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Abstract. In this paper, we prove the existence of positive solutions of an elliptic super-
linear problem. Also, we are interested here in getting results concerning the existence of
positive solutions for the discrete formulation of our problem. Therefore, in order to do it,
we employ the radial solutions of the elliptic superlinear problem, obtaining a second-order
dynamic equation on time scales, which encompasses discrete, continuous and hybrid for-
mulations of our problem. This unified equation allows us to present numerical simulations,
which give us a more precise analysis and description concerning the behavior of the solution
according to the parameters.

1. Introduction

One of the most studied problems in the last decades in nonlinear PDEs concerns about
the existence of positive solutions of the following elliptic superlinear problem

(1.1)

{
−∆u = f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

where Ω is a bounded domain in RN and f : Ω × R → R+ is an increasing function and
satisfies the following general conditions

(A1) lim
u→0

f(x, u)

u
= 0;

(A2) lim
u→+∞

f(x, u)

u
= +∞.

Results on existence for this problem and with so much generality, can only be obtained
to the one-dimensional case or to the radial case when Ω is some annulus centered at the
origin. For non symmetric domains, the problem is more delicate, however some techniques
can be used, for example variational methods, where the pioneer work was due to Ambrosetti
and Rabinowitz [2]. More precisely, using the very well know Mountain Pass Theorem, they
proved the existence of a positive solution assuming conditions (A1), (A2) and the following
technical hypotheses:

(G) There are positive constants a and b such that

|f(x, t)| ≤ a+ b|t|q−1, ∀t ∈ R,
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where 1 ≤ q < 2∗ = 2N
N−2

.
(AR) For some θ > 2, C > 0, we have

0 < θF (x, t) ≤ f(x, t)t, ∀|t| ≥ C, x ∈ Ω.

The first condition is some subcritical assumption and the (AR) is the famous Ambrosetti-
Rabinowitz condition. These types of conditions appear in most of the studies of the existence
of nontrivial solutions via variational methods. See, for instance, [11, 13, 16, 19, 20, 21, 22,
38, 44] and the references therein. In a recent work of Miyagaki and Souto [34] (see also
[27, 31]), the authors introduced some monotonicity hypotheses which allow to consider
some nonlinearities that do not satisfy (AR), for example when f(x, t) = t(2 ln t+ 1). More
precisely, they assumed the following conditions:

(P1)
f(t)

t
is increasing for t ≥ t0 and decreasing for t ≤ −t0 or

(P2) there exists C > 0 such that

tf(t)− 2F (t) ≤ 2f(s)− 2F (s) + C

for all 0 < t < s or s < t < 0.

On the other hand, in [24], the authors ensured the existence of solution, assuming the
conditions (A1) and (A2), f(x, u) = a(x)g(u) and that is regularly varying (at infinity) of
index 1, i.e.,

(RV) The function g satisfies

lim
t→+∞

g(σt)

g(t)
= σ for all σ > 0.

Note that in their case a(x) may change sign. They also give some examples which do not
verify (AR).

In this work, our goal is to investigate the existence of positive solutions of problem (1.1)
when Ω is a ball and f(x, u) = |x|αf(u), i.e., we will study the following problem

(1.2)

{
−∆u = |x|αf(u), x ∈ B,
u(x) = 0, x ∈ ∂B

where B =
{
x ∈ RN : |x| < 1

}
, α > −2 and f : R→ R+ satisfies the conditions below

(B0) f is a continuous function such that f(u) > 0, u > 0;

(B1) lim
u→0

f(u)

u
= 0;

(B2) lim
u→+∞

f(u)

u
= +∞;

(B3) There exist a continuous function ϕ : [0,+∞) → [0,+∞), M > 0 and τ̄ ∈ R+ such
that ∫ +∞

1

ϕ(τ)τ−aNdτ < +∞ and
f(u · τ)

f(u)
≤Mϕ(τ)

for all u > 0 and for all τ > τ̄ , where aN =
N + α

N − 2
.
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We point out that another important technique to obtain positive solutions of problem
(1.2) is by employing fixed point methods, for which is essential to establish a priori bounds
where some Liouville results are necessary, see for example [1, 3, 4, 8, 14, 23, 25, 32, 33,
36, 39, 40, 41] and references therein. However, these arguments need strongly that the
nonlinearity f is asymptotic to a power near ∞, which is not a necessary condition in our
case.

