vsp ). Let w € {0,1}F be a fived edge
configuration. For each o € {—1,+1}V we have that

A(o,w)
[T°“% 2 cosh (h(K,))

a=1

X exp (6 ZZEV hi(60i71 - 501'7_1))'

Vpnc(olw) =

15



Proof. From Proposition 1 and Lemma 1 we have, for any random variable
g:{-1,1}V — R, that

Asnyv(9) = Z 9(0)m2ph2v(0)

6e{1,2}V
C
~ “grPoits Z 9(o) Z ( H Pijla;; H (1- pij)) X
28,h,2,V oe{-1,+1}V we{0,1}F  {i,j}wij=1 {i,5}:w;i;=0
X €Xp (6 Z hi((sai,l - 607;,—1))7
eV

where C' = exp(268 )y, iyep Jij) > 0. By changing the order of the sums in
the last expression we get

C
Z, Y Biw) > glo) Alo,w)exp (B3 ey hildo,1 — 0am1)).

we{0,1}F oce{-1,+1}¥

According to Lemmas 2 and 4, we have ™' 2500% |, = 20, = 2% By
introducing the product appearing in the definition of the random-cluster
model, we can see that the above expression is equal to

ZB"( w) [T549 2 cosh (h(K.))

%f%cc
" Zg (0,w) x exp (B v hi(do,1 — 00, -1))
Ha(jf’) 2 cosh (h(K,))

X

w

= Zg(U)A(O w) X exp (B Zzev l( o1 5@ —1))

[T:4 2 cosh (h(K.)) ol
Therefore
0' W exp (@ ZzEV ( - 50’i7_1))
A .
shv(g Z ZQ [T 2 cosh (h(Ka)) ] Pp (W)

On the other hand, we get from Theorem 1 that
sy (g Zg o) Vph,c(o,w) Z[Zg O)Vph,G 0|w)]¢th( )-
The proof is completed upon comparison of the two previous expressions. [
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7 Two-point function

The two-point function of the g-state Potts model is defined by

Gy =6,) — -

Tg,ﬁ,q,v(xa y) = 7T/37ﬁ,q,v( q

The term 1/q represents the probability that two independent spins uniformly
chosen have the same value. In the random-cluster model, the connectivity
function plays the role of the two-point function of the Potts model. This
function is precisely the probability, with respect to ¢pp ¢, that x and y are
in the same connected component, notation ¢pp (<> y).

Lemma 5. Let G = (V, E) be a finite graph and z,y € V two distinct
vertices. Fiz an edge configuration w € {0,1}F. If v 45 y in w, then

Y Loy Alo,w)exp (8 ,ey hios)
oe{-1,+1}V
k(w,G)
= 2cosh (h(K;) + h(K H 2 cosh (h(K,)),

a;ét u

where K; = Ky(w) and K, = K,(w) are two disjoint connected components
containing the vertices x and y, respectively.

Proof. The basic ideas used to prove this lemma are the same we employed
to prove Lemma 3, which we once more present for sake of completeness. Let
V= I_lk(w ©) K, be a decomposition in terms of the connected components of
the graph (V,n(w)). We recall that {—1,+1}V = [J*“{—1, 1} and its
elements are denoted by (ok,,...,0K,, ), With ok, = (0;:i € Kj), Vj =
1,...,k(w,G). We also use the natural identification o = (0k,, ... ,UK,C(%G)).

Suppose that z ¢ y in w. Denote K; and K, the components containing
the vertices x and y, respectively. Taking into account the decomposition of
V' mentioned above, we have

Z ]l{Uac:Uy}A(Ua w)exp (5 Zie\/ hiUz’)

k(w,G)
= Z ﬂ{azzay=+1}A<O_7w) H €xXp (ﬂ ZieKa hlgz)
4 a=1
k(w,@)
+ 3 Lormo=1yA0w) [] e (8 ek, hios).
o a=1

17



As previously observed, A(o,w) = HZ(:I’G) A(og,,w), so from a simple com-

putation we get that the expression above is equal to

2 cosh (h(K,) + h(K H ZA Ok, w)exp ( Z hio;) (6)

S5, R €K
Because of the consistency condition, the sums above over oy, have actually
two non-null terms. In each of such term the value of the spins is constant
and therefore the product simplifies to

(w,@)
H Z Aok, ,w)exp (B3 icx. hios)
=1 OKq

a;ét
(G k(w,@)
H exp(h(K,)) + exp(—h(K.))) = ] 2cosh (R(K,)).
Sz oy

Finally, by replacing the last expression in (6), we end the proof. O

Lemma 5 is vital for the most important result of this section, which is
the next theorem. We state below the theorem for the 2-state Potts model,
but in fact the theorem is valid for much more general Potts models. The
general case is treated in the last section.

Theorem 2 (Correlation-connectivity). Let G = (V, E) be a finite graph and
x,y two distinct vertices in V. Then

1 1
TQB,h,Q,V(xa y) = §¢pyhyg<$ — y)+§¢p7h7g (]l{x%yytanh (h(Kt))~tanh (h(Ku))),

where K; = K (w) e K, = K,(w) are two disjoint connected components
containing the vertices x and y, respectively.

Proof. By using the definition of the two-point function and Theorem 1 we

18



get

R R 1

Toph2v(T,y) = Tophov(0: =0y) — 2
1 .
= . (1{&z=&y} - §>7T2ﬁ,h,2,V(0)

6e{1,2}V

1
- Z (1{Ux:Uy} - §>Vﬁvh’G(U7 w)

(ow)e{—1,+1}V x{0,1}F

- X [ ) (11{%:%}—%) 67h,G(U|W)}¢p7h,G(W)-

we{0,1}F  oe{-1,+1}V

Since 0y, 5, = 5(1 + 0y0;), it follows from Corollary 1 that the rhs above is

1\ A(o,w) exp (ﬁ Yoiev hiai)
2 [Z (Fer =) oot h ) ] fonele)

Z <]l{%:0y} N 1) A(o,w) exp (8 ey hioi) _

2/ 1“9 2cosh (h(K.)) Fpncl)

= ey (W)

I\ A(o,w)exp (8, hio
+D Tppy @) [ (1{%:%} —§> Hk(:ia)%ish (h(;(a))) Pp.hc(w)

= Il +]2

Notice that, as long as x <> y in w and the pair (o,w) is consistent, then
o, = 0,. From this observation and Lemma 3, it follows that

1
I = §¢p,h,G($ S y).

On the other hand, applying Lemma 3 again yields

1
I, = —§¢p,h,G($§L>y)

A(o,w) exp (6 Y ic hiai)
# 2 e )| 2 Vel ey o i) | )

_%pr,h,G(x #y) + L. (7)
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Now we work on I,. By using Lemma 5, we have

- [ A(o,w) exp (6 > hiai)
I, — 1 . 1 o eV w
2= 2 b | 2 e e iy |

a=1

= Ly (w o7ty w
; { %y}( ) Hl;(giG) 92 cosh (h(Ka)) ¢p7h,G( )

9 cosh (h(K;) + h(K,)) k(@) 9 cosh (h(Ka))

1 cosh (h(K;) + h(K.,))
B §¢p’h’G <]l{x%>y} " cosh (h(K,)) - cosh (h(Ku)))

= %qb,,hG (ﬂ{x%y} . {1 + tanh (h(K})) - tanh (h(K,)) })

Replacing the last expression in (7) we get that

I = %%w(n{wy} tanh ((K)) - tanh (A(K) ). (8)

Since Togpov(z,y) = I1 + Iz, the theorem follows. O
Remark 2. Notice that in the absence of the magnetic field, i.e. h =0, the

conclusion of the Theorem 2 reduces to

1
Topo2v(T,y) = §¢p,0,G(l’ <y), Ve,yeV

which is a well known identity for the Ising/Potts model with ¢ = 2, see [27]
Theorem 1.16, p. 11.

