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Abstract

In this paper, we investigate the boundedness results for measure differential
equations. In order to obtain our results, we use the correspondence between these
equations and generalized ODEs. Furthermore, we prove our results concerning
boundedness of solutions for dynamic equations on time scales, using the fact that
these equations represent a particular case of measure differential equations.
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1 Introduction

In this paper, we are interested to investigate the boundedness of solutions of the measure
differential equations given by

Dx = f(x, t)Dg,

where Dx and Dg are the distributional derivative in the sense of L. Schwartz, of x and g,
respectively. In [6], the authors proved that this equation has the following integral form

x(t) = x(t0) +

∫ t

t0

f(x(s), s)dg(s), t ≥ t0, (1.1)
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where the integral in the right-hand side is understood in the sense of Lebesgue-Stieltjes.
Here, we are interested in the formulation (1.1), but in the case when the integral in the
right-hand side of equation (1.1) is in the sense of Kurzweil-Henstock-Stieltjes.

We start by introducing new concepts concerning boundedness of the solutions of
the measure differential equations and then we obtain results concerning boundedness
of solutions using the correspondence between the solutions of these equations and the
solutions of the generalized ODEs. We point out that the proved theorems do not require
the Lipschitz condition on the Lyapunov functional and, thus they are more general than
the ones found in the literature. See, for instance, [1, 5, 9].

More precisely, we ensure that the measure differential equation is uniformly bounded,
only requiring the following conditions concerning the Lyapunov functional

1. For each left-continuous function z : [α, β]→ Rn on (α, β], the function [α, β] 3 t 7→
U(t, z(t)) is left-continuous on (α, β].

2. There are two increasing monotone functions p, b : R+ → R+ such that p(0) =
b(0) = 0, lim

s→+∞
b(s) = +∞ and b(‖z‖) ≤ U(t, z) ≤ p(‖z‖) for every pair (t, z) ∈

[t0,+∞)× Rn.

3. For every solution z : [s0,+∞) → Rn, s0 ≥ t0, of the measure differential equation
(1.1), we have

U(s, z(s))− U(t, z(t)) ≤ 0,

for every s0 ≤ t < s < +∞.

Also, our conditions concerning the functions f and g are more general than the
classical conditions which appears in the classical results on boundedness of solutions. It
is due to the fact that we require the condition in the integral of the function f, not in
the proper function f. These types of conditions allow that our function f may be highly
oscillating and have many discontinuities, since the integral which we are considering is
in the sense of Kurzweil-Henstock-Stieltjes.

Furthermore, we prove that the measure differential equation is uniformly ultimately
bounded, only requiring the conditions 1, 2 and the following two conditions concerning
the functional

• For every x, y : [α, β] → Rn, [α, β] ⊂ [t0,+∞), of bounded variation on [α, β], we
have

‖U(t, x(t))− U(s, x(s))− U(t, y(t)) + U(s, y(s))‖ ≤

≤
(∫ t

s

K(τ)du(τ)

)
sup
ξ∈[α,β]

‖x(ξ)− y(ξ)‖

for every α ≤ s < t ≤ β, where u : [t0,+∞) → R is nondecreasing and left-
continuous function and K : [t0,+∞) → R is a locally Kurzweil-Henstock ∆-
integrable function with respect to u.
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• There exists a continuous function Φ : Rn → R with Φ(0) = 0 and Φ(x) > 0, x 6= 0,
such that for every solution z : [s0,+∞) → Rn, s0 ≥ t0, of the measure differential
equation, we have

U(s, z(s))− U(t, z(t)) ≤ (s− t)
(
− Φ(z(t))

)
for every s0 ≤ t < s < +∞.

After that, we extend our results concerning boundedness of the solutions for dynamic
equations on time scales, using the fact that a dynamic equation on time scales is a special
case of a measure differential equation. See [17].

We recall that an initial value problem for a dynamic equation on time scales is given
by {

x∆(t) = f(x∗, t), t ∈ J ∩ T,
x(t0) = x0,

(1.2)

where J ⊂ [t0,+∞) is a nondegenerated interval such that J ∩ T is nonempty.
Then, we introduce new concepts of boundedness of the solutions of the equation

(1.2) and we prove the results concerning boundedness of the solutions of the dynamic
equations on time scales. We point out that these equations play an important role for
applications, since they encompass the differential equations (when T = R), difference
equations (when T = Z) and the cases in “between”. See, for instance, [3, 4].

The present paper is organized as follows. In the second section, we recall some basic
definitions and results about Kurzweil integration and generalized ODEs. The third sec-
tion is devoted to recall the boundedness concepts for generalized ODEs and to prove new
results about boundedness of solutions of generalized ODEs. In the fourth section, we
recall some basic definitions and properties about measure differential equations. Also, we
present boundedness concepts for measure differential equations and using the correspon-
dence between generalized ODEs and measure differential equations, we prove the results
concerning boundedness of solutions for these last equations. Finally, in the fifth section,
we remember some basic definitions about dynamic equations on time scales and present
the boundedness concepts of solutions of dynamic equations on time scales. Therefore,
using the correspondence between the solutions of dynamic equations on time scales and
measure differential equations, we extend the results on the boundedness to the dynamic
equations on time scales.

2 Generalized ODEs

In this section, we will recall the basic concepts and properties of the Kurzweil integral
which plays an important role in the study of the generalized ODEs. For more details,
see [16].
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A tagged division of a compact interval [a, b] ⊂ R is a finite collection of point-interval
pairs (τi, [si−1, si]), where a = s0 ≤ s1 ≤ . . . ≤ sk = b is a division of [a, b] and τi ∈
[si−1, si], i = 1, 2, . . . , k.

A gauge on a set E ⊂ [a, b] is any function δ : E → (0,∞). Given a gauge δ on [a, b],
a tagged division d = (τi, [si−1, si]) is δ-fine if, for every i, we have

[si−1, si] ⊂ {t ∈ [a, b] ; |t− τi| < δ (τi)} .

We denote such tagged division by d = (τi, [si−1, si]).
Throughout this section, let us assume that X is a Banach space, O ⊂ X is an open

subset and t0 ∈ R.

Definition 2.1. A function U : [a, b]× [a, b]→ X is called Kurzweil integrable over [a, b],
if there is a unique element I ∈ X such that given ε > 0, there is a gauge δ on [a, b] such
that ∥∥∥∥∥∑

i

[U (τi, si)− U (τi, si−1)]− I

∥∥∥∥∥ < ε

for every δ-fine tagged division (τi, [si−1, si]) of [a, b]. In this case, I is called the Kurzweil

integral of U over [a, b] and it is denoted by
∫ b
a
DU (τ, t).

The following result is an immediate consequence of the Saks-Henstock Lemma. See
[16, Lemma 1.13].

Corollary 2.2. Let U : [a, b]× [a, b]→ X be Kurzweil integrable over [a, b]. Given ε > 0,
let δ be a gauge of [a, b] corresponding to ε in the definition of the Kurzweil integral and
[γ, v] ⊂ [a, b]. Then, we have

(i) (v − γ) < δ (γ) implies∥∥∥∥U (γ, v)− U (γ, γ)−
∫ v

γ

DU (τ, t)

∥∥∥∥ < ε;

(ii) (v − γ) < δ (v) implies∥∥∥∥U (v, v)− U (v, γ)−
∫ v

γ

DU (τ, t)

∥∥∥∥ < ε.

Suppose F : Ω→ X is defined for each (x, t) ∈ Ω, where Ω = O × [t0,+∞).

Definition 2.3. A function x : [α, β]→ X is called a solution of the generalized ODE

dx

dτ
= DF (x, t) (2.1)
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on the interval [α, β] ⊂ [t0,+∞), if (x(t), t) ∈ Ω for every t ∈ [α, β] and

x(s2)− x(s1) =

s2∫
s1

DF (x(τ), t), (2.2)

for every s1, s2 ∈ [α, β].
The integral on the right-hand side of (2.2) can be understood as the Kurzweil integral,

according to the Definition 2.1.

We can also define the solution of the generalized ODE (2.1) with an initial condition.
It is the content of the next definition.

Definition 2.4. The function x : [α, β] → X is a solution of the generalized ODE (2.1)
with initial condition x(s0) = z0 on the interval [α, β] ⊂ [t0,+∞), if s0 ∈ [α, β], (x(t), t) ∈
Ω for every t ∈ [α, β] and

x(s)− z0 =

s∫
s0

DF (x(τ), t)

for every s ∈ [α, β].

Remark 2.5. Although the solution x of the generalized ODE (2.1) is defined in an
interval [α, β] in the Definition 2.3, it is possible to extend this definition when the solution
of the generalized ODE (2.1) is defined in a nondegenerated interval I, not necessarily of
the form [a, b]. See the next definition.

