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Abstract

In this work we study the Ruelle Operator associated to a continuous potential
defined on a countable product of a compact metric space. We prove a generaliza-
tion of Bowen’s criterion for the uniqueness of the eigenmeasures. One of the main
results of the article is to show that a probability is DLR-Gibbs (associated to a
continuous translation invariant specification), if and only if, is an eigenprobability
for the transpose of the Ruelle operator.

Bounded extensions of the Ruelle operator to the Lebesgue space of integrable
functions, with respect to the eigenmeasures, are studied and the problem of exis-
tence of maximal positive eigenfunctions for them is considered. One of our main
results in this direction is the existence of such positive eigenfunctions for Bowen’s
potential in the setting of a compact and metric alphabet. We also present a
version of Dobrushin’s Theorem in the setting of Thermodynamic Formalism.

Keywords: Thermodynamic Formalism, Ruelle operator, continuous potentials, Eigenfunc-

tions, Equilibrium states, DLR-Gibbs Measures, uncountable alphabet.
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1 Introduction

The classical Ruelle operator needs no introduction and nowadays is a key concept of
Thermodynamic Formalism. This operator was defined 1968 for infinite dimension by

The authors are partially supported by CNPq-Brazil.
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David Ruelle in his seminal paper [28] and since then has had attracted the attention
of the Dynamical Systems community. Remarkable applications of this operator to
Hyperbolic dynamical systems and Statistical Mechanics were presented by Ruelle, Sinai
and Bowen, see [8, 28, 31], and in the presence of a conformal measure, the action of
the Ruelle operator and the transfer operator from abstract ergodic theory coincide.
Nowadays transfer operators are present in several applications in pure and applied
mathematics and are fruitfully applied in many areas of active development, see [4] for
comprehensive overview of the works before 2000.

The the classical theory, Ruelle’s operator is associated with the full shift σ : Ω→ Ω
on the symbolic space Ω ≡ MN, for M = {1, . . . , n}, and acts on the space of Hölder
continuous functions. In its classical form, the Ruelle operator Lf for a given continuous
function f : Ω→ R is defined by Lf (ϕ) = ψ, where ψ is given by, for any x ∈ Ω,

ψ(x) =
∑

y∈Ω: σ(y)=x

ef(y) ϕ(y).

This operator is a useful tool for constructing equilibrium states, which are defined as
those probability measures which maximize the variational problem

sup
µ∈Pσ(Ω,F )

{hµ(σ) +

∫
Ω

f dµ}, (1)

as proposed, e.g., by Ruelle in 1967 ([27]) and Walters in 1975 ([34]). In here, hµ(σ)
refers to the Kolmogorov-Sinai entropy of µ and Pσ(Ω,F ) to the set of all σ-invariant
Borel probability measures over Ω. Even though the existence of the solution to the
variational problem can be easily obtained through abstract theorems of convex analysis,
the Ruelle operator approach provides additional informations like uniqueness or decay
of correlations (see [4] and [26]). In the slightly more general situation of an expanding
map on a compact and metric space, this approach was successfully implemented around
the eighties and nineties for Hölder continuous potentials as well as for more general
potentials in Walter’s class W (Ω, σ) or Bowen’s class B(Ω, σ), see [29, 7, 35, 36, 37].

However, the setting in the references above require that the number of preimages of
each point is finite, which excludes symbolic spaces like Ω = (Sn)N which are related
to several famous models of Statistical Mechanics. For example, n = 1 gives us the
so-called XY model, for n = 3 we obtain the Heisenberg model and for n = 4 the toy
model for the Higgs sector of the Standard Model, see [3, 5, 18, 19, 20, 21, 32] for more
details.

In [5] the authors used the idea of an a priori measure p : B(S1)→ [0, 1] to circumvent
the problem of uncountable alphabets and developed the theory of the Ruelle operator
for Hölder potentials on (S1)N with the dynamics given by the left shift map. This
approach also works for Hölder potentials when the unit circle S1 is replaced by a more
general compact metric space M , but one has to be careful about the choice of the a
priori measure, see [23] for details.

A similar setting is considered in [25]. The main difference is that the dynamics is more
general, given by what the authors called a modified shift, which is a map of the form
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x 7−→ (T (x1), x2, x3, . . .), where T : M → M is only assumed to be an endomorphism.
Of course, if T is the identity map we recover the usual left shift. For this more general
dynamical system a Thermodynamic Formalism is constructed and a transfer operator
is defined by using an a priori measure as here. Their main uniqueness result is based
on the so-called Dini condition, while here we adapt to the uncountable alphabet setting
the classical Walters and Bowen’s condition.

In this more general setting, the operator is defined as

Lf (ϕ) (x) =

∫
M

ef(ax) ϕ(ax) dp(a),

where ax := (a, x1, x2, . . .). A full support condition is imposed on the a priori measure
in [23] but this is not a strong restriction since in the majority of the applications, there
is a natural choice for this measure which always satisfies this condition. For instance,
for the classical Ruelle operator Lf , the metric space is the finite set M = {1, 2, .., n}
and one usually considers p is the counting measure, and if M is a general compact
group, the one might consider the Haar measure.

Some of these results have a counterpart when M is not compact. In case of count-
able alphabets, the applications are motivated through applications to non-uniformly
expanding or hyperbolic dynamical systems, see [30] and references therein. On the
other hand, the φ4-model from Statistical Mechanics also motivates the study of alpha-
bets which are Polish spaces. In this setting, equilibrium states might only exist as
positive linear functionals, but for summable Hölder potentials, the Ruelle operator still
has a spectral gap (see [13]).

We point out that is very common in the literature in Statistical Mechanics that the
main concepts are presented via translation invariant specifications (see [17] and [11]).
The so called DLR probabilities are defined in such way. We will present some new
results in Thermodynamic Formalism under such point of view. We consider the case
where the alphabet is a compact metric space.

In Statistical Mechanics as well as in Thermodynamic Formalism, existence and mul-
tiplicity of DLR-Gibbs Measures plays an important role (see [30]), in particular due
to Dobrushin’s interpretation of phase transitions. Even though there is no universal
definition of phase transition, they are nowadays understood as either the existence of
more than one DLR-Gibbs measure, more than one equilibrium state or more than one
eigenprobability for the dual of the Ruelle operator and so on (see [10, 11, 17] for more
details).

The goal of the present paper is to follow the Ruelle operator approach for general
continuous potentials defined over the infinite cartesian product of a general compact
metric space. A key observation in here is the characterization of extremal DLR-Gibbs
measures by their tail sigma-algebras (Theorem 4.6) and that the set of DLR-Gibbs mea-
sures coincides with eigenprobabilities of the dual of the Ruelle operator (Theorem 4.8).
Moreover, by extending the action of Ruelle’s operator to the space of integrable func-
tions in Section 6, Theorems 4.6 and 4.8 establish a further characterization of extremal
DLR-Gibbs measures through exactness and, in particular, through Lin’s characteriza-
tion of exactness (see Corollary 6.4).
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From the viewpoint of Dobrushin’s interpretation of phase transitions, Theorem 4.8
allows to employ classical ideias from dynamical systems in order to study phase transi-
tions for one-sided one-dimensional translation invariant statistical mechanics systems.
Namely, for potentials satisfying a condition similar to the one by Bowen, we obtain in
Theorem 5.2 that there exists a unique DLR-Gibbs measure, and that this measure is
exact. Furthermore, we also develop a C(Ω)-perturbation theory for the Ruelle oper-
ator and present a constructive approach to solve the classical variational problem for
continuous potentials (see Section 7).

Thereafter, we study in Section 8 the existence of integrable eigenfunctions of the
Ruelle operator for potentials beyond Bowen’s class. Under a mild hypothesis on the
potential and by approximating the potential uniformly by potentials (fn), we prove that
lim suphfn is a non-trivial integrable eigenfunction associated to the maximal eigenvalue.
An further relevant result in here is that lim supn→∞L n

f (1)/λnf is an eigenfunction of
Lf under fairly general conditions, which implies that a potential in the Bowen class
admits an eigenfunction which is bounded from above and below (see Corollary 8.5).

2 Preliminaries

Here and subsequently (M,d) denotes a compact metric space endowed with a Borel
probability measure p which is assumed to be fully supported on M . Let Ω denote the
infinite cartesian product MN and F be the σ-algebra generated by its cylinder sets.
We will consider the dynamics on Ω given by the left shift map σ : Ω → Ω which is
defined, as usual, by σ(x1, x2, . . .) = (x2, x3, . . .). We use the notation C(Ω) for the space
of all real continuous functions on Ω. When convenient we call an element f ∈ C(Ω)
a potential and unless stated otherwise all the potentials are assumed to be general
continuous functions. The Ruelle operator associated to the potential f is a mapping
Lf : C(Ω) to C(Ω) that sends ϕ 7→ Lf (ϕ) which is defined for each x ∈ Ω by

Lf (ϕ)(x) =

∫
M

exp(f(ax))ϕ(ax) dp(a), where ax := (a, x1, x2, . . .). (2)

Due to compactness of Ω in the product topology and the Riesz-Markov theorem we
have that C∗(Ω) is isomorphic to Ms(Ω,F ), the space of all signed Radon measures.
Therefore we can define L ∗

f , the dual of the Ruelle operator, as the unique continuous
map from Ms(Ω,F ) to itself satisfying for each γ ∈Ms(Ω,F ) the following identity∫

Ω

Lf (ϕ) dγ =

∫
Ω

ϕd[L ∗
f γ] ∀ϕ ∈ C(Ω). (3)

It follows from the positivity of Lf that the map γ 7→ L ∗
f (γ)/L ∗

f (γ)(1) sends the space
of all Borel probability measures P(Ω,F ) to itself. Since P(Ω,F ) is a convex and
compact in the weak topology (which is Hausdorff in this case) and the mapping γ 7→
L ∗
f (γ)/L ∗

f (γ)(1) is continuous, the Schauder-Tychonoff theorem ensures the existence
of at least one Borel probability measure ν such that L ∗

f (ν) = L ∗
f (ν)(1) · ν. Notice that

this eigenvalue λ ≡ L ∗
f (ν)(1) is positive but strictly speaking it could depend on the
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choice of the fixed point when it is not unique, however in any case such eigenvalues
trivially satisfies exp(−‖f‖∞) ≤ λ ≤ exp(‖f‖∞) so we can always work with

λf = sup

{
L ∗
f (ν)(1) :

ν ∈P(Ω,F ) and ν is a fixed point for
γ 7→ L ∗

f (γ)/L ∗
f (γ)(1)

}
. (4)

Of course, from the compactness of P(Ω,F ) and continuity of L ∗
f , the supremum is

attained and therefore the set defined below is not empty.