Therefore, our goal here is to prove the existence of positive solutions of (1.2), imposing a
new hypothesis, which implies a property of pseudo homogeneity on the nonlinearity f(x, u).

To achieve our results, we will study radial solutions of the problem (1.2). Then, by a
change of variables, the problem (1.2) can be rewritten as:

(1.3)

{
−z′′(t) = (1 + (N − 2)t)

1
2−N (2(N−1)+α)f(z(t)), t ∈ (0,+∞)

z(0) = z′(+∞) = 0.

Therefore, our problem here reduces to study the existence of positive solutions of the prob-
lem (1.3).

Also, in this paper, we are interested to investigate a discrete formulation of our problem,
since it allows us to present numerical simulations, investigating better the behavior of the
solutions. It is a known fact that depending on our differential problem, it may not be
possible to calculate its solutions explicitly, however, its discrete formulation allows us to
obtain them explicitly, employing computational methods. This fact allows us to study
the behavior of the solutions of our differential problem by approximmation. A very useful
strategy for this is to consider the formulation of the problem for the discrete scale T = hZ
and then, to calculate the solutions explicitly for this case. So, when h → 0, the solutions
of the discrete problem approach to the solutions of the continuous problem, allowing us a
carefully study for these last ones ([15]).

Motivated by these facts, we will study this problem on the setting of time scales theory.
In this case, a reformulation of problem (1.3) by a general case of dynamic equation on time
scales can be given by (see [5, 6, 7]):

(1.4)

{
−z∆∆(t) = (1 + (N − 2)σ(t))

1
2−N (2(N−1)+α)f(z(σ(t))), t ∈ T+

0

z(0) = z∆(+∞) = 0,

where T0 is a time scale satisfying 0 ∈ T0 and supT0 = +∞ and the function f : R → R+

satisfies the following conditions:

(H0) f is a continuous function such that f(u) > 0, u > 0.

(H1) lim
u→0

f(u)

u
= 0;

(H2) lim
u→+∞

f(u)

u
= +∞;

(H3) There exist an rd-continuous function ϕ : T+
0 → T+

0 , M > 0 and τ̄ ∈ T+
0 such that∫ +∞

1

ϕ(σ(τ))σ(τ)−aN∆τ < +∞ and
f(u · σ(τ))

f(u)
≤Mϕ(σ(τ))

for all u > 0 and for all σ(τ) > τ̄ , where aN =
N + α

N − 2
.
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Notice that when T0 = R, our problem reduces to the problem (1.3). If T0 = Z or even
T0 = hZ, we have a discrete formulation of our problem. On the other hand, our equation
also encompasses several types of equations, depending on the chosen time scales. For more
details, see [6, 7, 9, 10, 17, 18, 28, 29, 42] and the references therein. Therefore, through our
equation (1.4), we are able to study the hybrid equations, difference equations, h-difference
equations, quantum difference equations, differential equations, among others. We point out
that our results are completely new considering any time scales.

Finally, we present some surprising simulations for our problem to illustrate our main
result. These simulations allow a better understanding of the behavior of the solutions. We
present two different simulations. The first one shows the behavior of the solutions when the
values of α are very small, close to zero. Further, it is a known fact that we can investigate
the behavior of the solution of the equation for the case T0 = R only studying the solutions
for the case T0 = hZ. In this case, when h approaches to 0, the solution of h-difference
equations approaches to the solution of the differential equation (case T0 = R). Therefore,
we present here the solutions of the h-difference equations when h approaches to 0 and also,
the smooth solution (case T0 = R) to understand how this approximation occurs.