Corollary 2. The spin-spin correlation of the Ising model on the finite vol-
ume V satisfies the following identity for any magnetic field h € RV

A hv (020y) = Pphc(r < Y) + Pprc (]l{a%y} -tanh (h(K;)) - tanh (h(K,)) )

Proof. This follows easily from the definition of the expected value and The-
orem 2 since )\57}17{/(01,03/) = )\B,h,V(O—i = (Tj) — )\B,hy(ai 7é Uj) = 2)\57]17‘/(0',' ==
0;) =1 =2 [Togpov (6. = Gy) — 5] = 2 nav(z,y). u

Remark 3. If we consider the Ising model on G without magnetic field, from
Corollary 2 we get A\g oy (0,0y) = Ppoc(x <> y), Yo,y € V.
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8 Applications

Spin-spin correlations. Corollary 2 can be used to obtain some cor-
relation inequalities. Keeping the notation of Theorem 2 and supposing
that h; > 0 for all ¢ € V, it follows from the monotonicity of the hyper-
bolic tangent that tanh(Sh,) < tanh(h(K;)) and tanh(5h,) < tanh(h(K,)).
These estimates together with Corollary 2 give us the following lower bound
dphc (xr ¢ y)tanh(Bh,)tanh(Bh,) < Agpy(0,0,). A simple computation
shows that Pp(z 4 v) < ¢pnc(r ¢ y), where P, is the probability measure
of the independent bond percolation model with parameter p. Supposing that
p = p (the homogeneous model) and p < p.(V), for any given € > 0, if the
distance between z and y is large enough then (1 —¢) tanh(Sh,) tanh(5h,) <
Ashv(0z0y), which, of course, can also be (better) obtained by the GKS
inequality.

Under the above assumptions, Corollary 2 also gives us an upper bound
in terms of the iid Bernoulli bond percolation model, which is A\gp v (0,0,)
< e ¢Wdc@y) 4 P (tanh (h(K;)) - tanh (h(K,)) ), where at this point we are
assuming J;; = J and p = 1 — e #’. To obtain the asymptotic behavior of
the second term in the rhs above, one needs to impose extra conditions on
the geometry of the graph and the decay ratio of the magnetic field.

Expected value and distribution function of a single spin.
Lemma 6. Consider a finite graph G = (V,E), x € V and w € {0,1}F a

fixed edge configuration. Then

Z]l{gzzil}A(@ w)exp (ﬁ Zz’ev hiai)

—exp (+h(K,)) [T2% 92 cosh (h(K,)),
at

where Ky = K (w) is the connected component containing the vertex .

Proof. To prove this lemma we proceed, mutatis mutandis, as in the proof
of Lemma, 5. O

Theorem 3 (Distribution function). Let G = (V, E) be a finite graph. We
have, for any fized x € V, that

1 1

Aﬁ,h,V(o-m = Zl:].) = 5 + §¢p7h7G(tanh (h(Kt)) ),

where Ky(w) = Ky is the connected component containing .
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Proof. From Theorem 1, it follows that

gy (o, ==F1) = > Lo,=+13V06(0,w)
(0.w)E{—1,+1}V x{0,1}2

= S [ 2 teeymncolo)|dpacl)

we{0,1}F  oe{-1,+1}V

Using Corollary 1, the above expression can be rewritten as

Ao,w)exp (B ;cy hios

]I{U-T::tl} k(w,G
we{0,1}¥ | oe{-1,+1}V Ha(zi ) 2 cosh (h(KOé))

¢p,h,G(w)-

Using now Lema 6, we can see that the above expression is equal to

exp (+h(K;)) HZ(:l’G) 2 cosh (h(Ka))

a#t
| ey | e
= % > [1+ tanh (R(K))] dphc(w).
we{0,1}E

O

Corollary 3. Under the hypothesis of Theorem 3, we have that

Aghv(og) = ¢p,hyg(tanh (h(K})) )
Proof. The proof follows directly from Theorem 3. n

9 General Potts models in external fields

In this last section we state two propositions establishing a graphical repre-
sentation for the two-point function of the g-state Potts model with general
external fields, defined in the Section 4, in terms of the connectivity of the
random-cluster model introduced below. The techniques employed to prove
these results are similar to the ones we used in the previous section and
therefore the proofs are omitted.

Given a finite graph G = (V, E), coupling constants J = (J;; > 0 :
{i,j} € E) and h a magnetic field as defined in the Section 4, for each w €
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{0,1}¥ we define the finite-volume Gibbs measure of the (general) random-
cluster model in external field by

k(
1
Ophgc) = e Bua(w H > en (53 hy). (9)
p.h,q,G a=1 p=1 €Ky

where K, is defined exactly as in the Section 5 and By ,(w) is similar to the
Bernoulli factor of the Section 5 with exception that p;; = 1 — exp(—¢8J;;).
The Edwards-Sokal measure is generalized to

. 1 X q
Vpha (0 W) = oES B g(w)Ag(5,w) x exp (3 Z Z hipds.p).  (10)
ph.aG eV p=1

Proposition 2. Consider the Potts model with Hamiltonian given by (3),
densities p;; = 1 — exp(—qfJi;) and q € {2,3,...} fized. For any pair of
vertices x,y € V we have that

1
Tashav (T Y) = (1 - 5)%,&,(1,@(% < y)
1
where the random variable Hy (K¢, K,) is given by

D1 exp (B Y ek, hir + B Y ik, hir)
r= leXp (6 ZZGK} 17“) ) q leXp (5 ZZGKU 7)

with Ky = K (w) and K, = K,(w) being the disjoint connected components
containing the vertices x and y, respectively.

H; (K, Ky)

Proof. We omit the proof of this proposition because it is similar to the one
given for Theorem 2. O]

Remark 4. Notice that in case h = 0, we have for any w € {0,1}¥ that

q 1
Hy(K;, K,)(w) == = —,
o( K¢, Ky)(w) £

so Proposition 2 gives us the following identity

1
Tqﬁ,O,q,V(xv y) = (1 - a)@w,q,G(m < y).
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This is also a very well know identity, as can be seen in [27] Theorem 1.16,
p. 11. Furthermore in case ¢ = 2 and h;y = —h;o = h; for all i € V, we
have for any paiwr v,y € V that

1
Hy (K ) = 5 {1+ tanh (5 > hi).-tanh (8 h) 3
€Ky €Ky,
In other words, Proposition 2 generalizes Theorem 2.

Proposition 3. Let G = (V, E) be a finite graph and x € V. For each
m € {1,...,q} with ¢ > 1, we have

ex e him
Wqﬁﬁqv(&xzm):%)ﬁqcr'( q p(ﬁzzel{t : ) )7
T T p1 €XP(B D ik, Pip)

where K; = K (w) is the connected component of x.

Sketch of the Proof. To prove this theorem one needs to compute the marginals
of the Edwards-Sokal coupling given in (10). The computation is similar to
the one presented in the previous sections. The next step is to prove the
identity

ﬂ-qﬁjz,q,v<6—$ = TTL) = Z |:Z ]l{f}m:m}yp,iz,q,G(a-|w)i| (bp,iz,q,G(w)

w

and then one proves that the rhs above is exactly

Z Z]I{A =6 }Aq(&’w) exp (B Xiev Xpr hivp(s&ivp)] Dphac@)
w & Y HZ(:iG) Zzl exp (5 ZieKa hz}p) Pl

From this point, the result follows from the combinatorial arguments pre-
sented before. |

Part 111
(GGeneral boundary conditions

10 The general random-cluster model

In this section we define the so called general random-cluster model on the
lattice L = (V,E) (this terminology, GRC model, comes from [7]) with in-
homogeneous magnetic field of the form h = (hip i€V, p=1...,q) €
RY x --- x RY and boundary conditions.
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The Bernoulli factors introduced before will be replaced in this section
by (abusing notation)

By(w) = H Tij, (11)

{#,j}wij=1

where J = (J;; = 0: {i,j} € E), ri; = exp(¢BJi;) — 1 and ¢ € Z7 fixed.
Although r;; > 0, in general, they are not bounded by one, but mind that the
random-cluster measure obtained with such “Bernoulli factors” is the same
one gets when considering the old Bernoulli factors, since the weights in both
cases are related by an overall normalization factor that cancels out because
of the partition function.

Fix a random subgraph G = (V| E) on the lattice L, let 0F = {e € E :
eNV # () and eNdV # }. We denote by Bo(V) the set of all edges {z,y} € E
so that {z,y} C V. With this definition we have By(V) = E. We use the
notation B(V') to denote the set of all edges with at least one vertex in V.
Note that B(V) = EUJE. For any E C By(V), we define V(E) as the set of

sites which belong to at least one edge in E.