Definition 2.1 (G ∗(f)). Let f be a continuous potential and λf given by (4). We define

G ∗(f) = {ν ∈P(Ω,F ) : L ∗
f ν = λfν}.

To study the eigenfunctions of Lf , where f is a general continuous potential, we will
need the following version of the Ruelle-Perron-Frobenius theorem for Hölder potentials
(see [5] and [23] for the proof).

We consider the metric dΩ on Ω given by dΩ(x, y) =
∑∞

n=1 2−nd(xn, yn) and for any
fixed 0 < γ ≤ 1 we denote by Cγ(Ω) the space of all γ-Hölder continuous functions, i.e,
the set of all functions ϕ : Ω→ R satisfying

Holγ(ϕ) = sup
x,y∈Ω:x 6=y

|ϕ(x)− ϕ(y)|
dΩ(x, y)γ

< +∞.

Theorem 2.2 (Ruelle-Perron-Frobenius). Let (M,d) be a compact metric space, µ a
Borel probability measure of full support on M and f be a potential in Cγ(Ω), where
0 < γ < 1. Then Lf : Cγ(Ω) → Cγ(Ω) has a simple positive eigenvalue of maximal
modulus λf and there is a strictly positive function hf satisfying Lf (hf ) = λfhf and a
Borel probability measure νf for which L ∗

f (νf ) = λfνf and L ∗
f (νf )(1) = λf .

3 The Pressure of Continuous Potentials

The next proposition is an extension of Corollary 1.3 in [24]. Here M is allowed to be
any general compact metric space. It is worth mentioning that Sarig in [30] obtained
a similar result for the Gurevich pressure with respect to countable alphabets, but the
techniques employed in our proof are much simpler.

Proposition 3.1. Let f ∈ C(Ω) be a potential and λf given by (4). Then, for any
x ∈ Ω we have

lim
n→∞

1

n
log L n

f (1)(σnx) = log λf .

Proof. Let ν ∈ G ∗(f) a fixed eigenprobability. Without loss of generality we can assume
that diam(M) = 1. By the definition of dΩ for any pair z, w ∈ Ω such that zi = wi, ∀i =
1, . . . , N we have that dΩ(z, w) ≤ 2−N . From uniform continuity of f given ε > 0, there
is N0 ∈ N, so that |f(z) − f(w)| < ε/2, whenever dΩ(z, w) < 2−N0 . If n > 2N0 and
a := (a1, . . . , an) we claim that

‖Sn(f)(ax)− Sn(f)(ay)‖∞ ≤ (n−N0)
ε

2
+ 2‖f‖∞N0, (5)
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where Sn(f) ≡ f + f ◦ σ + . . .+ f ◦ σn−1. Indeed, for any n ≥ 2N0 we have

|Sn(f)(ax)− Sn(f)(ay)| = |
n−1∑
j=0

f(σj(a1, . . . , an, x)−
n−1∑
j=0

f(σj(a1, . . . , an, y)|

≤
n−1−N0∑
j=0

|f(σj(a1, . . . , an, x)− f(σj(a1, . . . , an, y)|+

N0∑
j=0

|f(σj(an−N0 , . . . , an, x)− f(σj(an−N0 , . . . , an, y)|

≤ (n−N0)
ε

2
+ 2N0‖f‖∞.

The last inequality comes from the uniform continuity for the first terms and from the
uniform norm of f for the second ones.

We recall that for any probability space (E,E ,P), ϕ and ψ bounded real E -measurable
functions the following inequality holds∣∣∣∣log

∫
E

eϕ(ω)dP(ω)− log

∫
E

eψ(ω)dP(ω)

∣∣∣∣ ≤ ‖ϕ− ψ‖∞. (6)

From the definition of the Ruelle operator, for any n ∈ N, we have

L n
f (1)(σnx) =

∫
Mn

exp(Sn(f)(aσnx))
n∏
i=1

dp(ai)

and from (5) and (6) with ϕ(a) = Sn(f)(aσnx) and ψ(a) = Sn(f)(ay) we get for n ≥
max{2N0, 4ε

−1‖f‖∞N0} the estimate

1

n
| log(L n

f (1)(σnx))− log(L n
f (1)(y))| ≤ 1

n
((n−N0)

ε

2
+

2‖f‖∞N0

n
≤ ε.

By using Fubini’s theorem, sum and subtract exp(Sn(f)(aσny)), the identity (3) itera-
tively and the last inequality for n ≥ max{2N0, 4ε

−1‖f‖∞N0} we obtain

L n
f (1)(σnx) =

∫
Mn

exp(Sn(f)(aσnx))
n∏
i=1

dp(ai)

=

∫
Mn

∫
Ω

exp(Sn(f)(aσnx)) dν(y)
n∏
i=1

dp(ai)

≤ exp((n−N0)
ε

2
+ 2‖f‖∞N0)

∫
Mn

∫
Ω

exp(Sn(f)(ay)) dνf (y)
n∏
i=1

dp(ai)

≤ exp(nε)

∫
Ω

L n
f (1)(y) dν(y)

= exp(nε)λnf .

Similarly we obtain the lower bound L n
f (1)(σnx) ≥ exp(−nε)λnf so the proposition

follows.

6



Corollary 3.2. Let f be a continuous potential. If ν and ν̂ are fixed points for the map
γ 7→ L ∗

f (γ)/L ∗
f (γ)(1) then L ∗

f (ν)(1) = L ∗
f (ν̂)(1) = λf .

Proof. For any x0 ∈ Ω, by repeating the same steps of the proof of the previous
proposition one shows that log(L ∗

f (ν)(1)) ≡ log(λf (ν)) = limn→∞
1
n

log L n
f (1)(x0) =

log(λf (ν̂)) = log(L ∗
f (ν̂)(1)).

Definition 3.3 (Pressure Functional). The function p : C(Ω) → R given by p(f) =
log λf is called pressure functional.

In classical Thermodynamic Formalism, where M is a finite alphabet, the pressure
functional usually refers to the function P : C(Ω)→ R given by

P (f) ≡ sup
µ∈Pσ(Ω,F )

{hµ(σ) +

∫
Ω

f dµ}.

After developing some perturbation theory we will show latter that both definitions of
the Pressure functional are equivalent for any continuous potential, i.e., P = p.

Since Ω is compact and the space of all γ-Hölder continuous functions Cγ(Ω) is an
algebra that separate points and contains the constant functions, we can apply the Stone-
Weierstrass theorem to conclude that the closure of Cγ(Ω) in the uniform topology is
C(Ω). Therefore, for any arbitrary continuous potential f , there is a sequence (fn)n∈N of
Hölder continuous potentials such that ‖fn− f‖∞ → 0, when n→∞. For such uniform
convergent sequences we will see that p(fn) converges to p(f). Actually, in our case the
sequence (fn)n∈N can be explicitly exhibited, see Section 9. Moreover, a much stronger
result holds. That is, the pressure functional is Lipschitz continuous function on C(Ω).

Proposition 3.4. If f, g : Ω → R are two arbitrary continuous potentials then the
following inequality holds |p(f)− p(g)| ≤ ‖f − g‖∞.

Proof. The proof is an immediate consequence of Proposition 3.1 and inequality (6).

Corollary 3.5. Let (fn)n∈N be a sequence of continuous potentials such that fn → f
uniformly, then p(fn)→ p(f). In particular, λfn → λf .

4 DLR-Gibbs Measures and Eigenmeasures

In this section we discuss the concept of specifications in the setting of Thermodynamic
Formalism. Some of its elementary properties for finite state spaces are discussed in
details within this framework in [11].

For each n ∈ N, we define the projection on the n-th coordinate πn : Ω → M by
πn(x) = xn. We use the notation Fn to denote the sigma-algebra generated by the
projections π1, . . . , πn. On the other hand, the notation Tn stands for the sigma-algebra
generated by the collection of projections {πk : k ≥ n + 1}. The so-called tail sigma-
algebra (or terminal sigma-algebra) is defined as T ≡ ∩n∈NTn. A cylinder set in Ω
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is a set of the form π−1
1 (E1) ∩ . . . ∩ π−1

k (Ek), where E1, . . . , Ek ∈ B(M), the Borel
sigma-algebra of M .

Let f ∈ C(Ω) a potential and for each n ∈ N, x ∈ Ω and E ∈ F consider the mapping
Kn : F × Ω→ [0, 1] given by

Kn(E, x) ≡
L n
f (1E)(σn(x))

L n
f (1)(σn(x))

. (7)

For any fixed x ∈ Ω, the monotone convergence theorem implies that the map F 3 E 7→
Kn(E, x) is a probability measure. For any fixed measurable set E ∈ F follows from the
Fubini theorem that the map x 7→ Kn(E, x) is Tn-measurable. So Kn is a probability
kernel from Tn to F .

Notice that, for any ϕ ∈ C(Ω), the kernel Kn(ϕ, x) is well defined due to the right
hand side of (7). It is easy to see (using the rhs of (7)) that they are proper kernels,
meaning that for any bounded Tn-measurable function ϕ, we have Kn(ϕ, x) = ϕ(σn(x)).
The above probability kernels have the following important property. For any fixed
continuous function ϕ, the map x 7→ Kn(ϕ, x) is continuous as a consequence of the
Lebesgue dominated convergence theorem. We refer to this saying that (Kn)n∈N has the
Feller property.

Definition 4.1. A Gibbsian specification with parameter set N in the translation invari-
ant setting is an abstract family of probability Kernels Kn : (F ,Ω)→ [0, 1], n ∈ N such
that

a) Ω 3 x→ Kn(E, x) is σnF -measurable function for any E ∈ F ;

b) F 3 E 7→ Kn(E, x) is a probability measure for any x ∈ Ω;

c) for any n, r ∈ N and any bounded F -measurable function f : Ω→ R we have the
compatibility condition, i.e.,

Kn+r(f, x) =

∫
Ω

Kn(f, ·)dKn+r(·, x) ≡ Kn+r(Kn(f, ·), x).