Definition 2.6. We say that x : I → X, where I is a nondegenerated subinterval of
[t0,+∞), is a solution of the generalized ODE(2.1) on I, if (x(t), t) ∈ Ω for every t ∈ I
and if the following equality

x(s2)− x(s1) =

s2∫
s1

DF (x(τ), t),

is satisfied for every s1, s2 ∈ I.
In what follows, we present a class of functions F : Ω → X. This class will give us

important properties concerning the solutions of the generalized ODE (2.1).

Definition 2.7. Given a nondecreasing function h : [t0,+∞)→ R, we say that a function
F : Ω→ X belongs to the class F(Ω, h), if

‖F (x, t)− F (x, s)‖ ≤ |h(t)− h(s)| (2.3)

for all (x, t), (x, s) ∈ Ω and if

‖F (x, t)− F (x, s)− F (y, t) + F (y, s)‖ ≤ ‖x− y‖ |h(t)− h(s)| (2.4)

for all (x, t), (x, s), (y, t), (y, s) ∈ Ω.
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The following results give us important properties concerning the solutions of the
generalized ODE (2.1), when F satisfies (2.3). They can be found in [16].

Lemma 2.8. Let F : Ω→ X satisfy condition (2.3). If [α, β] ⊂ [t0,+∞) and x : [α, β]→

X is such that (x(t), t) ∈ Ω for every t ∈ [α, β] and if the Kurzweil integral
β∫
α

DF (x(τ), t)

exists, then for every s2, s1 ∈ [α, β], we have∥∥∥∥∥∥
s2∫
s1

DF (x(τ), t)

∥∥∥∥∥∥ ≤ |h(s2)− h(s1)| .

Lemma 2.9. Let F : Ω → X satisfy the condition (2.3). If [α, β] ⊂ [t0,+∞) and
x : [α, β]→ X is a solution of (2.1), then the following inequality

‖x(t)− x(s)‖ ≤ |h(t)− h(s)| (2.5)

holds for every t, s ∈ [α, β]. Moreover, every point of [α, β], for which the function h is
continuous, is a continuity point of x.

Corollary 2.10. Let F : Ω → X satisfy the condition (2.3). If [α, β] ⊂ [t0,+∞) and
x : [α, β] −→ X is a solution of (2.1), then x is a function of bounded variation on [α, β]
and

var[α,β]x ≤ h(β)− h(α) < +∞. (2.6)

Proposition 2.11. Let F ∈ F(Ω, h). If [α, β] ⊂ [t0,+∞) and x : [α, β]→ X is a function
of bounded variation on [α, β] and (x(s), s) ∈ Ω for every s ∈ [α, β], then the Kurzweil

integral
β∫
α

DF (x(τ), t) exists and the function s 7→
s∫
α

DF (x(τ), t) is of bounded variation

on [α, β].

Lemma 2.12. Consider [α, β] ⊂ [t0,+∞), x : [α, β] → X is a solution of (2.1) and
F : Ω→ X satisfies the condition (2.3). Then, we have:

x(t+)− x(t) = F (x(t), t+)− F (x(t), t), for every t ∈ [α, β)

and
x(t)− x(t−) = F (x(t), t)− F (x(t), t−), for every t ∈ (α, β]

where
F (x, t+) = lim

s→t+
F (x, s), for every t ∈ [α, β),

and
F (x, t−) = lim

s→t−
F (x, s), for every t ∈ (α, β].
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The next result ensures us the existence and uniqueness of a maximal solution of the
generalized ODE (2.1). It can be found in [10].

Theorem 2.13. If Ω = X × [t0,+∞) and F ∈ F(Ω, h), where the function h is nonde-
creasing and left-continuous. Then for every (z0, s0) ∈ Ω, there exists a unique maximal
solution of the generalized ODE (2.1), with x(s0) = z0 defined in [s0,+∞).

3 Boundedness of solutions of generalized ODEs

In this section, our goal is to prove some results concerning the boundedness of the
solutions of the generalized ODEs using Lyapunov functionals.

Throughout this section, consider that X is a Banach space with the norm ‖ ·‖, t0 ≥ 0
and Ω = X × [t0,+∞). Let F : Ω → X be a function defined for every (x, t) ∈ Ω and
taking values in the Banach space X. Also, suppose F ∈ F(Ω, h), where the function
h : [t0,+∞)→ R is left-continuous on (t0,+∞).

Consider the following generalized ODE

dz

dτ
= DF (z, t) (3.1)

with the initial condition
z(s0) = z0, (3.2)

where (z0, s0) ∈ Ω.
From now on, we assume that for every (z0, s0) ∈ Ω, there exists a unique (maximal)

solution x : [s0,+∞)→ X of (3.1) with x(s0) = z0. The existence and uniqueness of such
solution is ensured by Theorem 2.13.

Remark 3.1. In what follows, for every (z0, s0) ∈ Ω, we denote by x(s, s0, z0) the unique
(maximal) solution of the generalized ODE (3.1) with x(s0) = z0.

Next, we recall the concepts of uniform boundedness for generalized ODEs. The basic
reference for this subject is [1].

Definition 3.2. We say that the generalized ODE (3.1) is:
• Uniformly bounded: if for every α > 0, there exists M = M(α) > 0 such that,

for every s0 ∈ [t0,+∞) and for all z0 ∈ X, where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < M, for all s ≥ s0.

• Quasi-uniformly ultimately bounded: if there exists B > 0 such that for every
α > 0, there exists T = T (α) > 0, such that for all s0 ∈ [t0,+∞) and for all z0 ∈ X,
where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < B, for all s ≥ s0 + T.
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• Uniformly ultimately bounded: if it is uniformly bounded and quasi-uniformly
ultimately bounded.

It is important to mention that the concepts, introduced in [1], were motivated by the
definition of boundedness introduced by I. Stamova in [18].

The following result can be found in [16, Proposition 10.11]. It will help us to prove
the next lemma, which is the key to prove our main results in this section.

Proposition 3.3. Suppose −∞ < a < b < +∞ and f, g : [a, b] → R are left continuous
functions on (a, b]. If for every σ ∈ [a, b), there exists δ = δ(σ) > 0 such that for all
η ∈ (0, δ), the following inequality holds

f(σ + η)− f(σ) ≤ g(σ + η)− g(σ),

then
f(s)− f(a) ≤ g(s)− g(a),

for every s ∈ [a, b].

The next auxiliary result will be crucial to prove our main results.

Lemma 3.4. Let F ∈ F(Ω, h), where the function h : [t0,+∞)→ R is nondecreasing and
left-continuous. Also, suppose V : [t0,+∞)×X → R is such that for each left-continuous
function z : [α, β] → X on (α, β], the function [α, β] 3 t 7→ V (t, z(t)) is left-continuous
on (α, β]. Moreover, suppose V satisfies the following conditions.

(V1) For all functions x, y : [α, β]→ X, [α, β] ⊂ [t0,+∞), of bounded variation on [α, β],
the following condition

|V (t, x(t))− V (t, y(t))− V (s, x(s)) + V (s, y(s))|

≤ (h1(t)− h1(s)) sup
ξ∈[α,β]

‖x(ξ)− y(ξ)‖

holds for every α ≤ s < t ≤ β, where h1 : [t0, ,+∞) → R is a nondecreasing and
left-continuous function.

(V2) There exists a function Φ : X → R such that for every solution z : [s0,+∞) → X,
s0 ≥ t0, of (3.1), we have

V (s, z(s))− V (t, z(t)) ≤ (s− t)Φ(z(t)),

for every s0 ≤ t < s < +∞.
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If x : [γ, v] → X, t0 ≤ γ < v < ∞, is left-continuous on (γ, v] and of bounded variation
on [γ, v], then

V (v, x(v))−V (γ, x(γ)) ≤ (h1(v)−h1(γ)) sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥+(v−γ)K,

where K = sup {Φ(x(t)) : t ∈ [γ, v]}.

Proof. Let x : [γ, v]→ X, [γ, v] ⊂ [t0,+∞), be a left-continuous function on (γ, v] and of
bounded variation on [γ, v] ⊂ [t0,+∞) and K := sup {Φ(x(t)) : t ∈ [γ, v]} . If K = +∞,
then clearly the desired inequality is trivially satisfied. Therefore, the statement of the
theorem holds.

Now, let us assume that K < +∞. Note that Proposition 2.11 implies the existence
of the integral

∫ v
γ
DF (x(τ), t).

Take σ ∈ [γ, v]. Since (x(σ), σ) ∈ Ω = X × [t0,+∞), by Theorem 2.13, there exists
a unique maximal solution x : [σ,+∞) → X of the generalized ODE (3.1) on [σ,+∞),
satisfying the initial condition x(σ) = x(σ).