GRC model with general boundary condition. Fix a finite subgraph
G = (V, E) of the lattice L. For each i € V we define h; ymax = max{h;, : p =
1,...,q}. f w € {0,1}F and C(w) denotes a generic connected component
on (V,n(w)), the GRC measure with general boundary condition is obtained
by normalizing the followings weights

q
Wit wplwp) = Bsw) [ Do ap o0 (=8 (himax — hip)),  (12)
C(w): p=1 1€C(w)
V(C(w))NV D

where {g, : p = 1,...,q} are positive constants, By(w) is given by (11)
and the product runs over all the connected components C'(w) of the graph

(V,n(w)). In the above expression we are using the convention e~ = 0.
This measure is denoted by ¢GRC.

GRC model with free boundary condition. Let G = (V| E) be a finite

graph and w € {0,1}¥ a configuration. If C(w) denotes a generic connected
component on (V,n(w)), we define

1€C(w)

®V,free(c(w)) = Z qp €Xp (B Z hl’vp)'

25



The GRC measure with free boundary condition is obtained by normalizing
the weights

Wi hree (@) H OV free(C (13)

C(w)
where Bj(w) is given by (11) and the product runs over all the connected
components C'(w) of the graph (V,7(w)). This measure is denoted by ¢{iFc,
and for each w € {0,1}" it satisfies ¢fifc.(w) o Wi, (w), where the pro-
portionality constant is exactly the (inverse of the) partition function of the

GRC model.

GRC model with wired boundary condition. Fixm € {1,...,¢} and
a finite subgraph G = (V, E) of the lattice L. If for each w € {0, 1}FY9E.
C(w) denotes a connected component on (V U 9JV,n(w)), then we define

@V,free(C(w>>7 if C(W) N 8‘/ = Q)

exp (ﬁ > hi,m), otherwise.
1€C(w)

Oym(C(w)) =

Similarly, the GRC measure with m-wired boundary condition is obtained
by normalizing the Weights

WERC (w w) [] &vm(C (14)
C(w)

where the product runs over all the connected components C'(w) of the graph
(V UV, n(w)). This measure is denoted by @R,

Remark 5. One can easily see that when E = B(A) A CV finite, in (12)

1 — . .
WERS (@awyye) = e P Zieatimg,, - By(w) [T Oam(C
C(w)

(1:4) 67’8 Diea hi,max WGRC( )

where W% is the configuration with w? =g for all e € Bo(V) (i = 0,1).
Therefore

1
¢§(€{\?(WB(A)|WI(BS()A)C) = gic(w)-

Similarly we obtain in (12) with E = By(A)

0
WH%?/(\J) (WBO(A)|MI(B§O)(A) ) = e P uiealime . By (w H O free
C(w)

(13) - i hz max GRC
= € BZZEA ' WAfree( )
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then

0
Bt (Weo () [Whegaye) = S ().

10.1 The FKG inequality

Throughout this section we assume that {g, : p = 1,...,¢} introduced in
(12) and the magnetic field h satisfy

Y g1, (15)

PEN;cv Qi,max (h’)

where Q; max(h) = {p e {l,....q} : hip = hi,max}. We consider as usual
the partial order on {0,1}¥ where w < & <= w. < @, Ve € E.
We also use the standard notations w; V wy and wy A wy for (wy V we)e =
max{w;(e),ws(e)} and (w1 A wa)e = min{w;(e),ws(e)} with e € E, respec-
tively.

Definition 2 (FKG property). Let (2, <) be a partially ordered space. A
measure p over ) said to have the FKG property if

w(fg) = pn(f)ulg)

for any increasing (with respect to <) measurable functions f,g :  — R.
Furthermore, if Q0 is a cartesian product Q = []..p Qe, with Q.| < oo, then u
is said to have the strong FKG property, if u(-|A) has the FKG property
for each cylinder event A = {w € Q : w, = a,, Ve € B}, where B C B is
finite and o, € Q. for all e € B.

Remark 6. Ifm,m € N;eyQ;, max( ), then Oy m(C) = Oy (C) and therefore

URC = @URC. This measure is denoted by ¢y, .

Theorem 4 (Strong FKG property). Let g € Z*, 3 >0, J = (J;; : {i,j} €

E) € [0,00)E, h=(hijycR:ieV1<p<q and{g :p=1,....q}

satisfying (15). Then for any finite subgraph G = (V, E) of L, the measures
GRC and ¢SRC  have the strong FKG property.

V. free V,max

Proof. For simplicity we assume that the magnetic field we are dealing with
satisfies the following inequalities

hin <his <...<hiy, VieV. (16)
The FKG lattice condition for the ¢JRC. is equivalent to

WERS (@ v w®)WERS (@ A w®) > WERS (V) WERS (w12),

free (W
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where w®) and w® are arbitrary configurations. Similarly for ¢ffRC . Tt is

well known that such condition implies the strong FKG property, see for
example Theorem 2.19, p. 25 in [27]|. By defining

GRC
R(e.w) = Wriel& V)

Wikel§)
one can see that the lattice condition holds if
R(wM, w®) > R(wM Aw®, w®). (17)

For a fixed configuration w, we chose an arbitrary order for n(w) and represent
these open edges as (eq, ..., €w)). So for any configuration ¢ € {0, 1} we
have that

In(w)|

REw) = || REVWE vy wlen) gley
k=1

where (w®). = §. . Therefore it is enough to prove (17) for configurations
¢, w and w® such that € has at least two zero coordinates or at most one
zero and w = &V w® and w® = ¢ v w®). Let us begin assuming that &
has at least two zero coordinates and

where b, b € EUOFE, b # ' and the stars indicate generic elements in {0, 1}
(not necessarily equal). If we define

b

5 :(*7 ) K, 1 ) %, ) ¥, 0 ) %, 7*)
~
b—th b —th

and

o

g :(*7 ) %, 0 y Ky oy K, 1 ) %, 7*)7
~ ~
b—th b’ —th

then we have that w®) = ¢vw® = ¢ W = vw®) = and WM AW = €.
So in order to prove (17) it is enough to prove that

R(E,E) > R(EEY), with b £V, (18)

Now we concentrate on proving (18). To do this we first observe that if
H{i,j}iﬁij:1 Tij = k7 then

H Tij = T’b’/’b/k}7 H Tij = T’bk} and H Tij = Tb/]{?.

{i,5}:(€0vEY )s5=1 {i.j}:€5=1 {i,5}:(EVEY )i;=1
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So it follows from the definition (11) that

By ve) _ uneven=ri _ - Nupeen,ama _ Bigve)

Ty

By Iuje i Hyjpe,oims Bal§)

Because of the above observation and the definitions of ngge and W{RC,
the proof of (18) reduces to

Ovy(C(EVE)) _ Bra(CEVE)
Ov(CE")  ~  Oyx(C(©)

where # stands for “free”or “m”.

(19)

FREE BOUNDARY CONDITION CASE.

We broke the proof of (19) in several cases. Let A;, As, By and By be con-
nected components of (V;7(£)) and consider the cases showed in the picture
below

A ; Ay

,‘—/b ,:: . - b
1 ; 4 Ai=Bi=A:
. “_—/-K \\\" . /
N N7 b / "
iYL Y e RS DS
ed 4 5 F S
(I) (I1) (II1)

The case (I) represents that the end vertices of b belong to A; and As and
the end vertices of b’ belong to By and B;. In this case the left and right
sides of (19) are equal, since

@V,free(Al U AQ)@V,free(Bl U BQ)
®V,free(A1 U A2)®V,free(B1)®V,free(BZ)

_ @V,free(Bl U BZ)@V,free<A1)@V,free(A2)
®V,free<A1)@V,free (A2)G\ﬂfree(Bl)@V,free(BZ) ‘

For the case (II), we should prove that

@V,free<A UBU C) > @V,free(c ) B)@V,free(A>
@V,free(c U A)@V,free(B) - @V,free(A>@V,free(B)@V,free(C) ’
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which is equivalent to
@V,free(c)@v,free<A U B U C) 2 @V,free(C U A>@V,free(0 ) B) (20)

To help us prove inequality (20), we define for each m € {1,...,q} the
following numbers

(yy = €Xp (ﬁzz’eAhi’m)7 by, = exp (BZieBh@m) and ¢,, = exp (6Ziechi,m).