The outline of this paper is as follows: The second section is devoted to present the basic
results and concepts to prove the main results of the paper. In the third section, we prove the
existence of positive solutions for the dynamic equation on time scales given by (1.4). Finally,
the last section is dedicated to present the simulations of the solutions of our problem.

2. Preliminaries

In this section, we review some basic concepts and results concerning time scales which
will be essential to prove our main results. For more details, the reader may consult [5, 6, 7].

Let T be a time scale, that is, a closed and nonempty subset of R. For every t ∈ T, we
define the forward and backward jump operators σ, ρ : T→ T, respectively, as follows:

σ(t) = inf{s ∈ T, s > t} and ρ(t) = sup{s ∈ T, s < t}.
In this definition, we consider inf ∅ = supT and sup ∅ = inf T.

If σ(t) > t, we say that t is right-scattered. If σ(t) = t and t < supT, then t is called
right-dense. Analogously, if ρ(t) < t, then t is called left-scattered, whereas if ρ(t) = t and
t > inf T, then t is left-dense. Define the graininess function µ : T→ R+ by µ(t) = σ(t)− t.
Definition 2.1 ([6]). A function f : T → R is called rd-continuous if it is regulated on T
and continuous at right-dense points of T. We denote the class of all rd-continuous functions
f : T → R by Crd = Crd(T) = Crd(T,R).If the function f : T → R is continuous at each
right-dense point and each left-dense point, then f is said to be continuous on T.

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed interval
in T, that is, [a, b]T = {t ∈ T; a ≤ t ≤ b}.

We define the set Tκ which is derived from T as follows: If T has a left-scattered maximum
m, then Tκ = T\{m}. Otherwise, Tκ = T.

Definition 2.2 ([6]). For y : T→ R and t ∈ Tκ, we define y∆(t) to be the number (provided
it exists) with the following property: given ε > 0, there exists a neighborhood U of t such
that

|y(σ(t))− y(s)− y∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,
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for all s ∈ U . We call y∆(t) the delta derivative of y at t.

Theorem 2.3 (See [5, Theorem 2.98]). Let f be twice delta differentiable on (a, b)T and
f∆∆(t) ≤ 0 for all t ∈ (a, b)T, then f is concave.

Theorem 2.4 (See [5, Corollary 2.47]). Let f be a continuous function on [a, b]T that has a
delta derivative at each point of [a, b)T. Then f is increasing, decreasing, nondecreasing and
nonincreasing on [a, b]T if f∆(t) > 0, f∆(t) < 0, f∆(t) ≥ 0 and f∆(t) ≤ 0 for all t ∈ [a, b)T,
respectively.

Below, we present some important properties of delta-integrals.

Theorem 2.5 (See [6, Theorem 1.75]). If f ∈ Crd and t ∈ Tκ, then∫ σ(t)

t

f(s)∆s = f(t)µ(t).

Theorem 2.6 (See [6, Theorem 1.76]). If f∆ ≥ 0, then f is nondecreasing.

The next result is the integration by parts for delta-integrals.

Theorem 2.7 (See [6, Theorem 1.77(vi)]). If a, b ∈ T and f, g ∈ Crd, then∫ b

a

f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(σ(t))∆t.

3. Second-Order Dynamic Equations on Time Scales

In this section, our goal is to ensure the existence of a positive solution for the following
problem:

(3.1)

{
−∆u = |x|αf(u), x ∈ B,
u(x) = 0, x ∈ ∂B

where B =
{
x ∈ RN : |x| < 1

}
, α > −2 and f : R→ R+ satisfies the conditions:

(B0) f is a continuous function such that f(u) > 0, u > 0.