Let η1 > 0 be fixed. Then, x|[σ,σ+η1] is also a solution of the generalized ODE (3.1).

Thus, by Corollary 2.10 and Proposition 2.11, the integral
∫ σ+η1
σ

DF (x(τ), t) exists.

Consider η2 > 0 such that η2 ≤ η1 and σ+η2 ≤ v. Then, the integral
∫ σ+η2
σ

DF (x(τ), t)

exists and the integral
∫ σ+η2
σ

D[F (x(τ), t) − F (x(τ), t)] also exists by the property of
integrability on subintervals of the Kurzweil integral. Therefore, given ε > 0, there exists
a gauge δ of the interval [σ, σ+η2] corresponding to ε in the definition of the last integral.
We can assume, without loss of generality, that η2 < δ(σ). By hypothesis (V2), there
exists a function Φ : X → R such that

V (s, x(s))− V (t, x(t)) ≤ (s− t)Φ(x(t)),

for every σ ≤ t < s < +∞. In particular, for every 0 < η < η2, we have

V (σ + η, x(σ + η))− V (σ, x(σ)) ≤ ηΦ(x(σ)), (3.3)

where s = σ + η and t = σ. By Corollary 2.2, we have∥∥∥∥F (x(σ), s)− F (x(σ), σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥ < ηε

2(h1(σ + η)− h1(σ))
(3.4)

and ∥∥∥∥F (x(σ), s)− F (x(σ), σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥ < ηε

2(h1(σ + η)− h1(σ))
, (3.5)

for every s ∈ [σ, σ + η]. Notice that

sup
s∈[σ,σ+η]

∥∥∥∥∫ s

σ

D[F (x(τ), t)− F (x(τ), t)]

∥∥∥∥
9



− sup
s∈[σ,σ+η]

‖F (x(σ), s)− F (x(σ), σ)− F (x(σ), s) + F (x(σ), σ)‖

≤ sup
s∈[σ,σ+η]

∥∥∥∥∫ s

σ

D[F (x(τ), t)− F (x(τ), t)]

−(F (x(σ), s)− F (x(σ), σ)− F (x(σ), s) + F (x(σ), σ))‖

≤ sup
s∈[σ,σ+η]

∥∥∥∥F (x(σ), s)− F (x(σ), σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥
+ sup

s∈[σ,σ+η]

∥∥∥∥F (x(σ), s)− F (x(σ), σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥ . (3.6)

On the other hand,

sup
s∈[σ,σ+η]

‖F (x(σ), s)− F (x(σ), σ)− F (x(σ), s) + F (x(σ), σ)‖

≤ ‖x(σ)− x(σ)‖ sup
s∈[σ,σ+η]

|h(s)− h(σ)| = 0, (3.7)

where the first inequality follows from the fact that F ∈ F(Ω, h), while the second equality
follows by x(σ) = x(σ). Therefore, by (3.4), (3.5), (3.6) and (3.7), we have

sup
s∈[σ,σ+η]

∥∥∥∥∫ s

σ

D[F (x(τ), t)− F (x(τ), t)]

∥∥∥∥ ≤ ηε

(h1(σ + η)− h1(σ))
. (3.8)

Since F ∈ F(Ω, h) and the function h is nondecreasing, by Corollary 2.10, x is of
bounded variation on [γ, v] and, therefore, in [σ, σ+ η] ⊂ [γ, v]. Thus, by hypothesis (V1)
and by the relation x(σ) = x(σ), we get

V (σ + η, x(σ + η))− V (σ + η, x(σ + η))

= V (σ + η, x(σ + η))− V (σ + η, x(σ + η))− V (σ, x(σ)) + V (σ, x(σ))

≤ |V (σ + η, x(σ + η))− V (σ + η, x(σ + η))− V (σ, x(σ)) + V (σ, x(σ))|

≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

‖x(s)− x(s)‖

= (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

‖x(s)− x(σ) + x(σ)− x(s)‖

= (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

‖x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)‖,

which implies
V (σ + η, x(σ + η))− V (σ + η, x(σ + η))
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≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

‖x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)‖. (3.9)

Therefore, by (3.3) and (3.9), we obtain

V (σ + η, x(σ + η))− V (σ, x(σ))

= V (σ + η, x(σ + η))− V (σ + η, x(σ + η)) + V (σ + η, x(σ + η))− V (σ, x(σ))

≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥+ ηΦ(x(σ))

≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥+ ηK

≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥
+(h1(σ + η)− h1(σ)) sup

s∈[σ,σ+η]

∥∥∥∥∫ s

σ

D[F (x(τ), t)− F (x(τ), t)]

∥∥∥∥+ ηK

≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥+ ηε+ ηK, (3.10)

where the last inequality follows from (3.8). Given s ∈ [γ, v], define

P (s) := x(s)−
∫ s

γ

DF (x(τ), t).

Since x is a function of bounded variation on [γ, v] and (x(s), s) ∈ Ω for every s ∈ [γ, v],

by Proposition 2.11, it follows that the Kurzweil integral
v∫
γ

DF (x(τ), t) exists and the

function s 7→
s∫
γ

DF (x(τ), t) is of bounded variation on [γ, v]. Hence, for each s ∈ [γ, v], the

Kurzweil integral
s∫
γ

DF (x(τ), t) also exists by the property of integrability on subintervals

of the Kurzweil integral. Then, the function P is well-defined and is of bounded variation
on [γ, v]. Moreover, by Lemma 2.8, P is left-continuous on (γ, v], since x̄ and h are
left-continuous on (γ, v].

On the other hand, for s ∈ [γ, v], we have

P (s)− P (σ) = x(s)− x(σ)−
∫ s

γ

DF (x(τ), t) +

∫ σ

γ

DF (x(τ), t)

= x(s)− x(σ)−
∫ s

σ

DF (x(τ), t). (3.11)
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Now, we define the function f : [γ, v]→ R by

f(t) =


(h1(t)− h1(σ)) sup

s∈[γ,t]

‖P (s)− P (σ)‖+ εt+Kt, t ∈ [γ, σ]

(h1(t)− h1(σ)) sup
s∈[σ,t]

‖P (s)− P (σ)‖+ εt+Kt, t ∈ [σ, v].

Clearly, f is well-defined. Moreover, by the left continuity of the functions h1 and P, f is
left-continuous on (γ, v]. Also, since x : [γ, v] → X is left-continuous, it follows from the
hypotheses that the function [γ, v] 3 t 7→ V (t, x(t)) is left-continuous on (γ, v].

On the other hand, by (3.10) and (3.11), we have

V (σ + η, x(σ + η))− V (σ, x(σ)) ≤ (h1(σ + η)− h1(σ)) sup
s∈[σ,σ+η]

‖P (s)− P (σ)‖

+ ηε+ ηK = f(σ + η)− f(σ).

Thus, the functions [γ, v] 3 t 7→ V (t, x(t)) and [γ, v] 3 t 7→ f(t) satisfy all the hypotheses
of Proposition 3.3. Hence

V (v, x(v))− V (γ, x(γ)) ≤ f(v)− f(γ)

= (h1(v)− h1(σ)) sup
s∈[σ,v]

‖P (s)− P (σ)‖+ εv +Kv

− (h1(γ)− h1(σ)) sup
s∈[γ,γ]

‖P (s)− P (σ)‖ − εγ −Kγ

= (h1(v)− h1(σ)) sup
s∈[σ,v]

‖P (s)− P (σ)‖+ εv +Kv

+ (h1(σ)− h1(γ)) sup
s∈[γ,γ]

‖P (s)− P (σ)‖ − εγ −Kγ

≤ (h1(v)− h1(σ)) sup
s∈[γ,v]

‖P (s)− P (σ)‖+ εv +Kv

+ (h1(σ)− h1(γ)) sup
s∈[γ,v]

‖P (s)− P (σ)‖ − εγ −Kγ

= (h1(v)− h1(γ)) sup
s∈[γ,v]

‖P (s)− P (σ)‖+ ε(v − γ) +K(v − γ)

= (h1(v)− h1(γ)) sup
s∈[γ,v]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF (x(τ), t)

∥∥∥∥
+ K(v − γ) + ε(v − γ).

Since ε > 0 is arbitrary, the result follows.

The next theorem ensures us that the generalized ODE (3.1) is uniformly bounded.
Our result generalizes the one found in [1, Theorem 4.3].

Theorem 3.5. Let V : [t0,+∞)×X → R be a function such that, for each left-continuous
function z : [α, β] → X on (α, β], the function [α, β] 3 t 7→ V (t, z(t)) is left-continuous
on (α, β]. Moreover, suppose V satisfies the following conditions

12



(i) There are two monotone increasing functions p, b : R+ → R+ such that p(0) =
b(0) = 0,

lim
s→+∞

b(s) = +∞ (3.12)

and
b(‖z‖) ≤ V (t, z) ≤ p(‖z‖), (3.13)

for every pair (t, z) ∈ [t0,+∞)×X.