The hypothesis (16) implies immediately that (a,,) and (b,,) are non-
decreasing in m. Using this notation, (20) reads

q q q

q
Z dmCm Z C]m’am’bm’cm’ 2 Z gmamCm Qm’bm’cm’- (21)

m=1 m/=1 m=1 m/=1
Both sides of the above inequality can be written using a bilinear form
q
QO(G, b) = Z Tm,m’am’bmv
m,m/=1

where 7,/ = @mCmlm Cny > @ = (a1, ..., a4) and b = (by,...,b,;). Note that
¢ is a symmetric bilinear form and (21) can be written as

o(l,¢) = p(a,b), where ¢ = (aib, ..., a.b,). (22)
Therefore it remains to prove (22), which clearly holds since
oot (s — ) b =) 20 = 9(1,0) — (a,B) — p(b,a) + (e, 1) > 0.
We proceed with (19) for the case (I11). Now we have to prove that

o @V,free(A U B) > @V,free(A U B)

1= = ,
®V,free(A U B) ®V,free(A>®V,free(B)

in other words Oy free(A)Ov free(B) = Oy tree(A U B), or equivalently

2 =t G D iy Gwrbmr 2 3 0y G oD
This last inequality is actually true since

q

q q q q
Z gmQm Z Qm/bm/ 2 Z Qmambmax Z qm/ 2 Z Qmambm
m=1 m/'=1 m=1 m=1

m/emiEV Q'L,max (i")
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For the cases where the end vertices of b or ' are contained in the same
connected component, the inequality is trivial.

MAX WIRED BOUNDARY CONDAITION CASE.

Suppose that m € NjeyQimax(h). To prove the inequality (19) we have to
analyze again the three cases above. For case ([), analogously to the free
boundary condition case, we have

@V,rﬁ(Al U Ag)@v’fﬁ(Bl U BQ) _ @V,IB(BI U B2>@\/’ﬁ’1(141>@ﬁ71<142)
Ovm(A1 UA)Oyam(B1)Oym(Ba)  Ovam(A1)Oym(As)Ovam(B1)Oym(Bs)’

independently on whether the components Ay, Ay, By and B and the possible
combinations among them intersect V°.
For the case (/) and all the configurations sketched on the figure below

(fli—f.:n,z(i}[ - ":%i“:’}'z(i‘f A'ZEA: {:fi]:n.z(‘i} - aﬂ:fiuzmz(ﬁ:} p | A=A
] by : g ' I 2 4
B,=B B;=B B;=B B,=B
CNVe#0 Cnve#£0, Cnve#0, CNVe#0, BNV £,
ANVeE£D BNVe#( ANVe#£D

we have from the definition (14) of Oy 5 that the following equality holds
Cﬁlafﬁbfﬁcl’ﬁ = afﬁCfﬁbfﬁCﬁ‘l.

For the following configurations that also appears in the case (I1) :

Ay=N ::}i;=31£5‘: ::;ﬁi;=3150‘:
Y. v "'& :\\_.__ y’ \
By=B ’,/ By=B By=B
ANVE£D BNVe#( ANVe£D, BNVE#)
(a) (b) (c)

For (a), the inequality (19) comes from

O @mCm) aabmcin = amcim (D5 ) Qb o)
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which is always valid since we have that bz > by, Ym' = 1,...,¢. In (b)
inequality (19), comes from

(Zznzl chm) afﬁbrhcfﬁ > (z;{n:l Qmamcm> bfﬁcrﬁa

which is also true because agz > a,,, Vm =1,...,q. Finally, in (¢) inequality
(19), is a consequence of

(D oi—1 @mCm) ambmcs = amcmbmcm
and the validity of this inequality is ensured by

q _
Zm:l qmCm > Z GmCmax > Cmax = Cm,

meEN; ey Qi max (k)

which follows from (15).
Now we consider the case (I11), by splitting its analysis in the following
sub-cases

Ar=B1=A i ,;" Al:Ble'l: A1=B;=4}
1"” b/ /E l‘i‘ 1"” b/ ,E :/” bl 'I:
______ R Az :BzEBj," :_f‘lf =B=B .*__Az:BzEB
ANVe£() BNnVe#0D ANVE£D, BNVE#(D
(d) (e) (f)

For (d) the inequality (19), is valid as long as

am (O 1 @) = ambs.

This is in fact true because

Zg@/zl Qm’bm/ = Z Qm’bmax = bmax = bﬁl

mlemiEVQi,max(fl)
For (e), the desired inequality follows from
(Z:{n:l Qmam> bfﬁ 2 aribﬁn
but this inequality holds because
q
Z gmQm = Z gmQmax Z Umax = -
m=1 memiEVQi,max(il)
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For the last sub-case (f), we have to prove that ambm = ambm, which is
obviously true.

In the max wired boundary conditions, if the end vertices of b or b’ belong
to the same component, the result follows.

To finish the proof we need to address the case where £ has at most one
zero and wM = ¢ vV w® and w® = ¢ v w®) . Suppose that

€=(1,...,1, 0,1,...,1, 1 ,1,...,1)
~ ~
b—th b —th

where b,V € E'UOFE with b # /. By defining
¢=1,...,1, 1,1,...,1, 1 ,1,...,1)
~ ~
b—th b'—th
and
& =1,...,1, 0,1,...,1, 1 ,1,...,1),
~ ~
b—th b —th
we can see that w) = &vw® =0 W@ = v = ¢ and wWHAW® =
¢. In this case, to prove (17) for both “free” and “max” wired boundary
conditions, it is enough to prove that R(£%,£¥) = R(&,€Y) with b # ¥, but
this is trivial since

Rt ey - WEEEVED  WIE) W
| WERC(E)  — WERE(E) ~ WEEE(©)
_WESEvE) .
O

11 Edwards-Sokal model

Edwards-Sokal model with general boundary condition. Fix ¢ €
Z7*, for any finite set V' C V and any fixed configurations oye,wg)e pre-
scribed outside of V, we define de Edwards-Sokal measure gzﬁ‘E/ﬁB(v) as the
normalization of the following weights

q
W(ov,wsmlove,wswye) = [ risdoios X exp (8D hinbo.p),

{3,j}eB(V) 1€V p=1
wij:1

where 7;; has been defined in (11).
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Edwards-Sokal model with wired and free boundary conditions.
From the previous definition we can observe that, for any finite volume V' C
V, the state VB V)( |oye, wpvye) is independent of wg(y)e, and we define

\E/il('): E,SJB(V)('|0$c>WB(V)c),

where o™ is the constant configuration, o/ = m for all ¢ € V, with m €
{1,...,¢} fixed. This state is known as the m-wired boundary condition
state.

By similar reasons we have that ‘E/ vy (love, wr,(v)e) does not depend on
oye, provided that the w-boundary condltlon is chosen as wgy (1) wBO( V)es

where w” denotes the configuration with wy; = 0 for all {7, j} € B(V). In this
case we introduce the notation

Vfree() ¢VIB;O ("Uchw]E])SO(V)C)'

12 Gibbs states and limit states

Gibbs states. Let Z2(Q2) denote the set of probability measures defined
on some probability space (2. Since the families {¢g*°} and {gbV]B(V } are
specifications (see |23]), we can define as usual the set of the Gibbs measures
compatible with these specifications as follows

) PR / GSRC( flwpe ) B(dw),
supp(f) C B

GORC =L e 2(Q) (23)

and

supp(f) CV x IB%(V)

That is, 9B and ¢S are the class of probability measures (Gibbs measures)
that are preserved for their respective probability kernels.

Limit states. On the other hand, we define the set of the thermodynamic
limits of the specification {¢g"}, where {B,} is a cofinal collection in E :

G = {6 € 2({0,1}%) : ¢ "= lim g (Jwn) }. (24)
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In general, it is not easy to relate the sets ¥%R¢ and 4SRC due to the lack
of quasilocality of the specifications ¢§RC. One case where these sets can be
related is the case in which we assume the existence of at most one connected
component with probability one. As a consequence of Lemma 7, one can
prove the following relation: ¥SRC  ¢SRC see Lemma 8 below. For more
details see [7].

By using the FKG property for the GRC model and the previous defi-
nitions, one can prove the following theorem which ensures the existence of
thermodynamic limit.

