Complete Surfaces in \mathbb{R}^{3} with Ends of Non Positive Curvature

Martinez, Antonio
Universidad de Granada, Espanha

Abstract

We extend Efimov's Theorem by proving that any complete surface in \mathbb{R}^{\nVdash} with Gauss curvature bounded above by a negative constant outside a compact set has finite total curvature, finite area and it is properly immersed. Moreover, its ends must be asymptotic to half-lines. We also give a partial solution to Milnor's conjecture and show that the generalized cylinders are the only complete surfaces of non positive Gauss curvature isometrically immersed in \mathbb{R}^{3} with one of its principal curvature functions k_{i} satisfying $k_{i}^{2} \geq$ const >0. This is a joint work with Galvez, Jose Antonio and Teruel, Jose Luis, both from the University of Granada.