(ii) For every solution of type z : [s0,+∞)→ X, s0 ≥ t0, of the generalized ODE (3.1),
we have

V (s, z(s))− V (t, z(t)) ≤ 0,

for every s0 ≤ t < s < +∞

Then, the generalized ODE (3.1) is uniformly bounded.

Proof. Let α > 0 be fixed. Since p(α) > 0, by (3.12), there exists M = M(α) > 0 such
that

p(α) < b(s), for all s ≥M.

In particular, for s = M, we obtain

p(α) < b(M). (3.14)

Now, let s0 ∈ [t0,+∞), z0 ∈ X and x(·) = x(·, s0, z0) : [s0,+∞)→ X be the solution
of the generalized ODE (3.1) with initial condition x(s0) = z0, where ‖z0‖ < α. We will
show that

‖x(t)‖ < M, for all s ≥ s0.

Indeed, by hypothesis (ii) and condition (3.13), for each s ≥ s0, we have

V (s, x(s)) ≤ V (s0, x(s0)) = V (s0, z0) (3.15)

≤ p(‖z0‖)
≤ p(α)

< b(M),

that is,
V (s, x(s)) < b(M), for all s ≥ s0. (3.16)

Finally, we will show that ‖x(s, s0, z0)‖ = ‖x(s)‖ < M, for all s ≥ s0. Suppose the
contrary, that is, suppose there exists s̄ ∈ [s0,+∞) such that ‖x(s̄)‖ ≥ M . Then, by
hypothesis (3.13) and using the fact that b is an increasing function, we have

V (s̄, x(s̄)) ≥ b(‖x(s̄)‖) ≥ b(M),

which contradicts (3.16). Therefore, ‖x(s)‖ < M for all s ≥ s0, and the result follows.
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The next result gives us sufficient conditions to guarantee that the generalized ODE
(3.1) is uniformly ultimately bounded.

Theorem 3.6. Let V : [t0,∞)×X → R be a function such that for each left-continuous
function z : [α, β] → X on (α, β], the function [α, β] 3 t 7→ V (t, z(t)) is left-continuous
on (α, β] and satisfies condition (i) from Theorem 3.5. Moreover, suppose V satisfies the
following conditions

(V1) For every x, y : [α, β] → X, [α, β] ⊂ [t0,+∞), of bounded variation on [α, β], we
have

|V (t, x(t)− V (t, y(t))− V (s, x(s)) + V (s, y(s))|

≤ (h1(t)− h1(s)) sup
ξ∈[α,β]

‖x(ξ)− y(ξ)‖ ,

for every α ≤ s < t ≤ β, where h1 : [t0, ,+∞) → R is a nondecreasing and left-
continuous function.

(V2) There exists a continuous function Φ : X −→ R, with Φ(0) = 0 and Φ(x) > 0,
x 6= 0, such that for every solution z : [s0,+∞)→ X, s0 ≥ t0, of (3.1), we have

V (s, z(s))− V (t, z(t)) ≤ (s− t)
(
− Φ(z(t))

)
,

for every s0 ≤ t < s < +∞.

Then, the generalized ODE (3.1) is uniformly ultimately bounded.

Proof. At first, by hypothesis (V 2), we have

V (s, z(s))− V (t, z(t)) ≤ (s− t)
(
− Φ(z(t))

)
≤ 0,

for every solution z : [s0,+∞) → X, s0 ∈ [t0,+∞), of the generalized ODE (3.1), with
s0 ≤ t < s < +∞ Hence, all the hypotheses of the Theorem 3.5 are satisfied and,
consequently, the generalized ODE (3.1) is uniformly bounded. It remains to show that
equation (3.1) is quasi-uniformly ultimately bounded.

By the uniform boundedness of the generalized ODE (3.1), there exists B = B(t0+1) >
0 such that, for every t ∈ [t0,+∞) and for every x ∈ X with ‖x‖ < t0 + 1, we have∥∥x(s, t, x)

∥∥ < B, for all s ≥ t, (3.17)

where x(s, t, x) is the maximal solution of the generalized ODE (3.1) with x(t) = x(t, t, x) =
x. Without loss of generality, we can take B ∈ (t0 + 1,+∞) (because, otherwise, we can
take B > B′ such that B′ ∈ (t0 + 1,+∞)) and we have∥∥x(s, t, x)

∥∥ < B, for all s ≥ t.
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Let α > 0, s0 ∈ [t0,+∞), z0 ∈ X and x(·) = x(·, s0, z0) : [s0,+∞) → X be the
solution of the generalized ODE (3.1) with initial condition (3.2), where ‖z0‖ < α. Since
(3.1) is uniformly bounded, there exists a positive number M1 = M1(α) (we can take
M1 > max {α, t0 + 1}) such that

‖x(s, s0, z0)‖ < M1, for all s ≥ s0.

On the other hand, using the same argument as in (3.14) from the proof of Theorem
3.5, there exists M2 = M2(α) > 0 such that p(α) < b(M2).

Now, let M = M(α) := max {M1(α),M2(α)}. Notice that

‖x(s, s0, z0)‖ < M, for all s ≥ s0. (3.18)

and
p(α) < b(M). (3.19)

Define
N := sup {−Φ(z) : t0 + 1 ≤ ‖z‖ < M} < 0

and

T (α) := −2b(M)

N
> 0.

We want to show that ‖x(s, s0, z0)‖ < B, for all s ≥ s0 + T (α). Suppose the contrary,
that is, there exists s > s0 + T (α) such that

‖x(s, s0, z0)‖ ≥ B > t0 + 1. (3.20)

Assertion 1. The following inequality holds

‖x(s, s0, z0)‖ ≥ t0 + 1, for all s ∈ [s0, s].

Suppose the assertion is false, that is, there exists t ∈ [s0, s] such that∥∥x(t, s0, z0)
∥∥ < t0 + 1.

On the other hand, by (3.17) (with x = x(t, s0, z0))∥∥x(s, t, x)
∥∥ < B, for all s ≥ t. (3.21)

Also, we know that x(s, t, x), s ∈ [t,+∞), is the unique solution of the initial value
problem 

dz

dτ
= DF (z, t)

z(t) = x = x(t, s0, z0).
(3.22)
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But x(·, s0, z0)|[t,+∞) is also a solution of the generalized ODE (3.22). Therefore, we have

x(s, s0, z0) = x(s, t, x), for all s ∈ [t,+∞).

In particular, since s ∈ [t,+∞), we obtain

x(s, s0, z0) = x(s, t, x). (3.23)

Thus, (3.21) and (3.23) imply that ‖x(s, s0, z0)‖ < B, which contradicts (3.20). Thus,
Assertion 1 follows.

By Assertion 1, we have

‖x(s, s0, z0)‖ ≥ t0 + 1, for all s ∈
[
s0 +

T (α)

2
, s0 + T (α)

]
. (3.24)

since [s0 + T (α)
2
, s0 + T (α)] ⊂ [s0, s].

However, since x(·) := x(·, s0, z0)
∣∣∣[s0+

T (α)
2
,s0+T (α)]

is a solution of the generalized ODE

(3.1) and F ∈ F(Ω, h), where the function h is left-continuous and nondecreasing, the

function x(·, s0, z0)
∣∣∣[s0+

T (α)
2
,s0+T (α)]

is left-continuous on (s0 + T (α)/2, s0 + T (α)] and of

bounded variation on Iα := [s0 + T (α)
2
, s0 +T (α)] by Lemma 2.9 and Corollary 2.10. Thus,

by Lemma 3.4, it follows that

V (s0 + T (α), x(s0 + T (α))) ≤ V

(
s0 +

T (α)

2
, x

(
s0 +

T (α)

2

))
+

+

(
h1(s0 + T (α))− h1

(
s0 +

T (α)

2

))
.

sup
s∈Iα

∥∥∥∥∥∥∥∥x(s)− x
(
s0 +

T (α)

2

)
−

s∫
s0+

T (α)
2

DF (x(τ, s0, z0), t)

∥∥∥∥∥∥∥∥︸ ︷︷ ︸
0

+

+
T (α)

2
· sup {−Φ(x(s)) : s ∈ [s0 + T (α)/2, s0 + T (α)]}

which implies

V (s0 + T (α), x(s0 + T (α))) ≤ V

(
s0 +

T (α)

2
, x

(
s0 +

T (α)

2

))
+

T (α)

2
. sup

{
−Φ(x(s)) : s ∈

[
s0 +

T (α)

2
, s0 + T (α)

]}
≤ V

(
s0 +

T (α)

2
, x

(
s0 +

T (α)

2

))
+

T (α)

2
. sup{−Φ(z) : t0 + 1 ≤ ‖z‖ < M}, (3.25)
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where the last inequality follows from the relation

t0 + 1 ≤ ‖x(s)‖ = ‖x(s, s0, z0)‖ < M,

for all s ∈ [s0 + T (α)
2
, s0 +T (α)]. Also, by (3.19) and using the same argument as in (3.15)

from the proof of Theorem 3.5, we get

V

(
s0 +

T (α)

2
, x

(
s0 +

T (α)

2

))
< b(M).