(B1) lim
u→0

f(u)

u
= 0;

(B2) lim
u→+∞

f(u)

u
= +∞;

(B3) There exist a continuous function ϕ : [0,+∞) → [0,+∞), M > 0 and τ̄ ∈ R+ such
that ∫ +∞

1

ϕ(τ)τ−aN∆τ < +∞

and
f(u · τ)

f(u)
≤Mϕ(τ)

for all u > 0 and for all τ > τ̄ , where aN =
N + α

N − 2
.
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Notice that radial solutions of problem (3.1) satisfy

(3.2)

{
−(rN−1u′)′ = rN−1rαf(u), u ∈ (0, 1)

u(1) = u′(0) = 0.

Consider a : (0, 1]→ [0,+∞) defined by

a(r) =
r2−N − 1

N − 2
.

Performing the change of variables

t = a(r) and z(t) = u(r(t)),

the equation (3.2) can be rewritten as:{
−z′′ = r2(N−1)(t)h(t)f(z(t)), t ∈ (0,+∞)

z(0) = z′(+∞) = 0,

where h(t) = (a−1(t))α. On the other hand, we have:

r2(N−1)(t)h(t) = (1 + (N − 2)t)
2(N−1)
2−N (1 + (N − 2)t)

α
2−N

= (1 + (N − 2)t)
1

2−N (2(N−1)+α).

More precisely, we obtain the system (1.3). Our goal is to investigate this system in the
setting of dynamic equations on time scales. Therefore, we consider, throughout this paper,
that T0 is a time scale satisfying 0 ∈ T0 and supT0 = +∞. Also, denote by T+

0 = T0∪[0,∞).
Here, we will consider the following system:

(3.3)

{
−z∆∆(t) = (1 + (N − 2)σ(t))

1
2−N (2(N−1)+α)f(z(σ(t))), t ∈ T+

0

z(0) = z∆(+∞) = 0,

where the function f : R→ R+ satisfies the following conditions:

(H0) f is a continuous function such that f(u) > 0, u > 0.

(H1) lim
u→0

f(u)

u
= 0;

(H2) lim
u→+∞

f(u)

u
= +∞;

(H3) There exist an rd-continuous ϕ : T+
0 → T+

0 and M > 0 and τ̄ ∈ T+
0 such that∫ +∞

1

ϕ(σ(τ))σ(τ)−aN∆τ < +∞

and
f(u · σ(τ))

f(u)
≤Mϕ(σ(τ))

for all u > 0 and for all σ(τ) > τ̄ , where aN =
N + α

N − 2
.
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Notice that when the time scale T = R, our system reduces to the problem (1.3). However,
we can have more general systems, depending on the chosen time scale.

Also, by integration of problem (3.3), we obtain the following delta integral equation which
is equivalent to equation (3.3):

(3.4) z(t) =

∫ t

0

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s,

for every t, s ∈ T+
0 and Gα(σ(τ)) = (1 + (N − 2)σ(τ))

1
2−N (2(N−1)+α). Therefore, the solutions

of the delta integral equation (3.4) are the fixed points of the operator

(Fz)(t) =

∫ t

0

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s.

To our purposes, we will use the following well-known lemma. See, for instance, [12, 26].

Lemma 3.1. Let X be a Banach space with norm | · | and let C ⊂ X be a cone in X. For
R > 0, define CR = C ∩B[0, R] where B[0, R] = {x ∈ X : |x| ≤ R} denotes the closed ball of
radius R centered at the origin of X, which is a completely continuous map for which there
exists 0 < r < R such that

|Fx| < |x|, x ∈ ∂Cr and |Fx| > |x|, x ∈ ∂CR
or

|Fx| > |x|, x ∈ ∂Cr and |Fx| < |x|, x ∈ ∂CR,
where ∂CR = {x ∈ C : |x| = R}. Then F has a fixed point u ∈ C with r < |u| < R.