Theorem 5 (Monotonicity and existence of limit states). Let 8 > 0, J =
(Jij : {i,j} € E) € [0,00)E and h = (h;p, e R:i€V; p=1,...,q). For
each increasing quasilocal function f (see [23]),

(i) The following limits exist

GRC/ £\ — GRC GRC/ /\ — GRC

max (f) %}'IT% gmeax(f) and gbfree (f) %}%‘}. ¢Vfree(f)'
(11) If in addition, m € Ny Q; max( ), then the following limits exist

Elix(f) — hm ¢Vmax(f) and ¢free(f) - hm ¢Vfree(f)

(iii) If ¢ € GSRC or ¢ € G9RC then for each increasing quasilocal function

lim
f we have
oo () < () < e (f)-
Proof. The proof is similar to the proof of Theorem III.1 in [7]. H

Since we are also interested in monotonicity properties with respect to the
magnetic field, it is needed to introduce a partial order between two fields
[7]. Given two arbitrary magnetic fields h and I/, we say that

il%ill <— VieV: hi’k—hi’lé g,k_ ! k7l:11"-7q (25)

0,09

whenever h;, — h;; > 0.

Theorem 6 (Monotonicity with respect to the magnetic field). Let h and

R be two arbitrary magnetic fields such that h < K. Denote by qﬁiRc’h and

gbGROh their respective measures defined in Theorem &, where # stands for

“free” or “‘max”. Then, for any quasilocal increasing function f we have

Gchz<f) < GRCfL’(f) and GchL(f) ¢GRC h’(f)

free free max max
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Proof. By the Holley Theorem, the stochastic domination claimed in the
statement of the theorem is proved as long as the following lattice condition
is satisfied

Vw0 V)BT WO Aw®) 2 oI @)ECRW®)  (26)

for all w™®, w® € {0,1}F, where # denotes the “free” and “max” wired bound-
ary conditions. For details, see Theorem 2.3, item (c), p. 20 in [27]. It is
also well known that (26) is a consequence of

) o)

GSROH ¢y T BSROR (e )

for any £ < ¢ and e € E, where {) (£°) is the configuration that agrees with
¢ in all edges, except in e where its value is zero (one). We shall remark that
the notations & and &) have different meaning.

Without loss of generality, we can assume that £ and ( are of the form

, (27)

E=(%...,% 0 ,%,....%) and (= (,....%, 0 ', ... «),

~ ~
e—th e—th
with { < (. Let ¥ = [] mjand k= ][ riy. From the definitions
{i.7}Gi=1 {i5}:6i5=1

we get that

C(e) = CJ f(e) = 57 H Tij = Tekl and H Ty = rok.
{i,j}?(iejZI {ivj}szjzl
Therefore
Bi(¢) _ =17 = Wiigpe, <1 Bj(eo)
Bj (C(e)> H{i,j}:(ijzl Tij ‘ H{i,j}:&:jil Tij Bj (5(5))

So it follows from the equation above that (27) is a consequence of

(¢ Ohs(€)
M) Oy ()

for both “free” and “max” wired boundary conditions.

If e ={z,y} and z <> y in &, then (28) is an equality. On the other hand,
if x ¢ y in &, then there are two connected components A = C(z,&) and
B = C(y, &) containing the vertices z and y, respectively. If e is an open

(28)
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edge in &, then the components A and B are connected and will be denoted
by C = AU B. So |C| = |A| + |B|, from where we deduce that

N p(()  Ohyléw) _ OV4(C) Ohu(A)Oh4(B)
@’\L/,,#@(e)) @l&#(ge) @}\L/,#(C> @lxl/:#(A)@’IL/I,#(B)

for either free or max wired boundary conditions. In order to prove (28), it
is enough to prove that

Y

O 4(C) O 4(A)0h4(B)
O14(C) OV4(A)07 4(B)

> 1. (29)

To establish the above inequality, we analyze separately the “free” and “max”
wired boundary condition cases.

FREE BOUNDARY CONDITION CASE.
Keeping the notation used in the proof of the FKG inequality, for each
m € {1,...,q} we define

Ay = €XP (6Zhijm), b,, = exp (ﬁzhi,m> and ¢, = exp (ﬁthm)
icA i€B icC

Similarly we define a;,, 0, and c;, by replacing (h;,,) for (h; ). With this

m?’-m

notation, (29) reads

( j 1 455)( fe1 Q03 Q21 qanbn)
< (o1 @5a5) ey @) (320 @aghy). (30)

The proof of (30) is divided in two steps.

Step 1:(move the primes from a;’s) we claim that

(D721 4505) (X ohmy awble) (oioy )
< (X521 4a) (O0hoy axbl) Q21 aurbr). (31)

In fact, we first remark that without loss of generality we can assume that
hiy h/zj > 0, Vi € V. From the hypothesis we have h < h’ so we get
v l ,j=1,...,qand Vi € V that hy; — h;; < hj; — h};. From the last
inequality, it follows that

ay

— <

—l, which implies aja; — aja; < 0. (32)
a; CL
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On the other hand, since h;; — h; ; > 0, we have b, —b; > 0. Putting together
the last two inequalities yields

(aja; — ajap) (b — bj) <0,

and we conclude that a;-albl < [a}al — aja;] bj + aja;b; < ajajb;, where in the
last inequality we have used (32). By multiplying the above inequality for
¢;qkqb), and then summing over j, k,l =1,...,¢, we prove the claim.

Step 2:(move the primes from b;’s) we claim that

(D51 905) ke @ubl) (D21 @uaibr)
< (o 4505) (2hmy kb)) Qi @erby)- (33)

The proof is similar to the one given for the Step 1. We assume that h;; —
hir >0,V i € V and prove in place of (32) that b,.b; — byb; < 0, proceeding
similarly to reach the conclusion.

Finally, by piecing together the inequalities (31) and (33), we obtain (30).

MAX WIRED BOUNDARY CONDITION ACASE. R

We first observe that if m € N;ey Qi (h) and m € NieyQ; 7 (A'), then m = m.
Given two connected components A and B, if ANV = () and BNV¢ = (), then
the inequality follows from the free boundary condition case. The remaining

cases will be analyzed by considering the following cases:

WA . B LA “._B/ L WP B/
ANVE £0 BAVE £0 ANVE£D, BAVE AL

(a) (b) (c)
In the case (a), (29) is equivalent to the inequality
Ay (22— @) ambin < am (324, aibr) a, by, (34)

To see that this inequality holds, it is sufficient to observe that the order-
ing between the magnetic fields implies by, b}, < 0], b,. Multiplying this last
inequality by a! a,, and summing over k = 1,...,q, we obtain (34).

In the case (b) the inequality (29) reduces to

(32721 405U ambm < (3252, 4507)bmag, b,
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Now we use that the magnetic field ordering implies that ana; < aj,a; and
then proceed similarly to the previous case. Finally, in the case (¢) the
inequality (29) is equivalent to al bl anby, = al bl al b, which is trivial. [

m-m-“m~’m?

Our next result is the monotonicity, in the FKG sense, with respect to
the coupling constants J in the special case where J;; = J,V¢,7 € V.

Theorem 7. Suppose that 0 < J; < Jo are two coupling constants. For each
finite V.C 'V denote by (bGRC e , k=1,2; the measure defined by the weights

(13) or by the weights (14) with m € Niey € Q;max(h). Then

GRC,J GRC,J.
V,max l(f) < V free Q(f)’

where f is a cylindrical increasing function, and # stands for “free” or “max”.

Proof. By assuming J; < Jo, we get that e??t —1 < €92 — 1. For any
configuration w € {0,1}*") we define the function g : {0,1}B(V) — R by

quJl — 1 0(“))
g(w) = {m} x I ep(8 D him)
C(w): 1€C(w)
V(C(w))NOV #0

where o(w) denotes the numbers of open edges in w. One can easily see
that the function g is decreasing since g is composed by the product of non-
negative decreasing functions.

Let f : {0,1}B(Y) — R be a cylindrical increasing arbitrary function.
Since J;; = J, we have the following expression for Bernoulli factor: By, (w) =

(eqﬁ‘]’v — 1)O(w), = 1,2. From the definition of the expected values we obtain

3,§Sfl<f>——zeim > @ =)™ [T Ovaman(C )

V,max we{0,1}B(V)

— e Y @) (- 1)

V,max we{0,1}B(V)

ZGRC Ja
X H E ﬁZzEC(w) h’LP X Vifree
ZGRC Jl

V,max

V(C(w ))ﬂBV (2)

GRC,J2
GRC,J. Vi
= V. free 2<f ’ g) X %Cﬁh’ (35)

V,max

39



where Z Gic " denotes the normalization constant of the measure ¢GRC “ and

# stands for “free” or “max”. By taking f = 1 in (35) we get the following
equality

GRC,J1
GRC,J2 _ “Vmax
V. free ( ) - GRC,Js
V. free

Using the last equation, (35) and the strong FKG property (Theorem 4) we
finally conclude that

GRC,J
GRC,J; _ Pviree *(f - g) FKa GRC,Js
V,max (f) - GRC,J2 = V. free (f)
V. free ( )

]

Remark 7. Note that Theorem 7 can be extended using Item (iii) of Theorem
5 for any pair of GRC Gibbs measures at J = Jy, resp. J = Jy. As a
particular case, we obtain the following corollary.