Remark 4.2. The classical definition of specification as given in [17] requires even in
our setting a larger family of probability kernels. To be more precise we have to define a
probability kernel for any finite subset Λ ⊂ N and the kernels KΛ have to satisfy a), b)
and a generalization of c). In the translation invariant setting (in the sense that the one
site influence has same expression for every site) on the lattice N, the formalism can be
simplified and one needs only to consider the family Kn, n ∈ N, as defined above.

Strictly speaking, in order to use the results in [17], one first has to extend our specifica-
tions to any set Λ = {n1, . . . , nr}, but this can be consistently done by putting KΛ ≡ Knr .
This simplified definition adopted here is further justified by the fact that the DLR-Gibbs
measures, compatible with a specification with parameter set N, are completely deter-
mined by the kernels indexed in any cofinal collection of subsets of N. So here we are
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taking advantage of this result to define our kernels only on the cofinal collection of sub-
sets of N of the form {1, . . . , n} with n ∈ N. Therefore, when writing Kn, we are really
thinking, in terms of the general definition of specifications, of K{1,...,n}.

The only specifications needed here are the ones given in (7), which are defined in
terms of any continuous potential f . Notice that in the translation invariant setting,
the construction in (7) for the lattice N extends the usual construction made in terms of
regular interactions. But in any case, the kernels in (7) give us particular constructions
of quasilocal specifications which allow us to use some of the results from [17]. We refer
the reader to [11] and [36] for results about specifications when the dynamics have the
finite pre-images property.

Using L n
f (ϕ · ψ ◦ σn) = L n

f (ϕ)ψ one easily obtains the following identity for any
r, n ∈ N, x ∈ Ω and ϕ ∈ C(Ω) (see, e.g., the proof of Theorem 4.3 in [11]).

L n+r
f (ϕ)(σn+r(x)) = L n+r

f

(L n
f (ϕ)(σn(·) )

L n
f (1)(σn(·) )

)
(σn+r(x)). (8)

The above identity immediately implies for the Kernels defined by (7) that

Kn+r(f, x) =

∫
Ω

Kn(f, ·)dKn+r(·, x) ≡ Kn+r(Kn(f, ·), x). (9)

We refer to the above set of identities as compatibility conditions for the family of
probability kernels (Kn)n∈N or simply DLR equations. Similar kernels are also considered
in [36], but here we are working with a dynamical system that may have uncountable
many elements in the preimage of any point.

Definition 4.3. We say that µ ∈P(Ω,F ) is a DLR-Gibbs measure for the continuous
potential f if for any n ∈ N and any continuous function ϕ : Ω → R we have for
µ-almost all x that

Eµ[ϕ|Tn](x) =

∫
Ω

ϕ(y) dKn(y, x).

The set of all DLR-Gibbs measures for f is denoted by GDLR(f).

One very important and elementary result on DLR-Gibbs measure is the equivalence
between the two conditions below:

a) µ ∈ GDLR(f);

b) for any n ∈ N and E ∈ F we have that µ(E) =
∫

Ω
Kn(E, ·) dµ.

We now prove that µ ∈ GDLR(f) is not empty. The result of the next lemma for
countable M can also be found in [30]. For these state spaces it is also possible to allow
some less regularity than continuit.

Lemma 4.4. Let f ∈ C(Ω) and (Kn)n∈N as in (7). Then G ∗(f) ⊂ GDLR(f).
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Proof. Let ν be such that L ∗
f ν = λfν and ϕ a bounded F -measurable function. Notice

that the quotient appearing in the first integral below is Tn-measurable. Therefore for
any bounded F -measurable ψ the following equality holds.∫

Ω

(ϕ ◦ σn)(x)
L n
f (ψ) (σn(x))

L n
f (1) (σn(x))

d ν(x) =

∫
Ω

L n
f (ψ (ϕ ◦ σn)) (σn(x))

L n
f (1) (σn(x))

d ν(x)

=

∫
Ω

1

λn
L n
f

[
L n
f (ψ (ϕ ◦ σn)) (σn(·))

L n
f (1) (σn(·))

]
(x) d ν(x).

By using the equation (8) we see that the rhs above is equal to∫
Ω

1

λn
L n
f (ψ (ϕ ◦ σn))(x) d ν(x) =

∫
Ω

ψ(x) (ϕ ◦ σn)(x) d ν(x).

Since ϕ is an arbitrary F -measurable function we can conclude that

ν[E|Tn](y) =
L n
f (IE) (σn(y))

L n
f (1) (σn(y))

ν − a.s.

so the equation (7) implies that ν ∈ GDLR(f).

Corollary 4.5. Let f ∈ C(Ω) be a potential and (Kn)n∈N the specification defined by
(7). If GDLR(f) is a singleton, then G ∗(f) = GDLR(f).

The next lemma establishes the reverse inclusion between GDLR(f) and G ∗(f). Before,
we state an interesting result from specification theory which essentially says that the
tail sigma-algebra T has to be trivial with respect to an extremal DLR-Gibbs measure.

Theorem 4.6. Let (Kn)n∈N be the specification given in (7). Then the following con-
clusion holds. A probability measure µ ∈ GDLR(f) is extreme in GDLR(f) if and only if
µ is trivial on T . Consequently, if µ is extreme in GDLR(f), then every T -measurable
function f is constant µ a.s..

The proof of the theorem adapted to our setting can be found in the appendix below.

Lemma 4.7. Let f ∈ C(Ω) be a potential and (Kn)n∈N defined as in (7). If µ is an
extreme element in GDLR(f) then µ ∈ G ∗(f).

Proof. This proof is based on the following algebraic identity

Kn(Lf (ϕ), σ(y)) = Kn(Lf (1), σ(y)) Kn+1(ϕ, y) (10)

which holds for every n ∈ N, y ∈ Ω and ϕ ∈ C(Ω). Indeed,

Kn(Lf (ϕ), σ(y)) =
L n+1
f (ϕ)(σn+1(y))

L n
f (1)(σn+1(y))

=
L n+1
f (1)(σn+1(y))

L n
f (1)(σn+1(y))

L n+1
f (ϕ)(σn+1(y))

L n+1
f (1)(σn+1(y))

10



= Kn(Lf (1), σ(y)) Kn+1(ϕ, y).

Let µ ∈ GDLR(f). By definition of a DLR-Gibbs measure and the convergence of
backward martingales, we have Eµ[ϕ|Tn] = Kn(ϕ, · ) converges almost surely for any
ϕ ∈ C(Ω). It follows from separability of C(Ω) that there exists a set of full measure
Ω′ such that

∫
Ω
ϕdµy := limn→∞Kn(ϕ, y) for all ϕ ∈ C(Ω) and y ∈ Ω′. For each

y ∈ σ−1(Ω′), we therefore obtain from (10) that∫
Ω

Lf (ϕ)dµσy = lim
n→∞

Kn(Lf (ϕ), σ(y)) = lim
n→∞

Kn(Lf (1), σ(y)) Kn+1(ϕ, y)

=

∫
Ω

Lf (1)dµσy lim
n→∞

Kn+1(ϕ, y) = λσy lim
n→∞

Kn(ϕ, y), (11)

where λσy ≡
∫

Ω
Lf (1) dµσy exists since σy ∈ Ω′. Hence, the limit limn→∞Kn(ϕ, y)

exists, which implies that σ−1(Ω′) ⊂ Ω′ and consequently Ω′ ⊂ σ(Ω′). From this last
observation follows that µ(Ω′ ∩ σ(Ω′)) = 1. Actually, since we are assuming that µ is
extremal and E is compact Theorem 7.12 (b) in [17] ensures that∫

Ω

ϕdµ = lim
n→∞

Kn(ϕ, y) =

∫
Ω

ϕdµy, ∀y ∈ Ω′ and ∀ϕ ∈ C(Ω).

Since Ω′ ∩ σ(Ω′) is not empty there is some y ∈ Ω′ such that y and σ(y) both belong to
Ω′ and so∫

Ω

Lf (ϕ) dµ = lim
n→∞

Kn(Lf (ϕ), σ(y)) =

∫
Ω

Lf (ϕ) dµσy, ∀ϕ ∈ C(Ω).

By using again the identity (10), the two previous identities and that y, σ(y) ∈ Ω′ we
obtain ∫

Ω

Lf (ϕ) dµ =

∫
Ω

Lf (ϕ)dµσy = λσy

∫
Ω

ϕdµy =

(∫
Ω

Lf (1)dµσy

)∫
Ω

ϕdµ

=

(∫
Ω

Lf (1) dµ

)∫
Ω

ϕdµ, ∀ϕ ∈ C(Ω).

From Corollary 3.2 it is a simple matter to check that
∫

Ω
Lf (1) dµ is the spectral radius

of Lf acting on C(Ω) and therefore L ∗
f (µ) = λfµ. That is, µ ∈ G ∗(f).

Observe that the combination of Theorem 4.6 with Lemma 4.7 identifies the extreme
elements in µ ∈ GDLR(f) with the set of exact, conformal measures, that is those
elements in G ∗(f) for which T is trivial. In particular, after extending the action of Lf

to L1(µ), Lin’s criterion provides a further characterization of these measure as given
in Corollary 6.4 below. As an immediate corollary of Lemma 4.7, we obtain the main
result of this section.

Theorem 4.8. Let f ∈ C(Ω) and (Kn)n∈N as in (7). Then GDLR(f) = G ∗(f).

Proof. By Lemma 4.4, for any continuous potential f , we have G ∗(f) ⊂ GDLR(f). On
the other hand, Lemma 4.7 ensures ex(GDLR(f)) ⊂ G ∗(f). By compactness and the
Krein-Milman theorem it follows that GDLR(f) ⊂ G ∗(f), thus proving the theorem.

11



5 Uniqueness Theorem for Eigenprobabilities

Theorem 5.1. Let f be a continuous potential and (Kn)n∈N be the specification defined
as in (7). Suppose that there is a constant c > 0 such that for every cylinder set F ∈ F
there is n ∈ N such that

Kn(F, x) ≥ cKn(F, y)

for all x, y ∈ Ω. Then, the set G ∗(f) has only one element.