Therefore, by (3.25), we have

V (s0 + T (α), x(s0 + T (α))) < b(M) +
T (α)

2
. sup{−Φ(z) : t0 + 1 ≤ ‖z‖ < M}

= b(M) +
T (α)

2
.N

= b(M)− 2b(M)

2N
.N

= 0,

which implies that
V (s0 + T (α), x(s0 + T (α))) < 0. (3.26)

On the other hand, by condition (3.13) and from the inequality (3.24), we have

V (s0 + T (α), x(t0 + T (α))) ≥ b(‖x(s0 + T (α))‖) ≥ b(t0 + 1) > 0,

which contradicts (3.26). Therefore, ‖x(s, s0, z0)‖ < B, for all s ≥ s0 + T (α). Then the
generalized ODE (3.1) is quasi-uniformly ultimately bounded and the proof is complete.

4 Boundedness of solutions of measure differential

equations

In this section, our goal is to present results concerning boundedness of solutions of
measure differential equations.

Let Rn be the n-dimensional Euclidean space with norm ‖ · ‖ . Consider the integral
form of a measure differential equation (MDE, for short) of type

x(t) = x(τ0) +

∫ t

τ0

f(x(s), s)dg(s), t ≥ τ0, (4.1)

where τ0 ≥ t0, f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R, and the integral in the
right-hand side is understood in the sense of a Kurzweil-Henstock-Stieltjes.
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We recall the reader that G([t0,+∞),Rn) denotes the vector space of functions x :
[t0,+∞)→ Rn such that x|[α,β] belongs to the space G([α, β],Rn), for all [α, β] ⊂ [t0,+∞).
We use the symbol G0([t0,+∞),Rn) to denote the vector space of all functions x ∈
G([t0,+∞),Rn) such that sup

s∈[t0,+∞)

e−(s−t0) |x(s)| < +∞. This space is endowed with the

norm
‖x‖[t0,+∞) = sup

s∈[t0,+∞)

e−(s−t0) |x(s)| , x ∈ G0([t0,+∞),Rn),

and it becomes a Banach space (see [14]).
In what follows, we say that a function M : [t0,+∞) → R+ is locally Kurzweil-

Henstock-Stieltjes integrable with respect to g if, and only if, the function [s1, s2] 3
t 7→ M(t) is Kurzweil-Henstock-Stieltjes integrable with respect to g, for every s1 s2 ∈
[t0,+∞).

Let us assume the following conditions concerning the functions f : Rn×[t0,+∞)→ Rn

and g : [t0,+∞)→ R.

(A1) The function g : [t0,+∞)→ R is nondecreasing and left-continuous on (t0,+∞).

(A2) The Kurzweil-Henstock-Stieltjes integral∫ s2

s1

f(x(t), t)dg(t)

exists, for all x ∈ G([t0,+∞),Rn) and all s1, s2 ∈ [t0,+∞).

(A3) There exists a locally Kurzweil-Henstock-Stieltjes integrable functionM : [t0,+∞)→
R+ with respect to g such that∣∣∣∣∣∣

s2∫
s1

f(x(s), s)dg(s)

∣∣∣∣∣∣ ≤
s2∫
s1

M(s)dg(s),

for all x ∈ G([t0,+∞),Rn) and all s1, s2 ∈ [t0,+∞), s1 ≤ s2.

(A4) There exists a locally Kurzweil-Henstock-Stieltjes integrable function L : [t0,+∞)→
R+ with respect to g such that∣∣∣∣∣∣

s2∫
s1

[f(x(s), s)− f(z(s), s)]dg(s)

∣∣∣∣∣∣ ≤ ‖x− z‖[t0,+∞)

s2∫
s1

L(s)dg(s),

for all x, z ∈ G0([t0,+∞),Rn) and all s1, s2 ∈ [t0,+∞), s1 ≤ s2.
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The next result ensures that if the function f : Rn × [t0,+∞) → Rn satisfies the
conditions (A2), (A3) and (A4), and g : [t0,+∞) → R satisfies the condition (A1), then
the function F given by F (x, t) =

∫ t
τ0
f(x, s)dg(s), for (x, t) ∈ Rn × [t0,+∞) belongs to

the class F(Rn× [t0,+∞), h), where h(t) =
∫ t
τ0

(M(s) +L(s))dg(s), t ∈ [t0,+∞). See [10]
for a proof of this result.

Theorem 4.1. Assume f : Rn × [t0,+∞) → Rn satisfies the conditions (A2), (A3)
and (A4), and g : [t0,+∞) → R satisfies the condition (A1). Choose an arbitrary τ0 ∈
[t0,+∞) and define F : Rn × [t0,+∞)→ Rn by

F (x, t) =

∫ t

τ0

f(x, s)dg(s), (x, t) ∈ Rn × [t0,+∞). (4.2)

Then F ∈ F(Ω, h), where Ω = Rn × [t0,+∞), and h : [t0,+∞)→ R given by

h(t) =

∫ t

τ0

(M(s) + L(s))dg(s), t ∈ [t0,+∞) (4.3)

is a nondecreasing and left-continuous function.

The next result describes the relation between the Kurzweil-Henstock-Stieltjes integral
and the Kurzweil integral. It can be found in [10].

Theorem 4.2. Assume f : Rn× [t0,+∞)→ Rn satisfies conditions (A2), (A3) and (A4),
and g : [t0,+∞) → R satisfies condition (A1). Let F : Rn × [t0,+∞) → Rn be defined
by (4.2). If [a, b] ⊂ [t0,+∞) and x : [a, b] → Rn is a regulated function (in particular,

a function of bounded variation) on [a, b], then both the Kurzweil integral
∫ b
a
DF (x(τ), t)

and the Kurzweil-Henstock-Stieltjes integral
∫ b
a
f(x(s), s)dg(s) exists and have the same

value.

The following result describes a correspondence between the solutions of the MDE
(4.1) and the solutions of the generalized ODE given by

dx

dτ
= DF (x, t),

where F is given by F (x, t) =
t∫
t0

f(x, s)dg(s). This result can be found in [10].

Theorem 4.3. Assume f : Rn × [t0,+∞) → Rn satisfies the conditions (A2), (A3) and
(A4), and g : [t0,+∞) → R satisfies the condition (A1). Then, the function x : I → Rn

is a solution of the MDE (4.1) on I ⊂ [t0,+∞) if, and only if, x is a solution of the
generalized ODE

dx

dτ
= DF (x, t)

on I with the function F given by (4.2).
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From now on, we assume that for every (z0, s0) ∈ Rn× [t0,+∞), there exists a unique
(maximal) solution x : [s0,+∞)→ Rn of the MDE (4.1) with x(s0) = z0. The next result,
which can be found in [10], ensures the existence and uniqueness of such solution.

Theorem 4.4. Suppose f : Rn×[t0,+∞)→ Rn satisfies conditions (A2), (A3) and (A4),
and g : [t0,+∞)→ R satisfies the condition (A1). Then for every (z0, s0) ∈ Rn×[t0,+∞),
there exists a unique maximal solution of the MDE (4.1) defined in [s0,+∞) with x(s0) =
z0.

In the sequel, we present the concepts of uniform boundedness for measure differential
equations.

Definition 4.5. We say that the MDE (4.1) is:
• Uniformly bounded: if for every α > 0, there exists M = M(α) > 0 such that,

for every s0 ∈ [t0,+∞) and for all z0 ∈ Rn, where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < M, for all s ≥ s0.

• Quasi-uniformly ultimately bounded: if there exists B > 0 such that for every
α > 0, there exists T = T (α) > 0, such that for all s0 ∈ [t0,+∞) and for all z0 ∈ Rn,
where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < B, for all s ≥ s0 + T.

• Uniformly ultimately bounded: if it is uniformly bounded and quasi-uniformly
ultimately bounded.

The next result ensures us that the MDE (4.1) is uniformly bounded.