Corollary 4 (Monotonicity in coupling constant). Suppose that 0 < J; <
Jo are two coupling constants. For each finite V. C 'V denote by ngGRC o
k=1,2; the measure defined by the weights (13) or by the weights (14) wzth

m € Niev € Q; max (il) Then

dvn () < dyns R (f),

where f 1s a cylindrical increasing function and # stands for “free” or “max”.

13 GRC model and quasilocality

In what follows we study the quasilocality of the random-cluster model in
non-homogeneous magnetic field. The next lemma tells us that the specifi-
cations {¢5R} are almost surely quasilocal (see |23, 38|). To give a precise
statement of this lemma, we need to introduce some notation:

///(A,A)E{we{() 1}E Vo, y € A, xHAcandyHAcém%y}

Bo(A)

where A C A are finite subsets in V. The following lemma is an adaptation
of Lemma VI.2 in [7] for our model.
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Lemma 7 (Quasilocality). Let B C Bo(E) be a finite set and [ a cylindrical
function depending only on the edges in B. Then, for each pair of finite
subsets (A, N) with V(B) C A C A, the function

w = 1 gan (W)og O (flwpe)

is quasilocal. If in addition ¢ € 4SRC or ¢ € G9RC have at most one infinite

lim
connected component and A C'V, then

o(A(A,N) 11,  whenever ATV.

Proof. Recalling the definition of ¢5R°(-|wge), we note that it is enough to
prove that the function

W ]l///(AVA)(w)¢gRC(wB|ch), i w]ﬂg € {0, 1}B (36)

is quasilocal. In the sequel we shall prove the quasilocality of the mapping
defined in (36). Let A be a finite subset of V such that A ¢ A. Consider
the following configurations:

W= (koo ®, 0%, W= (ko yx, 1 ,%,..0)
~ ~
b—th b—th

where % is an arbitrary element in {0,1} and b € B(A)°. Suppose that
w € (A, N) and that there exists a connected component C* connecting A
to B(A)® in w. By definition, we have that w® € .#(A, A) and the connected
component C* is unique. Let us consider two cases:

D) V(C)NVED}) =0 and 2) V(C*) N V({b}) # 0.

In the first case we trivially have |W§FRC (g |wh.) — WERC (g |wge)| = 0. The
second case is more elaborate. We consider separately two cases. We first
assume that there is some ¢ > 0 such that € < |h; max — him| for all i € V and
m € {1,...,q}. For this case let us denote by C; the connected component

V(C*) N V({b}). Then

(W (W |whe) — Wg e (Wi |wse)

q
XZQm‘exp 62 Zmax_ zm _eXp BZ i,max zm)
m=1

1eCy eC*

< By(w)k(w)x

where

k(M)E Z eXp BZ i,max 'Lm)<oo

C(w):V(C)NV(B)#£D m=1 ieC
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and

EJ(CU) = H Tij-

{’L j}EB'UJj]'::L
Suppose that m ¢ ﬂ QZ maX( ), then we have
N 1
d(b7 A) < ’V(Cb)’ < Z g(hi,max - hz,m)
ieCy
The last inequalities imply that if d(b, A) — oo, then

> (himax — him) =00 and Y (himax — him) = 00,

ieCy ieCx
whenever m & ﬂVQZ-,max(fAz). Therefore, whenever d(b, A\) — oo, we have that
1€

| GRC (

w]B|ch) WIé;RC(wmch) — 0. (37)

In the case liminf;ey | max — Pim| = 0 it is enough to analyze whether
Z (hi,max - hz,m)
ieC

is finite or not. If it is infinite, then the result is trivial. Otherwise we use
the continuity of the exponential function and a suitable choice of b so that
d(b, A) — oo. Now we consider two different configurations:

W= (koonyk, 0 %, 0%, 1 %00
~ ~
b—th b/ —th
and
W= (k.oyk, 1 okooyx, 0 %000,
~ ~
b—th b —th

where * is arbitrary in {0,1} and b,&' € B(A)¢ . We also denote

wE(*?“'?*?&’*?"‘?*’ 07*7""*)7

with * arbitrary in {0,1}. See that & = w” and @ = w’. Then by (37) and
the triangle inequality we have

(W (W |0ge) — Wp e (Wi |@se)

<

~

[Wi™RC (@ |whe ) — Wig™C (@p|wpe )| + |WgC (@ |whe ) — Wi (@5 |we)

— 0,
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when d(b', A),d(b, A) — oo. Following this reasoning, we prove that for any
two distinct configurations @, @ em B(A)¢ we have

| GR

C(@g|wh.) — WY (@p|@ge)| — 0, whenever 1;)11ifr}1d(b, A) — o0
S
and A = {e € B(A)® : &, # @}, thus proving the quasilocality of the
application (36).
Finally, in order to prove the second statement, it is enough to notice
that {Z(A,A) : A CV finite} is an increasing sequence of events. O

Lemma 8 (Subsets of Gibbs measures). Let ¢ € Z*, § > 0, J = (J;; :
{i,j} €E)€[0,00)F h=(hpyeR:ieV, p=1,...,q) and {q, : p =

1,...,q} satisfying (15). If ¢ € 4SRC and has at most one infinite connected
component then 4SRC c @gORC,

Proof. The proof of this lemma follows from Lemma 7 and the almost sure
quasilocality. See [7]. O

The next theorem gives sufficient conditions for quasilocality of the speci-
fications under a geometric assumption of almost sure existence of an infinite
connected component in the graph, thus facilitating many technical calcula-
tions.

Theorem 8 (Conditional expectations for GRC). Let 3 > 0,J;; > 0, h;,, €
R, Vi,j €V and ¢, > 0,m = 1,...,q satisfying (15). If ¢ € Y°RC and has
at most one infinite connected component almost surely, B C Bo(V), and f
15 a cylindrical function depending on the configuration wg, then

O(f|Fpe) = oSN (flwpe), o—aus.

Sketch of the Proof. The idea is the same as the one employed in the proof of
the Theorem I11.4 in [7]. For the sake of completeness, we sketch a proof. Let
B, B, be finite sets of bonds with B; By = @) and f and ¢ be bounded cylin-
der functions depending only on the bonds in B; and By, respectively. Using
the DLR equation (23) and the consistence of the specifications {¢5RC}, for
B D B, N By we can easily obtain that

$lgf) = lim / G (g (1) o ) (38)

Let A D V(By), since both g and 1 4 a v, ()¢5 C(f|-) are quasilocal, the
function ¢ - Lyavm) s < (f|-) can be approximated by local functions.

43



Then by DLR equation (23), we have
o(9- Laaveyds (f])

= im / ¢5" (9 Laavey s, (f1)|wse)¢(dw). (39)

From Lemma 7 we get ¢(.# (A, V(B,))) 11 whenever A V. Since f and g
are bounded, using the Dominated Convergence Theorem we have

kg‘}/¢GRC 9]1///AV11%1 ¢GRC f‘ }WBC d(JJ /GRC GRC f‘ ‘ch

lim ¢(9- Laavenss, (1)) = o(go8, (f]).

Combining the above limits, together with the items (38) and (39), we have
#(gf) = o995, (f1)

for all bounded g depending only on the configurations wge. From the al-
most sure uniqueness of conditional expectation with respect to ¢, the proof
follows. 0

Using the general theory of thermodynamic formalism, one can prove the
following lemma.

Lemma 9 (Monotonicity in the volume, [7]). Let ¢ € Z*, 8 > 0, J =
(Jij : {i,j} € E) € [0,00)E, the magnetic field be h and the sequence {q,, :
p=1,...,q} satisfy (15). If A C V are finite subsets of V, then for any
cylindrical increasing function f we have

Riree(f) < OViee(f)  and O (F) = OV (f)-

Remark 8. When g, = 1, for allp = 1,...,q in (12) , then we call the
model simply the RC model. In this case, we define the set of Gibbs measures
GRC and GEC similarly to (23) and (24).