Proof. Because of Lemma 4.4 it is enough to show that GDLR(f) is a singleton. Suppose
that GDLR(f) contains two distinct elements µ and ν. Then the convex combination
(1/2)(µ+ ν) ∈ GDLR(f) \ ex(GDLR(f)), where ex(GDLR(f)) denotes the set of extreme
measures of GDLR(f). Therefore it is sufficient to show that GDLR(f) ⊂ ex(GDLR(f)) .

Let µ ∈ GDLR(f), E0 ∈ T and suppose that µ(E0) > 0. The existence of such set is
ensured by the Theorem 7.7 item (c) in [17], which says that any element µ ∈ GDLR(f)
is uniquely determined by its restriction to the tail sigma-algebra T (see Corollary 10.5
in the Appendix). Since µ(E0) > 0 the probability measure ν ≡ µ(·|E0) ∈ GDLR(f), see
Theorem 7.7 (b) in [17] (or, see Proposition 10.2 and Corollary 10.4 in the Appendix).

We now prove that for all E ∈ F , we have ν(E) ≥ cµ(E) for some c > 0. Fix a
cylinder set F ∈ F . Then, for n sufficiently large, it follows from the characterization
of the DLR-Gibbs measures and from the hypothesis that

ν(F ) =

∫
Ω

Kn(F, x) dν(x) =

∫
Ω

[∫
Ω

Kn(F, x) dν(x)

]
dµ(y)

≥ c

∫
Ω

[∫
Ω

Kn(F, y) dν(x)

]
dµ(y)

= c

∫
Ω

[∫
Ω

Kn(F, y) dµ(y)

]
dν(x)

= cµ(F ).

Using the monotone class theorem we may conclude that for all E ∈ F we have ν(E) ≥
cµ(E). In particular, 0 = ν(Ω \ E0) ≥ cµ(Ω \ E0) therefore µ(E0) = 1. Consequently
µ is trivial on ∩j∈NTj. Hence another application of Theorem 7.7 (a) of [17] (or, see
Corollary 10.4) ensures that µ is extreme.

As a consequence of this theorem we prove the uniqueness of the eigenmeasures for
the dual of Ruelle operator associated to a potential f : Ω→ R satisfying the following
conditions:

• (Walters) lim
d(x,y)→0

sup
n∈N

sup
a∈Mn

|Sn(f)(ax)− Sn(f)(ay)| = 0; (12)

• (Bowen) D ≡ sup
n∈N

sup
x,y∈Ω;

xi=yi,i=1,...,n

|Sn(f)(x)− Sn(f)(y)| <∞. (13)

12



Of course, a potential f satisfying the Walters condition satisfies the Bowen condition.
What we are calling here Bowen’s condition is actually a generalization to uncountable
alphabets of classical Bowen’s condition, see [36].

Theorem 5.2. Let f be a continuous potential satisfying

D ≡ sup
n∈N

sup
x,y∈Ω;

xi=yi,i=1,...,n

|Sn(f)(x)− Sn(f)(y)| <∞

then the set G ∗(f) is a singleton and G ∗(f) = GDLR(f).

Proof. Let D be the constant as in the above theorem and C a cylinder such that its
basis is contained in the set {1, . . . , p}, i.e., for every n ≥ p we have 1C(x1 . . . xnσ

n(z)) =
1C(x1 . . . xnσ

n(y)) for all y, z ∈ Ω and x1, . . . , xn ∈ M . We claim that for any choice of
y, z ∈ Ω and for all n ≥ p, we have

e−2DKn(C, z) ≤ Kn(C, y) ≤ e2DKn(C, z).

By definition of D we have, uniformly in n ∈ N, x, y, z ∈ Ω, the following inequality
−D ≤ Sn(f)(x1 . . . xnσ

n(z)) − Sn(f)(x1 . . . xnσ
n(y)) ≤ D which immediately imply the

inequalities exp(−D) exp(−Sn(f)(x1 . . . xnσ
n(z))) ≤ exp(−Sn(f)(x1 . . . xnσ

n(y))) and
exp(−Sn(f)(x1 . . . xnσ

n(y))) ≤ exp(D) exp(−Sn(f)(x1 . . . xnσ
n(z))). Using theses two

previous inequalities we get that

e−DL n
f (1)(σn(z)) ≤ L n

f (1)(σn(y)) ≤ eDL n
f (1)(σn(z)) (14)

and also

Kn(C, y) =
L n
f (1C)(σn(y))

L n
f (1)(σn(y))

≤
eDL n

f (1C)(σn(z))

e−DL n
f (1)(σn(z))

= e2DKn(C, z).

Analogously we obtain e−2DKn(C, z) ≤ Kn(C, y) and so the claim is proved.
Let µ and ν be distinct extreme measures in GDLR(f). Since we are assuming that

M is compact, it follows from Theorem 7.12 of [17] that there exist y, z ∈ Ω such that
both measures µ and ν are thermodynamic limits of Kn(·, y) and Kn(·, z), respectively,
when n → ∞. Given an open cylinder set C such that its basis is contained in the set
{1, . . . , p} there is an increasing sequence of closed cylinders C1 ⊂ C2 ⊂ . . . such that
for all k ∈ N the basis of Ck is contained in the set {1, . . . , p}, and

⋃
k∈NCk = C. By

Urysohn’s lemma for each k ∈ N there is a continuous function ϕk : Ω→ [0, 1] such that
1Ck ≤ ϕk ≤ 1C and ϕk → 1C pointwise. Since C and (Ck)k∈N have their basis contained
in {1, . . . , p}, then the function ϕk can be chosen as a continuous function depending
only on its first p coordinates.

By using the claim and a standard approximation arguments we get, for any fixed k,
the inequality Kn(ϕk, y) ≤ e2DKn(ϕk, z) for all n ≥ p. By taking the limits, when n
goes to infinity and next when k goes to infinity we get µ(C) ≤ e2Dν(C). Clearly the
collection D = {E ∈ F : µ(E) ≤ e2Dβν(E)} is a monotone class. Since it contains the
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open cylinder sets, which is stable under intersections, we have that D = F . Therefore
µ ≤ e2Dβν, in particular µ � ν. This contradicts the fact that two distinct extreme
DLR-Gibbs measures are mutually singular, therefore GDLR(f) is a singleton and by
Lemma 4.4 we are done.

This result generalizes two conditions for uniqueness presented in two recent works by
the authors when general compact state space M is considered, see [12] and [23]. In fact,
the above theorem generalizes the Hölder, Walters (weak and stronger as introduced in
[12]) and Bowen conditions because it can be applied for potentials defined on Ω = MN,
where the state space M is any general compact metric space.

5.1 Dobrushin Uniqueness Theorem

In this section we prove an uniqueness theorem in the high temperature regime (β small)
for potentials not satisfying Bowen’s condition in (13). This result applies for a very
large class of potentials which live outside the Hölder, Walters and Bowen spaces. Its
proof is based on the Dobrushin Uniqueness Theorem suitably adapted to our setting.

For each positive integer n let Λn ⊂ N be a finite set such that 1 ∈ Λn. Denote
by πΛn : Ω → MΛn the natural projection from Ω onto MΛn . For each n ≥ 1 let
fn : M |Λn| → R be a continuous function and suppose that

∑∞
n=1 ‖fn‖∞ < +∞. Consider

the continuous potential f : Ω→ R given by

f(x) =
∞∑
n=1

fn ◦ πΛn(x).

The next theorem is a version of Dobrushin’s Theorem for Thermodynamic Formalism.
We point out that in [11] it was described a natural way to connect the classical setting
of Thermodynamic with interactions, specifications, etc... (which is more close to the
classical setting of Statistical Mechanics). We will follow such point of view here.

Theorem 5.3. Let f be as above and suppose that
∑

n≥1 |Λn|‖fn‖∞ < +∞. Then there
exists βD ∈ (0,∞) such that for any β < βD, the set G ∗(βf) is a singleton.

Proof. Consider the interaction Φ ≡ (ΦΛ)Λ⊂N given by: ΦΛ ≡ 0 if Λ 6= k + Λn for some
k, n ∈ N; ΦΛn(x) = fn ◦ πΛn(x) and Φk+Λn(x) = fn ◦ πk+Λn(x).

Note that

HΦ
{1,...,n}(x) =

∑
Λ∩{1,...,n}6=∅
0<|Λ|<+∞

ΦΛ(x) =
n∑
i=1

∑
Λ3i

0<|Λ|<+∞

ΦΛ(x) = Sn(f)(x).

Let γΦ be the specification determined by HΦ
Λ . Since the DLR Gibbs measures are com-

pletely determined in a cofinal collection of volumes, we have that G (γβΦ) = GDLR(βf).
From the construction of Φ we have

sup
i∈N

∑
i3Λ

(|Λ| − 1)‖ΦΛ‖∞ =
∑
n≥1

(|Λn| − 1)‖fn‖∞ < +∞
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and it therefore follows from the Dobrushin Uniqueness Theorem (see [17], Theorem 8.7
and Proposition 8.8) that G (γβΦ) is a singleton whenever

β < βD ≡
2∑

n≥1(|Λn| − 1)‖fn‖∞
.

Since Lemma 4.4 ensures that for any continuous potential f we have G ∗(βf) ⊂
GDLR(βf) the result follows.

We apply the above theorem in the following case. We take E = {−1, 1}, the a priori
measure p as the normalized counting measure and fix 0 < ε < 1. Consider the potential

f(x) =
∞∑
n=2

x1xn
n1+ε

.

In the literature this potential is sometimes called Dyson potential (see [11]). In this
case, for any β > 0 we have

D ≡ sup
n∈N

sup
x,y∈Ω;

xi=yi,i=1,...,n

|Sn(βf)(x)− Sn(βf)(y)| =∞.

The above equality implies that f is not in Hölder, Walters and Bowen spaces. Of course,
this potential can be rewritten as f(x) =

∑∞
n=1 fn ◦ πΛn(x), by taking Λn = {1, n} and

fn ◦ πΛn(x) = x1xn/n
1+ε. Then∑
n≥1

(|Λn| − 1)‖fn‖∞ =
∑
n≥1

1

n1+ε
= ζ(1 + ε).