Let X = Crd(T+
0 ,R) with the norm ‖z‖∞ = sup

t∈T+
0

|z(t)| and define C1 as the cone of the

nonnegative and concave functions of X such that z(0) = 0. Note that z ∈ C1 implies that
z is an increasing function and z is nonnegative.

Let us assume throughout the paper that f is an increasing function, N ≥ 3, lim
t→∞

z(t)

exists and is finite, where z is given by (3.4) and also, that there exists β ∈ [1, 2(N−1)+α
N−2

)

such that σ(t) = O(tβ) as t→∞, when α > −2.

Lemma 3.2. If α > −2 and the function f satisfies the conditions (H0)-(H3), then F is
well-defined, F (C1) ⊂ C1 and F is completely continuous operator.

Proof. At first, since N ≥ 3, it follows by the definition that Gα is a decreasing function.
Therefore, if

2(N − 1) + α

2−N
< −2,

then clearly by [7, Corollary 5.71], the integral∫ +∞

s

Gα(σ(τ))∆τ

converges. Notice also that

2(N − 1) + α

2−N
< −2
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⇔ 2(N − 1) + α

2−N
+ 1 < −1

⇔ N + α

2−N
< −1

⇔ N + α

N − 2
> 1

⇔ N + α > N − 2

⇔ α > −2.

Therefore, F is well defined for all time scales T+
0 . Moreover, since α > −2 and by the

hypothesis, it is not difficult to see that∫ +∞

0

(∫ +∞

s

Gα(σ(τ))∆τ

)
∆s < +∞.

Hence, F is well-defined. Also, notice that the function F (z)(t) belongs to the class C2
rd and

its delta-derivative is given by:

F∆(z(t)) =

∫ +∞

t

Gα(σ(τ))f(z(σ(τ)))∆τ.

Indeed, if t is right-dense, the equality above follows immediately. On the other hand, if t is
right-scattered, then:

F∆(z(t)) =
F (z(σ(t))− F (z(t))

µ(t)

=

∫ σ(t)

0

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s−
∫ t

0

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s

µ(t)

=

∫ σ(t)

t

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s

µ(t)

=

µ(t)

∫ +∞

t

Gα(σ(τ))f(z(σ(τ)))∆τ

µ(t)

=

∫ +∞

t

Gα(σ(τ))f(z(σ(τ)))∆τ > 0,

since z ∈ C1, where the fourth equality follows by Theorem 2.5. Moreover, notice that

F∆∆(z)(t) = −Gα(σ(t))f(z(σ(t)).

In fact, if t is right-dense, then it follows immediately. Otherwise, by Theorem 2.5, we have:

F∆∆(z(t)) =

∫ +∞

σ(t)

Gα(σ(τ))f(z(σ(τ)))∆τ −
∫ +∞

t

Gα(σ(τ))f(z(σ(τ)))∆τ

µ(t)
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= −

∫ σ(t)

t

Gα(σ(τ))f(z(σ(τ)))∆τ

µ(t)

= −Gα(σ(t))f(z(σ(t))) < 0.

since z ∈ C1.Then, F (z)(τ) is increasing and concave by Theorems 2.3 and 2.4. Therefore,
F (C1) ⊂ C1.

It remains to prove that F is a completely continuous operator. Let (zn) ∈ C1 such that
‖zn‖∞ ≤ c0 and M1 = max{f(u) : u ∈ [0, c0]}. Thus, it follows that:

|F (zn)(t)| ≤M1

∫ +∞

0

∫ +∞

s

Gα(σ(τ))∆τ∆s and
∣∣F∆∆(zn)(t)

∣∣ ≤M1

∫ +∞

0

Gα(σ(τ))∆τ.

By the Arzelá-Ascoli Compactness Criterion for uniform convergence on time scales (see
[43, Lemma 4]), up to a subsequence, we can assume that (F (zn)) is uniformly convergent on
compact subsets of [0,+∞)T. To prove that there exists a uniformly convergent subsequence
of F (zn), it suffices to recall that given ε > 0, there is T = T (ε) > 0 such that:∫ +∞

T

∫ +∞

s

Gα(σ(τ))∆τ∆s < ε.