From now on, the study turns to some fundamental properties of the RC
model. The following theorem is valid only for the random-cluster model.
Theorem 9. Let ¢ € ZT, 3 > 0, J = (Ji; : {i,j} € E) € [0,00)F and
h be a magnetic field as previously defined. Given v € 95, let ¢, denote
its edge-marginal. Then for any cylindrical increasing function f we have

¢V<f) < ¢max(f)
Proof. For more details see the proof of Theorem II1.2 reference [7]. O
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14 Uniqueness of the infinite connected com-
ponent

We have so far developed the theory of the random-cluster model with non-
uniform magnetic field for countably infinite graphs. We are interested in the
situation in which the infinite connected component is (almost surely) unique,
as is commonly the case for an “amenable graph”. The amenability hypothesis
is important for the uniqueness of the infinite connected component in several
models, [13, 28, 31]. When the graph is non-amenable, the non-uniqueness
of the infinite connected component is known for several models including
the Bernoulli percolation and null magnetic field random-cluster model, see
|6, 28, 31] and references therein. Therefore, from now on we assume tacitly
that the lattice L is amenable, that is, inf{|0gV'|/|V'|} = 0, where the infimum
ranges over all finite connected subsets V' of V, and OgV is the set of edges
with one end-vertex in V and one in V\ V.

In what follows we denote by N, the random variable that counts the
number of infinite connected components in both sample spaces Q = {0, 1}*
and X, x €.

Theorem 10 (Uniqueness of the infinite connected component). Let § > 0
be the inverse temperature and h a magnetic field. Then

GRC,B(NOO <1)= GRCJ‘L(NOO <1)=1.

max — Yfree

Proof. We only present the argument for ¢g§f’i‘ € 9CRC gince for the free

boundary condition case the proof works similarly. Let A C A be finite
subsets of V and Dy a the set of all w € Q with the property: there exist two
points u, v € A such that both v and v are joined to 0A by paths using w-
open edges of Ex \ E,, but u is not joined to v by a path using w-open edges
of Ea. For any fixed configuration n € Q the mapping w — 1p, , (WE, 75, ,)
is decreasing. Because of the definition of Dy o we can abuse notation and
simply write 1p, ,(wg,7E,,,)- Given € > 0 small enough, we consider the

external magnetic field ch = (€hip, V1€ V,p=1,...,q). A straightforward

computation shows that eh < h, where the partial order is given by (25). If
V contains A then it follows from the Theorem 6 that

GRC,h GRC,ch
V,max <]lDA,A<' WEA\A)) < V,ma)f (]IDA,A(' 77]EA\A>)'

By summing over all 7g,,, the above inequality we get that

GRCﬁ(DA,A) < GRC,JL(DA7A)-

V,max = YV max
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Taking ¢ — 0, V' 1 V and using the continuity of 1p, , and the Theorem 5
we get from the last inequality that

GRQh(DA,A) < GRC’O(DA,A).

max max

Since NasaDaa T {Ne > 1}, when A 1V it follows from the continuity of
the measure and Theorem II1.3 of [7] that ¢SRS* (N > 1) = 0. O

max

To state our next theorem, which is the main theorem of the next section,
we need to introduce the following parameters:

Py(B,J, k) =sup sup ¢(|C,| = o)

xeV d)E{gGRC

and

Po(B,J,h) =sup inf (|Cy| = o0),

2V $EYCRC

where C, is the infinite connected component containing the vertex . For
the RC model, the parameters P, and P, are defined similarly. We also
define the critical parameter

Bo(J,h) =inf{B > 0: Py(8,J,h) > 0}.
To lighten the notation we introduce for each m € {1, ..., ¢} fixed, the event

S L P
A= {(0’ W) €N, X O Nyo(o,w) > 1 and all vertices in any infinite } '

connected component satisfies 0, = m

15 Uniqueness and phase transition

Now we are ready to state and prove one of the main theorems of this paper.
We emphasize that this theorem was inspired by Theorem IL5 in [7].

Theorem 11 (Uniqueness and phase transition). Fiz ¢ € Z*, > 0, a
magnetic fielld h = (h;,p e R:i € V,p=1,...,q) and {g, : p = 1,...,¢}
satisfying (15).

(1) For all J >0 (J;; =0, V{i,j} € E), there is at most one probability
measure iy in G5 = {v € 9¥5 . v(Ny = 0) = 1},

(ii) If Po(B,J,h) = 0, then |45S| = |4RC| = 1. In particular, if B <

A

ﬁC(J7h>, then |£¢ES] = |gRC| —1.
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(iii) If J > 0 is an uniform coupling constant (J;; = J > 0, V {i,j
E), then Py (B, J,h) = sup,cy ¢SEC(|C,] = o) and Poo(8, J,h
SUPev Pres (|Ca| = 00).

(iv) Let J > (Jw =J >0,V {i,j} € E). If Po(8,J,h) > 0 then
the states m , M € NieyQimax(h) are extremal ES Gibbs states with

PES (2 ) = 1. Moreover under the strong assumption Po(B,J,h) >0
we have that |9%5] > 1.

(v) Let J >0 (J; =J >0, VY {i,j} € E). If 3 < B, then Py(B,J,h) =
P (B, J,h) =0, while both P (3,J,h) > 0 and P (3, J,h) > 0 when-
ever 3 > f..

Proof. The whole proof follows closely reference [7]. (i) We prove that 45 =
{¢E5 }, In fact, let v € 455 and {A, : n € N} be a cofinal sequence of
subsets of V. Then the sequence of random sets {A,, : n € N} defined by
Ap(w) = {x € A, - 2 ¢ A in w} is also increasing. Note that the set
A,, is well defined due to the absence of infinite connected components. By
Theorem 5, given € > 0, we can take A big enough so that for each function
f with support in (A, By(A)) we have

(Ve (f) = dhee(f) <€, YV DA (40)

free

On the other hand, we have that

v(f) = v(flin,zay) + v(flia,()oa))
=v(fLa,()pa)) + Z f]l{A An})'

An(-)DA

By using the DLR equations and their equivalent version of conditional expec-
tations for the specification {QSESBO( A)}, we can rewrite the above expression
as

= v(fla.()3a}) + Z (¢A,LJBoAn (fLan An}|'>)

An()DA

= v(flnaoza) + D v a0 F5 momae))-
An(-)DA

For each fixed n, the random variable 1, . _5 , depends only on the states
of the sites and edges in (A,,Bo(A,)), so we have that this random variable
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is independent of the o-algebra F5c 5 i .. Hence the latter expression can
be rewritten as

= v(fnozan) + D v(La,oman? (1 F s pome)

Rn()0A
ES
= v(fiaoza) + D V(L 0=rn 0% 5o (F1)
An()DA
= v(flnaoza) + D V(L0 Ph el )

An(-)DA

where in the second equality we have used again the equivalent version of

conditional expectation for specification {QSESBO( A)}, and in the last one we

use the definition of the measure qb%s froe

v(f) = v(fla.)zay) + Z V(H{An(-)zxn}gﬁ%jfree(f))' (41)

An(-)DA

. So we have the identity

Combining the identities (40) and (41) we have

v(fLia,()ay) + [0hee(f) — €v(fLia,oay) < v(f)
Sv(fLanpa}) + [Dhee(f) + v(fLia,)oay)- (42)

Since the sequence {A,(w) : n € N} is increasing, the sequence {4,, : n € N}
with A, = {A,(-) D A}, is also increasing. Therefore 14, T 1. Since f
is bounded, taking n 1 oo in (42) and using the Dominated Convergence
Theorem yields

V(f) = Prec(N] < e

Since € > 0 was arbitrary, we conclude the proof of this item.
(ii) If Poo(B,J,h) = 0, then
P(|Cp] =00) =0, Vopec¥d™ andzcV. (43)

By the uniqueness of the infinite connected component (Theorem 10) and
Lemma 8, it follows that property (43) holds for ¢RS . If ¢, denotes the
edge-marginal of v € 4*S, by Theorem 9 we have

0=¢" (Ny > 0) = ¢, (Noo > 0) = v(Ny > 0),

max

which implies that v € ¢F5. Therefore it follows from the item (i) that
v = ¢S . That is, 95 = ¢4 = {5 1.

free*
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On the other hand, if we denote by 4RC = {¢ € ¥R : ¢(N,, = 0) = 1},
we have from (43) and Theorem 5,

0= Ny >0) > ¢(Ny > 0), V¢ c@RC

max(

Thus ¢ € 4RC. By repeating the proof of item (i), using Theorem 8 and the
DLR equations (23), we have that ¥R¢ = {¢RC}.