Now applying the above theorem (taking |Λn| = 2) we get that G ∗(βf) is a singleton for
any choice of β < 2ζ(1 + ε)−1.

By taking Λn = {1, n, n + 1}, n ≥ 2, one can get results for potentials of the
form f(x) =

∑∞
n=2 x1xnxn+1/n

1+ε or more generally for potentials of the form f(x) =∑∞
n=2 an x1 xn xn+1, where

∑
an is absolutely convergent. In this case, to estimate the

critical temperature, one considers the expression
∑

n≥1 3‖fn‖∞.

6 The Extension of the Ruelle Operator to the
Lebesgue Space L1(Ω,F , νf)L1(Ω,F , νf)L1(Ω,F , νf)

Let f be a fixed continuous potential and νf the Borel probability measure obtained
above. In this section we show how to construct a bounded linear extension of the
operator Lf : C(Ω)→ C(Ω) acting on L1(Ω,F , νf ), by abusing notation also called Lf ,
and under suitable assumptions prove the existence of an almost surely non-negative
eigenfunction ϕf ∈ L1(Ω,F , νf ) associated to the eigenvalue λf constructed in the
previous section.
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Proposition 6.1. Fix a continuous potential f and let λf and νf be the eigenvalue and
eigenmeasure of L ∗, respectively. Then the Ruelle operator Lf : C(Ω) → C(Ω) can
be uniquely extended to a bounded linear operator Lf : L1(Ω,F , νf ) → L1(Ω,F , νf ).
Moreover, this extension has operator norm ‖Lf‖ = λf .

Proof. If ϕ ∈ C(Ω) then ϕ± ≡ max{0,±ϕ} ∈ C(Ω). Therefore, it follows from the
positivity of the Ruelle operator and (3) that

‖Lf (ϕ)‖L1 =

∫
Ω

|Lf (ϕ
+ − ϕ−)| dνf ≤

∫
Ω

|Lf (ϕ
+)|+ |Lf (ϕ

−)| dνf

=

∫
Ω

Lf (ϕ
+) + Lf (ϕ

−) dνf =

∫
Ω

(ϕ+ + ϕ−) d(L ∗
f νf )

= λf

∫
Ω

(ϕ+ + ϕ−) dνf = λf

∫
Ω

|ϕ| dνf

= λf‖ϕ‖L1 .

Since Ω is a compact Hausdorff space we have

C(Ω,R)
L1(Ω,F ,νf )

= L1(Ω,F , νf ),

and Lf therefore admits a unique continuous extension to L1(Ω,F , νf ). By taking
ϕ ≡ 1 it is easy to see that ‖Lf‖ = λf .

Proposition 6.2. For any fixed potential f ∈ C(Ω) we have that

L1(Ω,F , νf ) = Ξ(f) ≡
{
ϕ ∈ L1(Ω,F , νf ) :

∫
Ω

Lf (ϕ) dνf = λf

∫
Ω

ϕdνf

}
.

Proof. From (3) it follows that C(Ω) ⊂ Ξ(f). Let {ϕn}n∈N be a sequence in C(Ω) such
that ϕn → ϕ in L1(Ω,F , νf ). Then∣∣∣∣∫

Ω

ϕn dνf −
∫

Ω

ϕdνf

∣∣∣∣ ≤ ∫
Ω

|ϕn − ϕ| dνf
n→∞−−−→ 0

and using the boundedness of Lf , we can also conclude that∣∣∣∣∫
Ω

Lf (ϕn) dνf −
∫

Ω

Lf (ϕ) dνf

∣∣∣∣ ≤∫
Ω

|Lf (ϕn − ϕ)| dνf ≤ λf‖ϕn − ϕ‖L1
n→∞−−−→ 0.

By using the above convergences and the triangular inequality we can see that Ξ(f) is
closed subset of L1(Ω,F , νf ) . Indeed,∣∣∣∣∫

Ω

Lf (ϕ) dνf − λf
∫

Ω

ϕdνf

∣∣∣∣ ≤∣∣∣∣∫
Ω

Lf (ϕ) dνf −
∫

Ω

Lf (ϕn) dνf +

∫
Ω

Lf (ϕn) dνf − λf
∫

Ω

ϕdνf

∣∣∣∣
and the rhs goes to zero when n → ∞ therefore ϕ ∈ Ξ(f). Since C(Ω,R) ⊂ Ξ(f) and
Ξ(f) is closed in L1(Ω,F , νf ) we have that

L1(Ω,F , νf ) = C(Ω,R)
L1(Ω,F ,νf )

⊂ Ξ(f)
L1(Ω,F ,νf )

= Ξ(f) ⊂ L1(Ω,F , νf ).
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The above proposition also implies that the extension of Lf/λf to L1(Ω,F , νf ) can be
identified with the transfer operator associated to a non-singular measure as formulated
in the following corollary.

Corollary 6.3. For any ϕ ∈ L1(Ω,F , νf ) and ψ ∈ L∞(Ω,F , νf ),∫
λf
−1Lf (ϕ) ψdνf =

∫
ϕ ψ ◦ σdνf .

Proof. Observe that Lf (ϕ)ψ = Lf (ϕ · ψ ◦ σ) for ϕ, ψ ∈ C(Ω). In order to extend
this property to the situation of the Corollary that (ψn) is a sequence of uniformly
bounded functions in C(Ω) which converges almost surely to ψ ∈ L∞(Ω,F , νf ). Then,
for ϕ ∈ C(Ω), it follows from bounded convergence and Proposition 6.2 that∫

Lf (ϕ) ψdνf = lim
n→∞

∫
Lf (ϕ) ψndνf = lim

n→∞

∫
Lf (ϕ ψn ◦ σ)dνf

= lim
n→∞

λf

∫
ϕ ψn ◦ σ)dνf = λf

∫
ϕ ψ ◦ σdνf

=

∫
Lf (ϕ ψ ◦ σ)dνf

The assertion then follows as in the proof of Prop. 6.2 by approximation of ϕ by
continuous functions in L1(Ω,F , νf ).

As a corollary of a theorem by Lin (Th. 4.1 in [22], or Th. 1.3.3 in [1]), the extremal
DLR-measures hence can be characterized through the convergence of Ruelle’s operator.

Corollary 6.4. The DLR-Gibbs measure νf is extremal if and only if for any ϕ in the
space L1(Ω,F , νf ) with

∫
Ω
ϕdνf = 0, we have that

lim
n→∞

‖λ−nf L n
f (ϕ)‖1 = 0.

7 Strong Convergence of Ruelle Operators

Proposition 7.1. For any fixed potential f ∈ C(Ω) there is a sequence (fn)n∈N contained
in Cγ(Ω) such that ‖fn−f‖∞ → 0. Moreover, for any eigenmeasure νf associated to the
eigenvalue λf we have that Lfn has a unique continuous extension to an operator defined
on L1(Ω,F , νf ) and moreover, in the uniform operator norm, ‖Lfn−Lf‖L1(Ω,F ,νf ) → 0,
when n→∞.

Proof. The first statement is a direct consequence of the Stone-Weierstrass Theorem.
For any ϕ ∈ L1(Ω,F , νf ) the extension of Lfn is given by Lfn(ϕ) ≡ Lf (exp(fn−f)ϕ)

which is well-defined due to Proposition 6.1. From this proposition we also obtain the
inequality: ∫

Ω

|Lfn(ϕ)| dνf =

∫
Ω

|Lf (exp(fn − f)ϕ)| dνf
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≤ λf‖ exp(fn − f)‖∞‖ϕ‖L1(Ω,F ,νf ) <∞.

Since the distance in the uniform operator norm between Lfn and Lf can be bounded
from above by

‖Lfn −Lf‖L1(Ω,F ,νf ) = sup
0<‖ϕ‖L1≤1

∫
Ω

|Lfn(ϕ)−Lf (ϕ)| dνf

≤ sup
0<‖ϕ‖L1≤1

∫
Ω

|Lf (exp(fn − f)ϕ)−Lf (ϕ)| dνf

≤ λf sup
0<‖ϕ‖L1≤1

∫
Ω

|ϕ||(exp(fn − f)− 1)| dνf

≤ λf | exp(‖fn − f‖∞)− 1)| sup
0<‖ϕ‖L1≤1

∫
Ω

|ϕ| dνf ,

we can conclude that ‖Lfn −Lf‖L1(Ω,F ,νf ) → 0 as n→∞.

8 Existence of the Eigenfunctions

We point out that for a given continuous potential f there always exists eigenprobabilities
νf whereas in some situations, there is no positive and continuous eigenfunction (see,
for instance, [10]). We now will show the existence of a non-trivial eigenfunction of Lf

in L1(Ω,F , νf ) for potentials f satisfying Bowen’s condition. This partially extends a
result of Walters (see [36]) to our case with a possibly uncountable alphabet.

In this section we consider sequences of Borel probability measures (µfn)n∈N defined
by

F 3 E 7→ µfn(E) ≡
∫
E

hfndνf , (15)

where fn ∈ Cγ(Ω) satisfies ‖fn − f‖∞ → 0, and hfn is the unique eigenfunction of
Lfn , which is assumed to have L1(Ω,F , νf ) norm one. Since Ω is compact we can also
assume, up to subsequence, that µfn ⇀ µ ∈P(Ω,F ).

From the definition of µfn we immediately have that µfn � νf . Notice that, in
such generality, it is not possible to guarantee that µ � νf . When this is true the
Radon-Nikodym theorem ensures the existence of a non-negative function dµ/dνf ∈
L1(Ω,F , νf ) such that for all E ∈ F we have

µ(E) =

∫
E

dµ

dνf
dνf . (16)

In what follows we give sufficient conditions for this Radon-Nikodym derivative to be
an eigenfunction of Lf .
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Theorem 8.1. Let (fn) be a sequence of Hölder continuous functions which converges
uniformly to f , and µfn defined as in (15). If (hfn)n∈N is a relatively compact subset of
L1(Ω,F , νf ) then up to subsequence µfn ⇀ µ, µ� νf and Lf (dµ/dνf ) = λfdµ/dνf .

Proof. Without loss of generality we can assume that hfn converges to some non-negative
function hf ∈ L1(Ω,F , νf ). This convergence implies∣∣∣∣∫

Ω

ϕhfn dνf −
∫

Ω

ϕhf dνf

∣∣∣∣→ 0, ∀ϕ ∈ C(Ω).