We now verify that F is continuous. Let (zn) be a sequence in C1 such that ‖zn−z0‖∞ → 0
as n→∞. Thus

|F (zn)(t)− F (z0)(t)| ≤
∫ +∞

0

|Γn(s)− Γ0(s)|∆s

where

Γn(s) =

∫ +∞

s

Gα(σ(τ))f(zn(σ(τ)))∆τ and Γ0(s) =

∫ +∞

s

Gα(σ(τ))f(z0(σ(τ)))∆τ.

Since ‖zn−z0‖∞ → 0, then Γn(s)→ Γ0(s) and for each n ∈ N, Γn(s) ≤M1

∫ +∞
s

Gα(σ(τ))∆τ
< +∞ for all s ∈ [0,+∞)T. By the Lebesgue Dominated Convergence Theorem for delta
integrals (see [7]), ‖F (zn)− F (z0)‖∞ → 0, which implies that F is continuous and we have
the desired result. �

Notice that given z ∈ C1 \ {0}, there exists a unique τ1 = τ1(z) ∈ T+
0 such that

2z(τ1) = ‖z‖∞.

Define

τ ∗ := sup{τ1(F (z)) ∈ T+
0 : z ∈ C1}

and

C := {z ∈ C1 : 2z(t) ≥ ‖z‖∞, ∀t ∈ [τ ∗,∞)T}.

Lemma 3.3. Suppose the hypotheses (H0)-(H3). Then τ ∗ ∈ T+
0 is finite and C is a cone

invariant under F .
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Proof. At first, we will show that τ ∗ < ∞. Suppose the contrary, that is, τ ∗ = +∞. Then
there must exist a sequence zn ⊂ C1 \ {0} such that τn = τ1(F (zn)) is a strictly increasing
sequence in T+

0 converging to +∞ as n→∞. Notice that

(Fzn)(τn) =
‖F (zn)‖∞

2
,

which implies that∫ τn

0

∫ +∞

s

Hn(σ(τ))∆τ∆s =
1

2

∫ +∞

0

∫ +∞

s

Hn(σ(τ))∆τ∆s

where Hn(σ(τ)) = Gα(σ(τ))f(zn(σ(τ))). Therefore, we have

1

2

∫ τn

0

∫ +∞

s

Hn(σ(τ))∆τ∆s =
1

2

∫ +∞

0

∫ +∞

s

Hn(σ(τ))∆τ∆s− 1

2

∫ τn

0

∫ +∞

s

Hn(σ(τ))∆τ∆s,

which implies

(3.5)

∫ τn

0

∫ +∞

s

Hn(σ(τ))∆τ∆s =

∫ +∞

τn

∫ +∞

s

Hn(σ(τ))∆τ∆s.

According to (3.5) and using integration by parts for delta-integrals (Theorem 2.7), we have(∫ +∞

τn

Hn(σ(τ))∆τ

)
τn+

∫ τn

0

Hn(σ(s))σ(s)∆s = −
(∫ +∞

τn

Hn(σ(τ))∆τ

)
τn+

∫ +∞

τn

Hn(σ(s))σ(s)∆s

which implies

(3.6) 2τn

(∫ +∞

τn

Hn(σ(τ))∆τ

)
+

∫ τn

0

Hn(σ(s))σ(s)∆s =

∫ +∞

τn

Hn(σ(s))σ(s)∆s.

From this fact, it follows that∫ τn

0

Hn(σ(s))σ(s)∆s ≤
∫ +∞

τn

Hn(σ(s))σ(s)∆s,

which implies that∫ τn

0

Gα(σ(s))f(zn(σ(s)))σ(s)∆s ≤
∫ +∞

τn

Gα(σ(s))f(zn(σ(s)))σ(s)∆s.