Theorem 4.6. Assume f : Rn× [t0,+∞)→ Rn satisfies conditions (A2), (A3) and (A4)
and the function g : [t0,+∞) → R satisfies condition (A1). Let U : [t0,+∞) × Rn → R
be a function such that for each left-continuous function z : [α, β] → Rn on (α, β], the
function [α, β] 3 t 7→ U(t, z(t)) is left-continuous on (α, β]. Moreover, suppose U satisfies
the following conditions

(i) There are two monotone increasing functions p, b : R+ → R+ such that p(0) = b(0) =
0,

lim
s→+∞

b(s) = +∞

and
b(‖z‖) ≤ U(t, z) ≤ p(‖z‖)

for every pair (t, z) ∈ [t0,+∞)× Rn.
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(ii) For every solution z : [s0,+∞)→ Rn, s0 ≥ t0, of the MDE (4.1), we have

U(s, z(s))− U(t, z(t)) ≤ 0,

for every s0 ≤ t < s < +∞.

Then, the MDE (4.1) is uniformly bounded.

Proof. Define a function F : Rn × [t0,+∞)→ Rn by

F (x, t) =

∫ t

t0

f(x, s)dg(s) (4.4)

for all (x, t) ∈ Rn × [t0,+∞). Since f satisfies conditions (A2), (A3) and (A4) and g
satisfies condition (A1), by Theorem 4.1, F ∈ F(Ω, h), where the function h : [t0,+∞)→
R is given by

h(t) =

∫ t

t0

(M(s) + L(s))dg(s).

Now, by Theorem 4.3 and from the hypotheses, it is not difficult to see that U :
[t0,+∞)×Rn → R satisfies all the hypotheses from Theorem 3.5. Hence, the generalized
ODE (3.1) is uniformly bounded, where F is given by (4.4).

Again, by Theorem 4.3, it follows that the MDE (4.1) is also uniformly bounded,
obtaining the desired result.

Finally, we present the last result of this section. It ensures that the MDE (4.1) is
uniformly ultimately bounded.

Theorem 4.7. Assume f : Rn× [t0,+∞)→ Rn satisfies conditions (A2), (A3) and (A4)
and the function g : [t0,+∞) → R satisfies condition (A1). Let U : [t0,+∞) × Rn → R
be a function such that for each left-continuous function z : [α, β] → Rn on (α, β], the
function [α, β] 3 t 7→ U(t, z(t)) is left-continuous on (α, β] and satisfies condition (i) from
Theorem 4.6. Moreover, suppose U satisfies the following conditions

(U1) For every x, y : [α, β]→ Rn, [α, β] ⊂ [t0,+∞), of bounded variation on [α, β], we
have

|U(t, x(t))− U(t, y(t))− U(s, x(s)) + U(s, y(s))| ≤(∫ t

s

K(τ)du(τ)

)
sup
ξ∈[α,β]

‖x(ξ)− y(ξ)‖,

for every α ≤ s < t ≤ β, where u : [t0,+∞) → R is a nondecreasing and left-
continuous function and K : [t0,+∞) → R is a locally Kurzweil-Henstock-Stieltjes
integrable function with respect to u.
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(U2) There exists a continuous function φ : Rn → R, with φ(0) = 0 and φ(x) > 0, x 6= 0,
such that for every solution z : [s0,+∞)→ Rn, s0 ≥ t0, of the MDE (4.1), we have

U(s, z(s))− U(t, z(t)) ≤ (s− t)
(
− φ(z(t))

)
,

for every s0 ≤ t < s < +∞.

Then, the MDE (4.1) is uniformly ultimately bounded.

Proof. Define a function F : Rn × [t0,+∞)→ Rn by

F (x, t) =

∫ t

t0

f(x, s)dg(s), (4.5)

for all (x, t) ∈ Rn × [t0,+∞). Since f satisfies conditions (A2), (A3) and (A4) and g
satisfies condition (A1), by Theorem 4.1, F ∈ F(Ω, h), where the function h : [t0,+∞)→
R is given by

h(t) =

∫ t

t0

(M(s) + L(s))dg(s).

By Theorem 4.3, U satisfies hypothesis (i) from Theorem 3.5. Also, defining the
function h1 : [t0,+∞)→ R by

h1(t) =

∫ t

t0

K(τ)du(τ),

for every t ∈ [t0,+∞), it follows that h1 is a nondecreasing and left-continuous function.
Moreover, by (U1), U satisfies the following condition

|U(t, x(t))− U(t, y(t))− U(s, x(s)) + U(s, y(s))| ≤ (h1(t)− h1(s)) sup
ξ∈[α,β]

‖x(ξ)− y(ξ)‖,

for every α ≤ s < t ≤ β, and for every x, y : [α, β] → Rn, [α, β] ⊂ [t0,+∞), of bounded
variation on [α, β].

Also, by Theorem 4.3 and by hypothesis (U2), it is clear that U satisfies the hypothesis
(V 2) from Theorem 3.6. Therefore, all the hypotheses from Theorem 3.6 are fulfilled and
the generalized ODE (3.1) is uniformly ultimately bounded. By Theorem 4.3, the MDE
(4.1) is also uniformly ultimately bounded, obtaining the desired result.

5 Boundedness of solutions of dynamic equations on

time scales

In this section, our goal is to prove the results concerning boundedness of solutions of
dynamic equations on time scales, via Lyapunov functionals.
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We will start with an overview of the theory of time scales. For more details, the
reader may consult [3, 4].

A time scale T is a closed and nonempty subset of R. Given a pair of numbers a, b ∈ T,
the symbol [a, b]T will denote a closed interval in T. Similarly, we define the open half-open
intervals.

For all t ∈ T, we define the forward jump operator by σ(t) = inf {s ∈ T : s > t} and
the backward jump operator by ρ(t) = sup {s ∈ T : s < t} ; and use the convention that
inf ∅ = supT and sup ∅ = inf T. The graininess function µ : T → [0,+∞) is defined by
µ(t) = σ(t)− t.

If σ(t) > t, we say that t is a right-scattered point; if ρ(t) = t, then t is right-dense.
Similarly, we define left-scattered and left-dense points, depending on ρ.

To be able to relate dynamic equations on time scales and measure differential equa-
tions, we need some important concepts, which can be found in [17].

Given a real number t ≤ supT, define

t∗ = inf {s ∈ T : s ≥ t} .

Since T is a closed set, we have t∗ ∈ T. Also, define the extension of the time scale T as
follows

T∗ =

{
(−∞, supT], if supT <∞,
(−∞,∞) otherwise.

(5.1)

Given a function f : T→ Rn, its extension f ∗ : T∗ → Rn is defined by

f ∗(t) = f(t∗), t ∈ T∗.

Remark 5.1. Let a, b ∈ T, a ≤ b, and f : [a, b]T → Rn be a function. Notice that if
t ∈ [a, b], then t∗ is well defined and t∗ ∈ [a, b]T, because a∗ = a ≤ t ≤ b = b∗ ≤ supT.
Thus, f ∗ : [a, b]→ Rn give by f ∗(t) = f(t∗) for every t ∈ [a, b], is well defined.

On the other hand, given a real number t0 ∈ T and f : [t0,+∞)T → Rn a function,
it is clear that we can have points t ∈ [t0,+∞) such that t > supT. Therefore, t∗ is not
well-defined. Thus, it is necessary to require that supT = +∞ so that t∗ is well-defined

Lemma 5.2. Let T be a time scale such that supT = +∞, and t0 ∈ T. Let g : [t0,+∞)→
R be given by g(t) = t∗, for all t ∈ [t0,+∞). Then, g satisfies the following conditions

(i) g is a nondecreasing function;

(ii) g is left-continuous on (t0,+∞).

The next result can be found in [12, Theorem 4.2]. It ensures that the Kurzweil-
Henstock ∆-integral and Kurzweil-Henstock-Stieltjes integral coincide when g(t) = t∗.
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Theorem 5.3. Let T be a time scale such that a, b ∈ T and f : [a, b]T → Rn be a function.

Define g(t) = t∗, for every t ∈ [a, b]. Then the Kurzweil-Henstock ∆-integral
∫ b
a
f(t)∆t

exists if, and only if, the Kurzweil-Henstock-Stieltjes integral
∫ b
a
f ∗(t)dg(t) exists. In this

case, both integrals have the same value.

The next three results will be crucial to prove our main results and they can be found
in [10].

Theorem 5.4. Let T be a time scale such that supT = +∞, t0 ∈ T and g(t) = t∗ for

every t ∈ [t0,+∞). If f : [t0,+∞) → Rn is such that the integral
∫ d
c
f(t)dg(t) exists for

every c, d ∈ [t0,+∞), then ∫ d

c

f(t)dg(t) =

∫ d∗

c∗
f(t)dg(t),

for every t0 ≤ c < d <∞.