Therefore µfn ⇀ µ with µ� νf and dµ/dνf = hf almost surely.
Let us show that this Radon-Nikodym derivative is a non-negative eigenfunction for

the Ruelle operator Lf . It follows from the triangular inequality that

‖Lf (hf )− λfhf‖L1(νf )≤‖Lf (hf )−Lfn(hf )‖L1(νf )+‖Lfn(hf )− λfhf‖L1(νf ).

Proposition 7.1 implies that the first term tends to zero when n tends to infinity, whereas
the second term can be estimated as follows.

‖Lfn(hf )− λfhf‖L1(νf ) ≤ ‖Lfn(hf − hfn + hfn)− λfhf‖L1(νf )

≤ ‖Lfn(hf − hfn) + λfnhfn − λfhf‖L1(νf )

≤ ‖Lfn‖L1(ν) · ‖hf − hfn‖L1(ν) + ‖λfnhfn − λfhf‖L1(νf ).

Since supn∈N ‖Lfn‖L1(ν) < +∞ and ‖hf − hfn‖L1(Ω,F ,νf ) → 0 as n → ∞, we have that
the first term on the right hand side also goes to zero when n tends to infinity. The
second term on the right hand side above is bounded by

‖λfnhfn − λfhf‖L1(νf ) ≤ ‖λfnhfn − λfhfn‖L1(νf ) + ‖λfhfn − λfhf‖L1(νf )

= |λfn − λf |+ |λf | · ‖hfn − hf‖L1(νf ).

From Corollary 3.5 and our assumption follows that the lhs above can be made small
if n is big enough. Piecing together all these estimates we conclude that ‖Lf (hf ) −
λfhf‖L1(νf ) = 0 and therefore Lf (hf ) = λfhf , νf a.s..

Theorem 8.2. Let (fn) be a sequence of Hölder continuous functions which converges
uniformly to f , µfn as in (15) and suppose that that µfn ⇀ µ. If µ� νf and hfn(x)→
dµ/dνf νf -a.s. then Lf (dµ/dνf ) = λf dµ/dνf .

Proof. Notice that∫
Ω

|hfn| dνf = 1 =

∫
Ω

∣∣∣∣ dµdνf
∣∣∣∣ dνf and hfn(x)→ dµ/dνf νf − a.s..

Scheffé’s lemma implies that hfn converges to dµ/dνf in the L1(Ω,F , νf ) norm. To
finish the proof it is enough to apply the previous theorem.
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We now construct an eigenfunction for Lf without assuming convergence of hfn neither
in L1(Ω,F , νf ) nor almost surely. We should remark that the next theorem applies even
when no convergent subsequence of (hfn)n∈N exists.

Theorem 8.3. Let (hfn)n∈N be a sequence of eigenfunctions in the unit sphere of the
Lebesgue space L1(Ω,F , νf ), where (fn)n∈N is a sequence of Hölder potentials converging
uniformly to f . If supn∈N ‖hfn‖∞ < +∞, then lim suphfn ∈ L1(Ω,F , νf ) \ {0} and
moreover Lf (lim suphfn) = λf lim suphfn.

Proof. Since we are assuming that supn∈N ‖hfn‖∞ < +∞, it follows that lim suphn ∈
L1(Ω,F , νf ). For any fixed x ∈ Ω follows from this uniform bound that the mapping

M 3 a 7→ lim sup
n→∞

hfn(ax)

is uniformly bounded and therefore integrable with respect to the a-priori measure ν so
we can apply the limsup version of the Fatou’s lemma to get the inequality

Lf (lim sup
n→∞

hfn) =

∫
M

exp(f(ax)) lim sup
n→∞

hfn(ax) dp(a)

=

∫
M

lim
n→∞

exp(fn(ax)) lim sup
n→∞

hfn(ax) dp(a)

=

∫
M

lim sup
n→∞

(exp(fn(ax))hfn(ax)) dp(a)

≥ lim sup
n→∞

∫
M

exp(fn(ax))hfn(ax) dp(a)

= lim sup
n→∞

λfnhfn

= λf lim sup
n→∞

hfn .

These inequalities implies that lim suphfn is a super solution to the eigenvalue problem.
On the other hand, we have proved that ‖Lf‖L1(νf ) = λf . This fact together with the
previous inequality implies that

Lf (lim sup
n→∞

hfn) = λf lim sup
n→∞

hfn

νf -almost surely. It remains to prove that lim suphfn is non trivial. Since we have
supn∈N ‖hfn‖∞ < +∞ follows that µfn ⇀ µ � νf . Indeed, for any open set A ⊂ Ω,
weak convergence and the Portmanteau Theorem imply that

µ(A) ≤ lim inf
n→∞

∫
Ω

1Ahfn dνf .

Since νf is outer regular we have for any B ∈ F that νf (B) = inf{νf (A) : A ⊃
B,A open}. From the previous inequality and uniform limitation of hfn we get for any
B ⊂ A (A open set) that µ(B) ≤ µ(A) ≤ supn∈N ‖hfn‖∞ νf (A). Taking the infimum
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over A ⊃ B, A open, we have µ(B) ≤ supn∈N ‖hfn‖∞ νf (B) and thus µ � νf . By
applying again the limit sup version of the Fatou Lemma we get that

1 =

∫
Ω

dµ

dνf
dνf = lim

n→∞

∫
Ω

hfn dνf = lim sup
n→∞

∫
Ω

hfn dνf ≤
∫

Ω

lim sup
n→∞

hfn dνf ,

where the second equality comes from the definition of the weak convergence.

We point out that the conditions supn∈N ‖hfn‖∞ < +∞ and (fn) Hölder, fn → f
uniformly is not satisfied for Hofbauer potentials.

All the previous theorems of this section required informations about the eigenfunc-
tion. Now we present an existence result that one can check by using only the potential
(via L n

f ) and some estimates on the maximal eigenvalue. We remark that a similar
approach can be found in [14] in the setting of random shift spaces with countable
alphabets. In there, it was shown that the limes inferior defines a random eigenfunction.

Theorem 8.4. Let f be a continuous potential and λf the eigenvalue of L ∗
f provided

by Proposition 3.1. If
sup
n∈N

∥∥L n
f (1)/λnf

∥∥
∞ < +∞,

then, lim supn→∞L n
f (1)/λnf is a non-trivial eigenfunction of Lf in L1(Ω,F , νf ) associ-

ated to λf .

Proof. The key idea is to prove that lim supn→∞L n
f (1)/λnf is a super solution for the

eigenvalue problem, since it belongs to L1(Ω,F , νf ) it has to be a sub solution and then
it is in fact a solution. Its non-triviality is based on the arguments given in the previous
proof and the weak convergence of suitable sequence of probability measures.

The super solution part of the argument is again based on the reverse Fatou Lemma
as follows

Lf (lim sup
n→∞

L n
f (1)/λnf ) =

∫
M

exp(f(ax)) lim sup
n→∞

L n
f (1)(ax)/λnf dp(a)

≥ lim sup
n→∞

∫
M

exp(f(ax))L n
f (1)(ax)/λnf dp(a)

= lim sup
n→∞

λf L n+1
f (1)(x)/λn+1

f

= λf lim sup
n→∞

L n
f (1)(x)/λnf .

The next step is to prove the non-triviality of this limsup. From the definition of νf we
can say that the following sequence of probability measures is contained in P(Ω,F ):

F 3 E 7→
∫
E

L n
f (1)

λnf
dνf .

Similarly, from the previous theorem we can ensure that all its cluster points in the weak
topology are absolutely continuous with respect to νf . Up to subsequence, we can get
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from another application of the Fatou Lemma that

1 =

∫
Ω

dµ

dνf
dνf = lim

n→∞

∫
Ω

L n
f (1)

λnf
dνf ≤

∫
Ω

lim sup
n→∞

L n
f (1)

λnf
dνf .

Corollary 8.5. Let f be a potential satisfying Bowen’s condition and let D as in (13).
Then,

hf ≡ lim sup
n→∞

L n
f (1)/λnf

is a non trivial L1(Ω,F , νf ) eigenfunction of Lf associated to λf and e−D ≤ hf ≤ eD.

Proof. Since we are assuming that the potential f satisfies Bowen’s condition and D
is given by (13) it follows from (14) that uniformly in n ∈ N and z, y ∈ Ω we have
e−DL n

f (1)(σn(z)) ≤ L n
f (1)(σn(y)) ≤ eDL n

f (1)(σn(z)). Replacing in this inequality z by
a1 . . . anz and similarly y by a1 . . . any, where (a1, . . . , an) ∈ Mn is fixed, we obtain the
following estimate which holds for all n ≥ 1 and y, z ∈ Ω

e−DL n
f (1)(z) ≤ L n

f (1)(y) ≤ eDL n
f (1)(z).

By integrating the above inequality in z, with respect to the eigenmeasure, we get

e−D ≤
L n
f (1)(y)

λnf
≤ eD.

The conclusions then follow from the last inequality and Theorem 8.4.

Remark 8.6. It is not possible to conclude from the above argument whether hf is
a continuous function. Similarly to the case of finite alphabet considered in [36] the
best information we have so far about its regularity is that this eigenfunction is at least
L∞(Ω,F , νf ). In the context of Markov maps, this result for example in [2]. However,
the continuity of this eigenfunction as far as we know remains open, even in the finite
alphabet setting.

9 Applications

Weak Convergence of Eigenprobabilities

In this section we consider a continuous potential f : Ω → R or an element of Cγ(Ω)
for some 0 ≤ γ < 1. We would like to get results for continuous potentials via limits of
Hölder potentials.

We choose a point in the state space M and for simplicity call it 0. We denote by
(fn)n∈N ⊂ Cγ(Ω) the sequence given by fn(x) = f(x1, . . . , xn, 0, 0, . . .). Keeping the
notation of the previous sections, the eigenprobabilities of Lfn and Lf are also denoted
by νfn and νf , respectively. Notice that ‖f − fn‖∞ → 0, when n → ∞ and, moreover,
if f is Hölder then this convergence is exponentially fast. We denote by L(C(Ω)) the
space of all bounded operators from C(Ω) to itself and for each T ∈ L(C(Ω)) we use the
notation ‖T‖C(Ω) for its operator norm. The next lemma is inspired by Proposition 7.1.
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Lemma 9.1. The sequence (Lfn)n∈N converges in the operator norm to the Ruelle op-
erator Lf , i.e., ‖Lfn −Lf‖C(Ω) → 0, when n→∞.