Therefore, since zn is concave, it follows that

(3.7)

∫ τn

0

σ(τ)Un(σ(τ))∆τ ≤
∫ +∞

τn

σ(τ)Un(σ(τ))∆τ

where Un(σ(τ)) = Gα(σ(τ))f(αn · σ(τ)) with αn = zn(σ(τn))/σ(τn). On the other hand,
notice that f(αn · σ(τ)) ≥ f(αn) for all σ(τ) ≥ 1. Therefore, by using (3.7), we have∫ τn

1

σ(τ)Un(σ(τ))∆τ ≤
∫ τn

0

σ(τ)Un(σ(τ))∆τ ≤
∫ +∞

τn

σ(τ)Un(σ(τ))∆τ.

Hence, ∫ τn

1

σ(τ)Gα(σ(τ))f(αn)∆τ ≤
∫ τn

1

σ(τ)Gα(σ(τ))f(αn · σ(τ))∆τ
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≤
∫ +∞

τn

σ(τ)Gα(σ(τ))f(αn · σ(τ))∆τ.

Therefore,

(3.8)

∫ τn

1

σ(τ)Gα(σ(τ))∆τ ≤
∫ +∞

τn

σ(τ)Gα(σ(τ))
f(αn · σ(τ))

f(αn)
∆τ.

Now, let us consider two cases.
Case 1. There exists a subsequence (αnk) of (αn) such that αnk < ᾱ for all k. In this

case, from (3.8) and (H3), we get∫ τnk

1

σ(τ)Gα(σ(τ))∆τ ≤
∫ +∞

τnk

σ(τ)Gα(σ(τ))
f(ᾱ · σ(τ))

f(αnk)
∆τ

=

∫ +∞

τnk

σ(τ)Gα(σ(τ))
f(ᾱ · σ(τ))

f(ᾱ)

f(ᾱ)

f(αnk)
∆τ

≤ M

∫ +∞

τnk

σ(τ)Gα(σ(τ))
f(ᾱ)

f(αnk)
ϕ(σ(τ))∆τ

≤ C

∫ +∞

τnk

σ(τ)Gα(σ(τ))ϕ(σ(τ))∆τ.(3.9)

Case 2. Now, suppose that αn ≥ ᾱ for all n. In this case, from (3.8) and (H3), we obtain

(3.10)

∫ τn

1

σ(τ)Gα(σ(τ))∆τ ≤ C

∫ +∞

τn

σ(τ)Gα(σ(τ))ϕ(σ(τ))∆τ.

In both cases (equations (3.9) and (3.10)), since Gα(σ(τ)) = (1+(N−2)σ(τ))
1

2−N (2(N−1)+α),
we have for t ∈ T0

σ(τ)Gα(σ(τ)) = σ(τ)(1 + (N − 2)σ(τ))
1

2−N (2(N−1)+α)

≤ σ(τ)((N − 2)σ(τ))
1

2−N (2(N−1)+α)

= (N − 2)
1

2−N (2(N−1)+α)σ(τ)(1+ 1
2−N (2(N−1)+α))

= (N − 2)
1

2−N (2(N−1)+α)σ(τ)−aN .

Therefore, we have ∫ τn

1

σ(τ)Gα(σ(τ))∆τ ≤ K

∫ +∞

τn

σ(τ)−aNϕ(σ(τ))∆τ,

and from (H3), it follows that the integral of the right hand side of the above inequality con-

verges to zero when n goes to infinity. But this is impossible, since
∫ +∞

1
σ(τ)Gα(σ(τ))∆τ > 0.

Finally, it is clear that C is an invariant cone under F . �

Next, we prove our main result of this section.

Theorem 3.4. Suppose the hypotheses (H0)-(H3) are satisfied. Then problem (3.3) has a
positive solution.
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Proof. Using (H1), we have that given ε > 0, there exists δ > 0 such that

f(u) ≤ εu, ∀ 0 < u ≤ δ.