Theorem 5.5. Let f : T→ Rn be a function such that the ∆-Kurzweil-Henstock integral∫ b

a

f(s)∆s

exists for every a, b ∈ T, a < b. Choose an arbitrary a ∈ T and define

F1(t) =

t∫
a

f(s)∆s, t ∈ T,

F2(t) =

t∫
a

f ∗(s)dg(s), t ∈ T∗,

where g(s) = s∗ for every s ∈ T∗. Then F2 = F ∗1 . In particular, F2(t) = F1(t) for all
t ∈ T.

Theorem 5.6. Let T be a time scale, g(s) = s∗ for every s ∈ T∗ and [a, b] ⊂ T∗. Consider
a pair of functions f1, f2 : [a, b] → Rn such that f1(t) = f2(t) for every t ∈ [a, b] ∩ T.

If
∫ b
a
f1(s)dg(s) exists, then

∫ b
a
f2(s)dg(s) exists as well, and both integrals have the same

value.

In the sequel, we present a correspondence between the solutions of the dynamic
equations on time scales and the solutions of the measure differential equations. For more
details see [10].
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Theorem 5.7. Let T be a time scale such that supT = +∞, t0 ∈ T, and f : Rn ×
[t0,+∞)T → Rn. Assume that for every x ∈ G([t0,+∞)T,Rn), the function t 7→ f(x(t), t)
is Kurzweil-Henstock ∆-integrable on [s1, s2]T, for every s1, s2 ∈ [t0,+∞)T. Define
g : [t0,+∞) → R by g(s) = s∗, for every s ∈ [t0,+∞). Also, let J ⊂ [t0,+∞) be a non-
degenerate interval such that J ∩ T is nonempty and for each t ∈ J, we have t∗ ∈ J ∩ T.
If x : J ∩ T→ Rn is a solution of the initial value problem given by{

x∆(t) = f(x∗, t), t ∈ J ∩ T,
x(s0) = x0,

(5.2)

where x0 ∈ Rn and s0 ∈ J ∩T, then x∗ : J → Rn is a solution of the initial value problem

y(t) = x0 +

∫ t

s0

f ∗(y(s), s)dg(s) = x0 +

∫ t

s0

f(y(s), s∗)dg(s) (5.3)

Conversely, if y : J → Rn satisfies the initial value problem (5.3), then it must have the
form y = x∗, where x : J ∩ T→ Rn is a solution of the initial value problem (5.2).

As an immediate consequence of Theorem 5.7, we have the following result.

Corollary 5.8. Let T be a time scale such that supT = +∞, t0 ∈ T, and f : Rn ×
[t0,+∞)T → Rn. Assume that for every x ∈ G([t0,+∞)T,Rn), the function t 7→ f(x(t), t)
is Kurzweil-Henstock ∆-integrable on [s1, s2]T, for every s1, s2 ∈ [t0,+∞)T. Define
g : [t0,+∞) → R by g(s) = s∗, for every s ∈ [t0,+∞). Also, let J ⊂ [t0,+∞) be a non-
degenerate interval such that J ∩ T is nonempty and for each t ∈ J, we have t∗ ∈ J ∩ T.
If x : J ∩ T→ Rn is a solution of the dynamic equation on time scales given by

x∆(t) = f(x∗, t), t ∈ J ∩ T. (5.4)

then x∗ : J → Rn is a solution of the MDE

y(t2)− y(t1) =

∫ t2

t1

f ∗(y, s)dg(s), t1, t2 ∈ J. (5.5)

Conversely, if y : J → Rn satisfies the MDE (5.5), then it must have the form y = x∗,
where x : J ∩ T→ Rn is a solution of (5.4).

The symbol G([t0,+∞)T,Rn) will be used to denote the set of all regulated functions
x : [t0,+∞)T → Rn. Also, the symbol G0([t0,+∞)T,Rn) will be used to denote the set of
all functions x ∈ G([t0,+∞)T,Rn) such that sup

s∈[t0,+∞)T

e−(s−t0) |x(s)| is finite. This space

is endowed with the norm

‖x‖[t0,+∞)T
= sup

s∈[t0,+∞)T

e−(s−t0) |x(s)| , x ∈ G0([t0,+∞)T,Rn)
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is a Banach Space.
In what follows, we say that M : [t0,+∞)T → R+ is locally Kurzweil-Henstock ∆-

integrable if, and only if, the function [s1, s2]T 3 t 7→ M(t) is Kurzweil-Henstock ∆-
integrable for every s1 s2 ∈ [t0,+∞)T.

From now on, we will assume the following conditions concerning the function f :
Bc × [t0,+∞)T → Rn.

(B1) The Kurzweil-Henstock ∆-integral

∫ s2

s1

f(y(t), t)∆t exists, for all y ∈ G([t0,+∞)T,Rn)

and all s1, s2 ∈ [t0,+∞)T.
(B2) There exists a locally Kurzweil-Henstock ∆-integrable function M : [t0,+∞)T → R+

such that ∣∣∣∣∫ s2

s1

f(y(t), t)∆t

∣∣∣∣ ≤ ∫ s2

s1

M(t)∆t,

for all y ∈ G([t0,+∞)T,Rn) and all s1, s2 ∈ [t0,+∞)T, s1 ≤ s2.
(B3) There exists a locally Kurzweil-Henstock ∆-integrable function L : [t0,+∞)T → R+

such that ∣∣∣∣∫ s2

s1

[f(y(t), t)− f(w(t), t)]∆t

∣∣∣∣ ≤ ‖y − w‖[t0,+∞)T

∫ s2

s1

L(t)∆t,

for all y, w ∈ G0([t0,+∞)T,Rn) and all s1, s2 ∈ [t0,+∞)T, s1 ≤ s2.
The next result describes a relation between the conditions of the function f with the

analogues to its extension f ∗. It can be found in [10].

Theorem 5.9. Let T be a time scale such that supT = +∞ and t0 ∈ T, and f : Rn ×
[t0,+∞)T → Rn be a function. Define g(t) = t∗ and f ∗(y, t) = f(y, t∗) for every y ∈ Rn

and t ∈ [t0,+∞).

1. If f : Rn×[t0,+∞)T → Rn satisfies the condition (B1), then the integral

∫ s2

s1

f ∗(x(t), t)dg(t)

exists, for all x ∈ G([t0,+∞),Rn) and for all s1, s2 ∈ [t0,+∞).

2. If f : Rn× [t0,+∞)T → Rn satisfies the condition (B2), then f ∗ : Rn× [t0,+∞)→ Rn

satisfies the following condition∣∣∣∣∫ s2

s1

f ∗(x(t), t)dg(t)

∣∣∣∣ ≤ ∫ s2

s1

M∗(t)dg(t),

for all s1, s2 ∈ [t0,+∞), s1 ≤ s2, and for all x ∈ G([t0,+∞),Rn), where g(t) = t∗.

3. If f : Rn× [t0,+∞)T → Rn satisfies the condition (B3), then f ∗ : Rn× [t0,+∞)→ Rn

satisfies the condition∣∣∣∣∫ s2

s1

[f ∗(x(t), t)− f ∗(z(t), t)]dg(t)

∣∣∣∣ ≤ ‖x− z‖[t0,+∞)

∫ s2

s1

L∗(t)dg(s),
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for all s1, s2 ∈ [t0,+∞), s1 ≤ s2, and for all x, z ∈ G([t0,+∞),Rn), where
g(t) = t∗.

Consider the dynamic equation on time scales given by

x∆(t) = f(x∗, t). (5.6)

From now on, we assume that for every (z0, s0) ∈ Rn × [t0,+∞)T, there exists a unique
maximal solution x : [s0,+∞) → X of (3.1) with x(s0) = z0. The existence of such
solution is ensured by the following result, which can be found in [10].

Theorem 5.10. Let T be a time scale such that supT = +∞ and [t0,+∞)T be a time
scale interval. Assume that f : Rn × [t0,+∞)T → Rn satisfies the conditions (B1), (B2)
and (B3). Then, for every (z0, s0) ∈ Rn × [t0,+∞)T, there exists a unique maximal
solution of (5.6) with x(s0) = z0 is defined in [s0,+∞)T.

In what follows, for every (z0, s0) ∈ Rn×[t0,+∞)T, we denote by x(s, s0, z0) the unique
maximal solution of the dynamic equation on time scales (5.6) with x(s0) = z0 defined in
[s0,+∞)T.

In the sequel, we present the concepts concerning the boundedness of the solutions of
the dynamic equation on time scales.

Definition 5.11. Let T be a time scale such that supT = +∞. We say that the dynamic
equation on time scales (5.6) is:
• Uniformly bounded: if for every α > 0, there exists a M = M(α) > 0 such that,

for every s0 ∈ [t0,+∞)T and for all z0 ∈ Rn, where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < M, for all s ∈ [s0,+∞)T.