Proof. For all n ∈ N we have

‖Lfn −Lf‖C(Ω) = sup
0<‖ϕ‖∞≤1

sup
x∈Ω
|Lfn(ϕ)(x)−Lf (ϕ)(x)|

≤ sup
0<‖ϕ‖∞≤1

sup
x∈Ω
|Lf (exp(fn − f)ϕ)(x)−Lf (ϕ)(x)|

≤ ‖Lf‖C(Ω) sup
0<‖ϕ‖∞≤1

‖ϕ‖∞‖(exp(fn − f)− 1)‖∞

≤ ‖Lf‖C(Ω)‖(exp(fn − f)− 1)‖∞.

Proposition 9.2. Any cluster point, in the weak topology, of the sequence (νfn)n∈N
belongs to the set G ∗(f).

Proof. By the previous lemma for any given ε > 0 there is n0 ∈ N such that if n ≥ n0 we
have for all ϕ ∈ C(Ω) and for all x ∈ Ω that Lfn(ϕ)(x)−ε < Lf (ϕ)(x) < Lfn(ϕ)(x)+ε.
From the duality relation of the Ruelle operator and the weak convergence and Corollary
3.5 we have that∫

Ω

ϕd(L ∗
f ν) =

∫
Ω

Lf (ϕ) dν = lim
n→∞

∫
Ω

Lf (ϕ) dνfn

< lim
n→∞

∫
Ω

Lfn(ϕ) dνfn + ε

= lim
n→∞

∫
Ω

ϕd(Lfnνfn) + ε

= lim
n→∞

λfn

∫
Ω

ϕdνfn + ε

= λf

∫
Ω

ϕdν + ε.

We obtain analogous lower bound, with −ε instead. Since ε > 0 is arbitrary it follows
for any ϕ ∈ C(Ω) that ∫

Ω

ϕd(L ∗
f ν) = λf

∫
Ω

ϕdν

and therefore L ∗
f ν = λfν.

Remark 9.3. The above proposition for f ∈ Cγ(Ω) says that up to subsequence νfn ⇀
νf , which is the unique eigenprobability of L ∗

f . Therefore the eigenprobability νf inherits
all the properties of the sequence νfn that are preserved by weak limits.
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Constructive Approach for Equilibrium States for General Continuous Potentials

Before proceed we should mention that Sarig in [30] has also presented a construction
of equilibrium measures for topologically mixing topological Markov shifts (TMS).

Lemma 9.4. For each n ∈ N, let fn be the potential defined above and hfn the main
eigenfunction of Lfn associated to λfn, normalized so that ‖hfn‖L1(νfn ) = 1, where νfn
is the unique eigenprobability of L ∗

fn
. Then there exist a σ-invariant Borel probability

measure µf such that, up to taking subsequences,

lim
n→∞

∫
Ω

ϕhfn dνfn =

∫
Ω

ϕdµf , ∀ϕ ∈ C(Ω)

Proof. It is well known that hfndνfn defines a σ-invariant Borel probability measure and
therefore any of its cluster point, in the weak topology is a shift invariant probability
measure.

As observed in [23], when M is uncountable, the Kolmogorov-Sinai entropy is not
suitable in the formulation of the variational problem. In what follows we use the concept
of entropy introduced in [23]. This entropy is defined for each probability measure µ by

hµ(σ) ≡ inf
g∈Cα(Ω,R)

{
−
∫

Ω

g dµ+ log λg

}
. (17)

Note that this entropy depends on the choice of the a priori measure and similar ideas
are employed in Statistical Mechanics to study translation invariant Gibbs measures of
continuous spin systems on the lattice, see [17, 33] and references therein.

Theorem 9.5 (Equilibrium States). Let f : Ω → R be a continuous potential and
(fn)n∈N a sequence of Hölder potentials such that ‖fn − f‖∞ → 0, when n→∞. Then
any probability measure µf as constructed in the Lemma 9.4 is an equilibrium state for
f .

Proof. Given any ε > 0 there is n0 ∈ N so that if n ≥ n0 then −ε < f − fn < ε. We
know that the equilibrium measure µfn for fn is given by µfn = hfnνfn and therefore, we
have that

sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
= sup

ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

(f − fn) dρ+

∫
Ω

fn dρ

}
< ε+ sup

ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

fn dρ

}
= ε+ h(µfn) +

∫
Ω

fn dµfn .

Since the entropy defined by (17) is upper semi-continuous and µfn ⇀ µf it follows that
for some n1 ∈ N and n ≥ n1 we have

h(µfn) < h(µf ) + ε.
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Using again the uniform convergence of fn to f and the weak convergence of µfn to µf ,
for some n2 ∈ N and n ≥ n2 we get∫

Ω

fn dµfn =

∫
Ω

fn − f dµfn +

∫
Ω

f dµfn < 2ε+

∫
Ω

f dµf .

Using the previous three inequalities we get for n ≥ max{n0, n1, n2}

sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
< 4ε+ h(µf ) +

∫
Ω

f dµf .

Since ε > 0 is arbitrary follows from the definition of the supremum and above inequality
that

sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
= h(µf ) +

∫
Ω

f dµf

and therefore µf constructed in Lemma 9.4 is an equilibrium state.

Corollary 9.6. For any continuous potential f : Ω→ R we have that

log λf = sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
.

Proof. Consider the Hölder approximations (fn)n∈N of f as above. Then for any given
ε > 0 and n large enough we have

log λfn − ε = h(µfn) +

∫
Ω

fn dµfn − ε

< sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
< ε+ h(µfn) +

∫
Ω

fn dµfn

= ε+ log λfn .

Since λfn → λf it follows from the above inequality that

sup
ρ∈Pσ(Ω,F )

{
h(ρ) +

∫
Ω

f dρ

}
= log λf .

Necessary and Sufficient Conditions for the Existence of LLL1 Eigenfunctions

Theorem 9.7. Let ν ∈ G ∗(f). The Ruelle operator has a non-negative eigenfunction
h ∈ L1(ν) if, and only if, there exists µ ∈Pσ(Ω,F ) such that µ� ν.
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Proof. We first assume that there is µ ∈Pσ(Ω,F ) so that µ� ν. In this case we claim
that

Lf

(
dµ

dν

)
= λf

dµ

dν
.

Indeed, for any continuous function ϕ we have∫
Ω

ϕLf

(
dµ

dν

)
dν =

∫
Ω

Lf

(
ϕ ◦ σ · dµ

dν

)
dν

= λf

∫
Ω

ϕ ◦ σ · dµ
dν

dν = λf

∫
Ω

ϕ ◦ σ · dµ

= λf

∫
Ω

ϕdµ = λf

∫
Ω

ϕ · dµ
dν

dν.

Conversely, suppose that h ∈ L1(ν) is a non-negative eigenfunction for the Ruelle
operator associated to the main eigenvalue and normalized so that

∫
Ω
h dν = 1. Define

the probability measure µ = hdν. Then for any ϕ ∈ C(Ω) we have

λf

∫
Ω

ϕdµ = λf

∫
Ω

ϕh dν =

∫
Ω

ϕLfh dν

=

∫
Ω

Lf (ϕ ◦ σ · h) dν = λf

∫
Ω

ϕ ◦ σ · h dν

= λf

∫
Ω

ϕ ◦ σ dµ

and therefore µ ∈Pσ(Ω,F ) and µ� ν.

Continuous Potentials not Having Continuous Eigenfunctions

Now we assume that the state space M = {−1, 1} and the a priori measure is a Bernoulli
measure, which we denote by κ. Let ρ be the infinite product measure ρ =

∏
i∈N κ.

Consider the continuous potential f given by f(x) =
∑

n≥1(xn/n
γ), where 3/2 < γ ≤ 2.

For each n ∈ N set αn = ζ(γ) −
∑n

j=1 n
−γ. From Theorem 5.1 in [9] we have that the

main eigenvalue for Lf is λf = 2 cosh(ζ(γ)) and there is a F -measurable set Ω0 ⊂ Ω
satisfying ρ(Ω0) = 1 and such that for all x ∈ Ω0 the following function

x 7→ hf (x) ≡ exp(α1x1 + α2 x2 + α3x3 + . . .+ αnxn + . . .)

is well defined.
From Theorem 6.1 item (iv) in [9] it follows that hf is the unique eigenfunction

associated to λf and it is not an element of L∞(Ω,F , ρ) which implies that hf /∈ C(Ω).
On the other hand, from Theorem 5.1 in [9] follows that hf ∈ L1(Ω,F , νf ).

10 Appendix

On this appendix we adapt some results from the reference [17] to the present setting.
Let Lf be the Ruelle operator of a continuous potential f and for each n ∈ N, x ∈ Ω
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and E ∈ F , consider the probability kernel Kn : F ×Ω→ [0, 1] given by the expression

Kn(E, x) ≡
L n
f (1E)(σn(x))

L n
f (1)(σn(x))

.

Proposition 10.1. Suppose µ ∈ GDLR(f), then for all n ∈ N

An(µ) = {E ∈ F : Kn(E,ω) = 1E(ω) µ a.s.} is a σ − algebra.

Proof. Since Kn(Ω, ω) = 1 = 1Ω(ω) we get that Ω ∈ An(µ). For the empty set the proof
is trivial.

Now suppose that (Ej)j∈N is a disjoint collection of elements of An(µ). Then, for all
ω we get Kn(∪j∈NEj, ω) =

∑
j∈NKn(Ej, ω). Note that µ-a.e. Kn(Ej, ω) = 1Ej(ω) for

all j ∈ N, because Ej ∈ An(µ). Clearly, 1∪j∈NEj(ω) =
∑

j∈N 1Ej(ω), then by using that
the intersection of sets of measure one has measure one, we get that Kn(∪j∈NEj, ω) =
1∪j∈NEj(ω), µ-a.e..

Note that An(µ) is closed by the complement operation. Indeed, for all ω ∈ Ω and
E ∈ An(µ) we have that Kn(Ec, ω) = 1−Kn(E,ω) = 1− 1E(ω) = 1Ec(ω).