(#4i) Using Item (iii) of Theorem 5 gives

Po(B,J.h) < buquGRC(|C$]:OO) and P (B, J,h) > supgbGRC(|C'm]:oo).

max free

To prove that the equality is attained, it is enough to show that ¢SRC €
GCERC and ¢fRC € @ORC yregpectively. By using Theorem 10, we have that

GRCh(N < 1) = GRC’i'(NOO < 1) = 1, thus we conclude from Lemma 8

max free

that ¢SRC € FORC and ¢GRC € @ORC,

max

(iv) Using the same technique employed by [7], one can prove that

RC

max

(x> 00) = hm gmeaX(x V).

As a consequence, we have that, for all m € ﬂiEVQi,max(il),
ES . ES c
> =1 — V).
O (T 4> 00) lim Py (@ )

Combining the two last identities with the trivial fact

‘E,S;n(:c <~ Vo, =m) = Esm(a: < V)omms

and taking the thermodynamic limit, we have
¢S (0, = M|z 3 00) = O,  VIN € Nicy Qi max(h). (44)

m

Now we prove that the state ¢Els is extremal whenever m € ﬂieVQi,max(iAz).
To this end, let us assume that ¢F° (@3 ,,) = 1, this will be proved below.
Suppose that ¢=° is not extremal - then there are two Gibbs measures in ¢S
so that

O =toy> + (1 —t)dy°,  with ¢ (27 ) =1and t € (0,1).  (45)

If pRC denotes the RC marginal of ¢FS, it follows from Lemma VIIL.1 in [7]
that ¢R¢ € ¥RC i =1,2. This implies that

max t¢ ( t) E{C? te (07 1)
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By stochastic domlnatlon one can prove that ¢%C is an extremal probability
measure, so ¢FC = = ¢RC | Using Lemma VIIL3 in [7], this fact implies
P = ¢5S, hence the extremality of ¢¥5 is proved.

Finally, we prove that ¢F° (&) = 1. Since Py (8, J, h) > 0, we get
from Item (4i7) of Theorem 5 that

0 < Po(B,d, h) sup

zeV

max(x A OO) < Elgx(NOO 2 1) (46)

Since ¢RY is an extremal Gibbs state and {N,, > 1} is a tail event it
follows from the inequality (46) and the uniqueness of the infinite connected
component (Theorem 10) that

A

1= e (NOO = 1) = ngS(NOO = ]-)7 Vm S ﬂiEVQi,max(h)-

max m

The previous equation together with the identity (44) implies, for each m €
miGVQi,max(il)7 that (bgls(%;im) =1

We now prove the second statement of Item (iv). As long as the set
ﬂierhmaX(i}) has more than one element, the result follows from the first
statement of the Item (iv). Otherwise, without loss of generality, we can
assume that ﬂiGVQi,maX(iAz) = {1}. Let ¢ € ¥RC be a spin-marginal of ¢5°
then

0< ﬁoo(ﬁ,J, iz) < supgbRC(x <> 00) = sup gbgs(x < 00)
zeV eV

= sug ¢§S(x 00,0, =2) < ¢§S(w§72).
Te
Since ¢1S(2/2y,) = 1 and @53, N %5, = 0, it follows from the above in-
equality that ¢F5 #£ @55,

(v) By Item (izi) and Corollary 4, we get that the maps J — Py (S, J, fz)
and J — P (8, J, h) are increasing, and so are the maps h— Py (8, J, fAz)
and h — Po(f3, J,h), with respect to the partial order (25). From the defi-
nition, one has

Po(B,J,h) < Po(B,J,h), Vj,J and h. (47)

From Item (7iz) and Theorem 7, we get Py (0, Jl,iz) < ﬁoo(ﬁ, JQ,iz) for all
J1 < Jo. By Item (ii7), we have that P, and P, are thermodynamical
limits. Using the form of the Hamiltonian of this model and the monotonicity
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properties proved above, we get, for all §; < s, that

Poo(@la Ju i:") - Poo(laﬁlja Bll,:") < ﬁoo(1752<]7 Bli:")
< ﬁoo(1762<]762i:")

Combining inequalities (47) and (48) yields (v). O

We now consider the g-state Potts model where each value of the spin is
coupled to a distinct and site dependent external field. The formal Hamilto-
nian of the model is

H(6)=—JY 0505 — zq: > hi 05 - (49)
p=1

{i7) i 4

Let ¥5P™ denote the set of all spin Gibbs states, defined by means of the DLR
condition and the above Hamiltonian (appropriately modified to incorporate
boundary conditions).

Theorem 12. Let Iy : 9¥5 — @5P denote the mapping that assigns the
spin-marginal to infinite volume ES measure. Then llg is a linear isomor-
phism.

Proof. A direct proof of this theorem can be found in [7]. O

16 Application - Ising model with power law
decay external field

In this section we apply the results above obtained to prove the uniqueness
of the Gibbs measures, at any positive temperature, for the Ising model in
L = (Z,E?), where E4 is the set of the nearest neighbors in the d-dimensional
hypercubic lattice, with the Halmiltonian given by

%L;f‘,/lsing(a) = — Z JUin — Z hl g; — Z JUi,U,j, (50)
1,j€V eV i€V, jeov
{i,5}€E {i,j}€E

where o > 0 and ~A* > 0 and




From now on, we write gﬁs P instead of 95P™ to make clear its dependence
on the inverse temperature. _
By Proposition 1, it follows that the set %BS P™ (defined in the last section)

is precisely ¥;7"(J,h) = %ﬁlsmg(J ,h), the set of the Gibbs measures of the
above Ising model, if we take in the Hamiltonian (49) ¢ = 2 and the magnetic
field given by

il = ((hi,hhi,Q) € RQ : h*/HZHa = hi,l = —hig, VieV )

In order to apply the previous results to study the uniqueness of this Ising
model with magnetic field decaying to zero with polynomial rate 0 < a < 1,
we will consider in this section the GRC model defined in (12) with ¢ = 2,
the constants g, = 1 and the magnetic field h as above.

In 8] the authors proved that for any o € [0, 1) there is a positive inverse
temperature (3, < 400 so that, for any 5 > 0 such that 5, < 3, the set of
the Gibbs measures for the Ising model defined by (50) is a singleton. By the
Dobrushin Uniqueness Theorem, we know that for any 8 < 1/(2dJ) the set
of Gibbs measures for this Ising model at these inverse temperatures is also
singleton. In the reference [8] it was conjectured that the set of the Gibbs
measures for this model with a € [0,1) is a singleton for any 5 > 0. In this
work we settle this conjecture.

SN
K7
‘(F Uniqueness Vi Phase Transition
[ A
0 1 «

Figure 3: Uniqueness and mnon-uniqueness interval for the ferromagnetic Ising
model with magnetic field h; = h*/||i||“.

Suppose that
Be(d,h) = inf{ > 0: P(8,J,h) > 0} = +o0.

In this case, it follows from Item (ii) of Theorem 11 that for any 5 > 0 we
have |4 = 1. By Theorem 12 we get that |£¢§pm| =1

Suppose that 5.(J,h) < +oo. By using once more Item (ii) of Theorem
11, we obtain the uniqueness for 8 < S.(J,h), that is, |§fﬁspin| = 1 for such
values of . If 8 > max{fSa, B.(J,h)} it was proved in [8] that ]%;pin| = 1.
We claim that Po(B,J,h) = 0 for any > 0. Indeed, take 5 > f, if

P.(B, J, iz) > 0, so by Item (iv) of Theorem 11 we have at least two ES
Gibbs measures and by Theorem 12 two Gibbs measures for the Ising model
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(50) which contradicts [8]. Therefore Po (8, J,h) = 0 whenever 3 > f,.
Since the mapping 3 +— ﬁoo(ﬁ, J, iAz) is increasing, the claim follows.

From Item (v) we have for any 8 > B.(J,h) that P(3,J,h) > 0 and
1500(6, J, ﬁ) > 0, but this contradicts the above claim. Therefore we have
proved that for any o € [0, 1) that 3.(J, iAL) = +00, which implies by Theorem
11 that ‘gﬁSpln| =1 for any 8 > 0.
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