Now, suppose that ‖z‖∞ = δ, then

‖F (z)‖∞ = max
t∈T+

0

∫ t

0

∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ∆s

≤
(
ε

∫ +∞

0

∫ +∞

s

Gα(σ(τ))∆τ∆s

)
‖z‖∞.

Therefore, taking ε small enough, we have

(3.11) ‖F (z)‖∞ < ‖z‖∞ for ‖z‖∞ = δ.

Hypothesis (H2) implies that for all M > 0, there exists sM > 0 such that

f(u) ≥Mu, ∀u ≥ sM .

Now, suppose z ∈ C with ‖z‖∞ = u and u ≥ sM . Therefore, we have

‖F (z)‖∞ ≥ F (z)(τ ∗)

=

∫ τ∗

0

(∫ +∞

s

Gα(σ(τ))f(z(σ(τ)))∆τ

)
∆s

≥
∫ τ∗

0

(∫ +∞

τ∗
Gα(σ(τ))f(z(σ(τ)))∆τ

)
∆s

≥
∫ τ∗

0

(∫ +∞

τ∗
Gα(σ(τ))∆τ

)
∆s f

(
‖z‖∞

2

)
.

If
‖z‖∞

2
= sM , then

‖F (z)‖∞ ≥
M

2

∫ τ∗

0

(∫ +∞

τ∗
Gα(σ(τ))∆τ

)
‖z‖∞.

Thus, taking M sufficiently large, we have

(3.12) ‖F (z)‖∞ > ‖z‖∞, for ‖z‖∞ = 2sM .

Then, from (3.11), (3.12) and Lemma 3.1, we have the existence of a fixed point of the
operator F and hence, a solution of problem (3.3). �

4. Numerical Simulations

In this section, our goal is to present some numerical simulations of the solutions of the
problem given by

(4.1)

{
−z∆∆(t) = (1 + (N − 2)σ(t))

1
2−N (2(N−1)+α)f(z(σ(t))), t ∈ T+

0

z(0) = z∆(+∞) = 0.

To obtain our simulations of the solutions, we employed the software Wolfram Mathemat-
ica. This software is powerful and provides a lot of tools for solving differential equations.
In our case, the selected function to solve this boundary value problem was NDSolveValue,
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using the Shooting Method. The shooting method is a technique for solving boundary value
problems by transforming it in a solution of an initial value problem. Different paths in
various directions are shoot until a trajectory that has the desired boundary value is found.
For more details about the Shooting Method, we refer to [35, 37].

In this section, we will present two different graphs. The first one is devoted to study the
behavior of the solution for the case T0 = R, when the parameter α is very small. In the
second one, we analyze the behavior of the solutions of the problem (4.1) when T0 = hZ and
we plot the graphs of the solution of (4.1) for different values of h and for the case T0 = R. By
these graphs, we notice that the solution of h-difference equation (case T0 = hZ) approaches
to the solution of differential equation (T0 = R) when h approaches to zero.

This fact is very interesting and occurs when we are dealing with first order dynamic
equations on time scales, under appropriate conditions. However, the question “if it remains
true for second order dynamic equations on time scales” is still open, but our simulations
show that this fact seems to be true even when we are dealing with this type of equations.
This fact makes the second order h-difference equations very important tool to study second
order differential equations.

We start by investigating the behavior of the solutions of (4.1) when α approaches to 0.
For it, we consider T0 = R, f(z) = z2 and N = 3 in the equation (4.1).

Finally, we present the behavior of the solution of (4.1) for the time scale T0 = hZ.
Therefore, we consider different values of h and by the graphs, it is possible to notice that
when h approaches to 0, the solution of h-difference equation approaches to the solution of
the differential equation (case T0 = R). For this simulation, we consider f(z) = z2, N = 3,
α = 1 in (4.1).
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