Since we have shown that An(µ) is closed under denumerable disjoint unions then the
remaining task is to show that An(µ) is closed under finite intersections. Then it will
follow that An(µ) is closed under any denumerable union. Suppose that E,F ∈ An(µ).
By the monotonicity of the measure we have µ-a.e that

Kn(E ∩ F, ω) ≤ min{Kn(E,ω), Kn(F, ω)}
= min{1E(ω), 1F (ω)}
= 1E∩F (ω).

By using the hypothesis we get that∫
Ω

[1E∩F −Kn(E ∩ F, ·)] dµ =

∫
Ω

1E∩F dµ−
∫

Ω

Kn(E ∩ F, ·) dµ

= µ(E ∩ F )−
∫

Ω

Kn(E ∩ F, ·) dµ

= µ(E ∩ F )− µ(E ∩ F )

= 0.

From the previous inequality we known that the integrand in the left hand side of the
above is non-negative. So it has to be zero µ-a.e.. Therefore, Kn(E ∩ F, ω) = 1E∩F (ω),
µ-a.e.. and finally we get that An(µ) is closed for finite intersections. Therefore, An(µ)
is a σ-algebra.

Proposition 10.2. Given a function g : Ω→ [0,∞) we get the equivalence:

1-
∫

Ω
Kn(E, ·)g dµ =

∫
Ω

1Eg dµ for all E ∈ F ,

2- The function g is measurable with respect to the sigma-algebra An(µ).
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Remark 10.3. In [17] the condition 1 is denoted by (gµ)Kn = gµ, where gµ is the
measure defined by E 7→

∫
Ω

1E g dµ. This condition is equivalent to say that gµ is
compatible with Kn.

Proof. First we will prove that 1 =⇒ 2 . This follows from the following claim: for all
g : Ω→ [0,∞) for which the condition 1 holds, we have {g ≥ c} ∈ An(µ), for any c ∈ R.
Indeed, the identity 1{g<c} = 1− 1{g≥c} implies∫

{g<c}
Kn(1{g≥c}, ω)g(ω) dµ(ω)

=

∫
Ω

Kn(1{g≥c}, ω)g(ω) dµ(ω)−
∫

Ω

1{g≥c}(ω)g(ω)Kn(1{g≥c}, ω) dµ(ω).

By using the condition 1 in the first expression of rhs we get∫
{g<c}

Kn(1{g≥c}, ω)g(ω) dµ(ω)

=

∫
Ω

1{g≥c}(ω)g(ω) dµ(ω)−
∫

Ω

1{g≥c}(ω)g(ω)Kn(1{g≥c}, ω) dµ(ω)

=

∫
Ω

1{g≥c}(ω)g(ω)(1−Kn(1{g≥c}, ω)) dµ(ω).

Now, we will use the two inequalities 1{g≥c}(ω)g(ω) ≥ c ·1{g≥c}(ω) and Kn(1{g≥c}, ω) ≤
1, in the above expression, to get∫

{g<c}
Kn(1{g≥c}, ω)g(ω) dµ(ω)

=

∫
Ω

1{g≥c}(ω)g(ω)(1−Kn(1{g≥c}, ω)) dµ(ω)

≥ c

∫
Ω

1{g≥c}(ω)(1−Kn(1{g≥c}, ω)) dµ(ω)

= c

∫
Ω

1{g≥c}(ω) dµ(ω)− c
∫

Ω

1{g≥c}(ω)Kn(1{g≥c}, ω) dµ(ω)

(cond 1)
=

c

∫
Ω

Kn(1{g≥c}, ω) dµ(ω)− c
∫

Ω

1{g≥c}(ω)Kn(1{g≥c}, ω) dµ(ω)

(1{g<c}=1−1{g≤c})

=

c

∫
{g<c}

Kn(1{g≥c}, ω) dµ(ω).

Now, the two extremes of the above inequality give us∫
{g<c}

(g − c)Kn(1{g≥c}, ω) dµ(ω) ≥ 0.
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Therefore, 1{g<c}(ω)Kn(1{g≥c}, ω) = 0 µ-a.e.. From this follows that

Kn(1{g≥c}, ω) = 1{g≥c}(ω) Kn(1{g≥c}, ω) + 1{g<c}(ω) Kn(1{g≥c}, ω)

= 1{g≥c}(ω) Kn(1{g≥c}, ω)

≤ 1{g≥c}(ω).

By another application of the condition 1 we get∫
Ω

1{g≥c}(ω)−Kn(1{g≥c}, ω) dµ = 0

and, then from the last inequality we obtain the µ-a.e. equality 1{g≥c}(ω) = Kn(1{g≥c}, ω).
This means that {g ≥ c} ∈ An(µ) and so g is An(µ)-mensurable.

Now we will show that 2 =⇒ 1. Suppose g is An(µ)-mensurable. First we will show
that 2 =⇒ 1 holds when g = 1F , for some F ∈ An(µ). To prove this claim, it only
remains to verify that∫

Ω

1F ·Kn(E, ·) dµ =

∫
Ω

1F · 1E dµ, ∀ E ∈ F . (18)

Note that for any E ∈ F we have∫
Ω

1F ·Kn(E, ·) dµ =

∫
Ω

1F ·Kn(E ∩ F, ·) dµ+

∫
Ω

1F ·Kn(E ∩ F c, ·) dµ

≤
∫

Ω

Kn(E ∩ F, ·) dµ+

∫
Ω

1F ·Kn(F c, ·) dµ

(Hip. on Kn)
=

∫
Ω

1E∩F dµ+

∫
Ω

1F ·Kn(F c, ·) dµ

(F∈An(µ))
=

∫
Ω

1E∩F dµ+

∫
Ω

1F · 1F c dµ

=

∫
Ω

1E · 1F dµ.

By a similar argument we can show that∫
Ω

1F ·Kn(Ec, ·) dµ ≤
∫

Ω

1Ec · 1F dµ.

Since ∫
Ω

1F ·Kn(E, ·) dµ+

∫
Ω

1F ·Kn(Ec, ·) dµ = µ(F )

=

∫
Ω

1F · 1E dµ+

∫
Ω

1F · 1Ec dµ
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it follows from the two last inequalities that∫
Ω

1F ·Kn(E, ·) dµ =

∫
Ω

1F · 1E dµ, ∀ E ∈ F .

The above identity extends by linearity for simple functions. By taking a sequence of
simple functions ϕk ↑ f , and using the monotone convergence theorem we get for any
An(µ)-measurable function g that∫

Ω

g ·Kn(E, ·) dµ =

∫
Ω

g · 1E dµ, ∀ E ∈ F .

It follows from last proposition that if g is measurable with respect to the sigma-algebra
An(µ) for all n ∈ N, and µ ∈ GDLR(f), f continuous, then gµ is also in GDLR(f)

Corollary 10.4. Given µ ∈ GDLR(f) define A (µ) ≡
⋂
n∈N An(µ). Then, µ is extreme

in GDLR(f), if an only if, µ is trivial on A (µ).

Proof. Suppose that there exists F ∈ A (µ) such that 0 < µ(F ) < 1 and consider the
following probability measures

F 3 E 7→ ν(E) = µ(E|F ) =

∫
Ω

1

µ(F )
1E1F dµ,

F 3 E 7→ γ(E) = µ(E|F c) =

∫
Ω

1

µ(F c)
1E1F c dµ.

Clearly ν 6= γ and moreover

µ = µ(F )ν + (1− µ(F ))γ. (19)

The last proposition guarantees that both ν and γ belong to GDLR(f). Indeed, in last
proposition take f as (1/µ(F )) · 1F and (1/µ(F c)) · 1F c , respectively (these functions
are An(µ)-measurable for n ∈ N). However the existence of the non trivial convex
combination (19), of two elements in GDLR(f), is a contradiction. Therefore, any set
F ∈ A (µ) has the µ measure zero or one.

Conversely, suppose that µ is trivial on A (µ) and at same time expressible as µ =
λν + (1− λ)γ, with 0 < λ < 1 and ν, γ ∈ G (f).

Note that ν � µ and then from Radon-Nikodym Theorem we get that ν(E) =∫
Ω

1Ef dµ for some measurable function f ≥ 0. Once more by the equivalence 1 ⇐⇒ 2
we get that f is An(µ)-measurable for all n ∈ N (recall that ν ∈ GDLR(f)). Since we
assumed that µ is trivial on A (µ) we get that both integrals below are always equals to
each other being zero or one∫

Ω

1Ff dµ =

∫
Ω

1Fdµ, ∀F ∈ A (µ).

As the equality is valid for all F ∈ A (µ) and f is An(µ)-measurable we can conclude
that f = 1 µ-a.e.. Therefore, µ = ν and consequently γ = µ. So µ is a extreme point of
GDLR(f).
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It follows from last corollary that if GDLR(f) has only one element µ, then µ is trivial
on A (µ). If there is phase transition, in the sense that the cardinality of GDLR(f) is
bigger than one, then any extreme probability measure µ in GDLR(f) is trivial on A (µ).

In the next proposition we show the relationship between A (µ) and T ≡
⋂
n∈N Tn,

for µ ∈ GDLR.

Corollary 10.5. If µ ∈ GDLR(f) then A (µ) is a µ completion of T . In particular, it
follows from last corollary that if µ ∈ GDLR(f) is extreme, then, it is trivial on T .

Proof. For all n ∈ N we have that Kn is a proper kernel. Therefore, for any set F ∈ T
we get that Kn(F, ω) = 1F (ω).

On the other hand, if F ∈ {E ∈ F : Kn(E,ω) = 1E(ω), ∀n ∈ N, ∀ω ∈ Ω}, then,
F = {ω ∈ Ω : Kn(F, ω) = 1} ∈ Tn. Therefore, F ∈ T . Consider µ ∈ GDLR(f) and let
F ∈ A (µ), then,

B =
⋂
n∈N

⋃
m≥n

{ω ∈ Ω : Km(F, ω) = 1}

is an element on the sigma algebra T and moreover, µ(F∆B) = 0, because

1B = lim sup
n→∞

1{ω∈Ω:Kn(F,ω)=1} = lim sup
n→∞

1F = 1F µ a.e..
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