• Quasi-uniformly ultimately bounded: if there exists B > 0 such that for every
α > 0, there exists T = T (α) > 0, such that for all s0 ∈ [t0,+∞)T and for all z0 ∈ Rn,
where ‖z0‖ < α, we have

‖x(s, s0, z0)‖ < B, for all s ∈ [s0 + T,+∞) ∩ T.

• Uniformly ultimately bounded: if it is uniformly bounded and quasi-uniformly
ultimately bounded.

In what follows, we will prove a result which ensures that the dynamic equation on
time scales (5.6) is uniformly bounded.

Theorem 5.12. Let T be a time scale such that supT = +∞ and [t0,+∞)T be a time
scale interval. Suppose f : Rn × [t0,+∞)T satisfies conditions (B1), (B2) and (B3),
and U : [t0,+∞)T × Rn → R be a function such that for each left-continuous function
z : [α, β]T → Rn on (α, β]T, the function [α, β]T 3 t 7→ U(t, z(t)) is left-continuous on
(α, β]T. Moreover, suppose the following conditions concerning U are satisfied
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(i) There are two monotone increasing functions p, b : R+ → R+ such that b(0) = 0,

lim
s→+∞

b(s) = +∞

and
b(‖z‖) ≤ U(t, z) ≤ p(‖z‖),

for every pair (t, z) ∈ [t0,+∞)T × Rn.

(ii) For every solution z : [s0,+∞) ∩ T→ Rn, s0 ≥ t0, of the dynamic equation on time
scales (5.6), we have

U(s, z(s))− U(t, z(t)) ≤ 0,

for every s, t ∈ [s0,+∞) ∩ T with t ≤ s.

Then, the dynamic equation on time scales (5.6) is uniformly bounded.

Proof. Since f satisfies conditions (B1), (B2) and (B3), by Theorem 5.9, f ∗ satisfies
conditions (A2), (A3) and (A4), and by Lemma 5.2, g(t) = t∗ is a nondecreasing and
left-continuous function.

Define a function U∗ : [t0,+∞)× Rn → R by

U∗(t, x) = U(t∗, x), t ∈ [t0,+∞), x ∈ Rn.

Then, by hypothesis (i), there are two monotone increasing functions p, b : R+ → R+

such that p(0) = b(0) = 0,
lim

s→+∞
b(s) = +∞

and
b(‖z‖) ≤ U∗(t, z)︸ ︷︷ ︸

=U(t∗,z)

≤ p(‖z‖)

for every pair (t, z) ∈ [t0,+∞) × Rn, which implies that U∗ satisfies the hypothesis (i)
from Theorem 4.6.

Now, let y : [s0,+∞)→ Rn, s0 ≥ t0, be a solution of the measure differential equation

x(t) = x(s0) +

∫ t

s0

f ∗(x, s)dg(s), t ≥ s0. (5.7)

By Corollary 5.8, y : [s0,+∞) → Rn must have the form y = z∗, where z : [s0,+∞) ∩
T → Rn is a solution of the dynamic equation on time scales (5.6). Hence, for each
s0 ≤ t < s < +∞, we have

U∗(s, y(s))− U∗(t, y(t)) = U∗(s, z∗(s))− U∗(t, z∗(t))

= U(s∗, z∗(s))− U(t∗, z∗(t)) = U(s∗, z(s∗))− U(t∗, z(t∗)) ≤ 0,

by hypothesis (ii). Therefore, all the hypotheses from Theorem 4.6 are satisfied. Then the
measure differential equation (5.7) is uniformly bounded. By Corollary 5.8, the dynamic
equation on time scales (5.6) is uniformly bounded, obtaining the desired result.
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Finally, we present the last result of our paper. It ensures that the dynamic equation
on time scales (5.6) is uniformly ultimately bounded.

Theorem 5.13. Let T be a time scale such that supT = +∞, t0 ∈ T and t0 ≥ 0. Suppose
f : Rn× [t0,+∞)T satisfies conditions (B1), (B2) and (B3), and U : [t0,+∞)T×Rn → R
be a function such that for each left-continuous function z : [α, β]T → Rn on (α, β]T, the
function [α, β]T 3 t 7→ U(t, z(t)) is left-continuous on (α, β]T and satisfies condition (i)
from Theorem 5.12. Moreover, suppose U satisfies the following conditions

(I) For all x, y, z, w ∈ Rn and for all α, β ∈ [t0,+∞)T with α < β, we have

|U(β, x)− U(β, y)− U(α, z) + U(α,w)| ≤(∫ β

α

K(τ)∆τ

)
max {‖x− y‖ , ‖z − w‖} ,

where K : [t0,+∞)T → R is a locally Kurzweil-Henstock ∆-integrable function.

(II) There exists a continuous function φ : Rn → R, with φ(0) = 0 and φ(x) > 0, x 6= 0
such that for every solution z : [s0,+∞)∩T→ Rn, s0 ≥ t0, of the dynamic equation
on time scales (5.6), we have

U(s∗, z(s∗))− U(t∗, z(t∗)) ≤ (s− t)∗
(
− φ(z(t∗))

)
,

for every t, s ∈ [s0,+∞) ∩ T with t ≤ s.

Then, the dynamic equation on time scales (5.6) is uniformly ultimately bounded.

Proof. Since f satisfies conditions (B1), (B2) and (B3), by Theorem 5.9, f ∗ satisfies
conditions (A2), (A3) and (A4), and by Lemma 5.2, g(t) = t∗ is a nondecreasing and
left-continuous function.

Also, define the functional U∗ : [t0,+∞)T × Rn → R by

U∗(t, x) = U(t∗, x),

for every pair (t, x) ∈ [t0,+∞)× Rn.
Since K is a locally Kurzweil-Henstock ∆-integrable function on [t0,+∞)T, it follows

from Theorem 5.3 that the function K∗ : [t0,+∞) → R is locally Kurzweil-Henstock
integrable with respect to the nondecreasing function u : T∗ → R, given by u(t) = t∗ and∫ β

α

K(τ)∆τ =

∫ β

α

K∗(τ)du(τ),

for all α, β ∈ [t0,+∞)T. Thus, for all x, y : [υ, γ] → Rn, [υ, γ] ⊂ [t0,+∞), of bounded
variation on [υ, γ] and all υ ≤ s < t ≤ γ, we have

|U∗(t, x(t))− U∗(t, y(t))− U∗(s, x(s)) + U∗(s, y(s))|
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= |U(t∗, x(t))− U(t∗, y(t))− U(s∗, x(s)) + U(s∗, y(s))|

≤
(∫ t∗

s∗
K(τ)∆τ

)
max {‖x(t)− y(t)‖ , ‖x(s)− y(s)‖}

=

(∫ t∗

s∗
K∗(τ)du(τ)

)
max {‖x(t)− y(t)‖ , ‖x(s)− y(s)‖}

≤
(∫ t∗

s∗
K∗(τ)du(τ)

)
sup
ξ∈[υ,γ]

‖x(ξ)− y(ξ)‖

=

(∫ t

s

K∗(τ)du(τ)

)
sup
ξ∈[υ,γ]

‖x(ξ)− y(ξ)‖,

where Theorem 5.4 is used to establish the last equality. Thus, the hypothesis (U1) from
Theorem 4.7 is fulfilled.

Now, let y : [s0,+∞)→ Rn, s0 ≥ t0, be a solution of the measure differential equation
(5.7). Then, by Corollary 5.8, y : [s0,+∞) → Rn must have the form y = z∗, where
z : [s0,+∞) ∩ T→ Rn is a solution of the dynamic equation on time scales (5.6). Hence,
we get

U∗(s, y(s))− U∗(t, y(t)) = U∗(s, z∗(s))− U∗(t, z∗(t))

= U(s∗, z∗(s))− U(t∗, z∗(t)) = U(s∗, z(s∗))− U(t∗, z(t∗))

≤ (s− t)∗(−φ(z(t∗))) = (s− t)∗(−φ(y(t)))

≤ (s− t)(−φ(y(t))),

for every s0 ≤ t < s < +∞. Thus, condition (U2) from the Theorem 4.7 is fullfiled.
Therefore, all the hypotheses from Theorem 4.7 hold and the measure differential equation
(5.7) is uniformly ultimately bounded. By Corollary 5.8, it follows that the dynamic
equation on time scales (5.6) is uniformly ultimately bounded, obtaining the desired
result.
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[13] M. Federson and Š. Schwabik, Generalized ODEs approach to impulsive retarded
differential equations. Diff. integral equations, 19(11), 1201-1234, 2006.

[14] Y. Hino, S. Murakami and T. Naito, Functional differential Equations with Infinite
Delay, Springer- Verlag, 1991.

[15] A. Peterson and C. Tisdell, Boundedness and uniqueness of solutions to dynamic
equations on time scales, Journal of Difference Equations and Applications, v.10,
13-15, 1295-1306, 2004.
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