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We consider measure functional differential equations (we write measure FDEs) of the formDx = f(xt, t)Dg,
where f is Perron–Stieltjes integrable, xt is given by xt(θ) = x(t + θ), θ ∈ [−r, 0], with r > 0, and Dx and
Dg are the distributional derivatives in the sense of the distribution of L. Schwartz, with respect to functions
x : [t0,∞) → Rn and g : [t0,∞) → R, t0 ∈ R, and we present new concepts of stability of the trivial
solution, when it exists, of this equation. The new stability concepts generalize, for instance, the variational
stability introduced by Š. Schwabik and M. Federson for FDEs and yet we are able to establish a Lyapunov-type
theorem for measure FDEs via theory of generalized ordinary differential equations (also known as Kurzweil
equations).
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1 Introduction

The theory of measure differential equations has been attracting the attention by several researchers (see [4–10,
17–26, 31, 32]). It generalizes differential equations with impulses, dynamic equations on time scales, impulsive
dynamic equations on time scales among others (see [9, 10, 31]). Moreover, these equations are a powerful tool
for applications, since most models for biological neural nets, pulse frequency modulation systems, automatic
control problems with impulsive inputs, many physics processes are described better by such equations. See, for
instance, [4, 6, 7, 23–26] and the references therein.

In the present paper, we deal with a more general setting of equations called measure functional differential
equations. These equations were introduce recently by [9] and since then, they were extensively investigated by
several mathematicians (see [5, 9, 10, 20, 32]).

An initial value problem for a measure functional differential equation (we write measure FDEs, for short) can
be given in the form{

Dx = f(xt, t)Dg,

xt0 = φ,
(1)

where xt is given by xt(θ) = x(t+ θ), θ ∈ [−r, 0], with r > 0 and Dx and Dg are the distributional derivatives,
in the sense of the distribution of L. Schwartz, with respect to the functions x and g.
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2 M. Federson, J. G. Mesquita, and E. Toon: Lyapunov theorems

The integral form corresponding to (1) is given by x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s), t ≥ t0,

xt0 = φ,

(2)

where we consider the integral in the sense of Perron–Stieltjes taken with respect to a nondecreasing function
g : [t0,∞)→ R.

We introduce some new concepts of stability for the trivial solution of measure FDEs which generalize some
concepts presented in the literature as the variational stability for FDEs (see [12] and [13]). We also present a
correspondence between measure FDEs and generalized ODEs, using more general conditions than those pre-
sented in [9]. Then, we introduce some new concepts of stability for the trivial solution of generalized ODEs and
relate these new concepts to the corresponding ones for measure FDEs. Finally, we prove Lyapunov-type theo-
rems for generalized ODEs and, by the correspondence between generalized ODEs and measure FDEs, we prove
Lyapunov-type theorems for measure FDEs. All these stability properties and Lyapunov theorems for measure
functional differential equations were studied by means of two different measures, which turns our results more
general than the other ones presented previously in the literature. The generality and unification of this result are
well-known (see [17, 21]).

The present paper is organized as follows. The second section is devoted to the presentation new stability
concepts for measure FDEs. In the third section, we present a correspondence between generalized ODEs and
measure FDEs, generalizing the results from [9] and also, we present existence-uniqueness theorems for solutions
of these equations. The fourth section is devoted to stability concepts for generalized ODEs. In the fifth section,
we establish a correspondence between the new stability definitions for the trivial solution of a generalized ODEs
and a measure FDE of the above type. The sixth section is devoted to prove some Lyapunov theorems for gener-
alized ODEs. In the seventh section, we prove, using the correspondences between solutions, Lyapunov theorems
for measure FDEs. The paper also contains two appendixes which describe the basis of Perron integration and
the fundamental results of the theory of generalized ODEs.

2 Measure functional differential equations

In this section, we introduce new concepts of stability for measure FDEs. Let r, t0 ∈ R, with r > 0 and consider
the following problem

Dx = f(xt, t)Dg, (3)

where xt is given by the formula xt(θ) = x(t + θ), θ ∈ [−r, 0], r > 0 and Dx,Dg are the distributional
derivatives, in the sense of distributions of L. Schwartz (see [7]), of regulated functions x : [t0,∞) → Rn and
g : [t0,∞)→ R. In particular, we consider g nondecreasing and left-continuous.

Let a ∈ R. By G([a,∞),Rn) we denote the space of regulated functions from [t0,∞) to Rn with the
topology of uniform convergence. By regulated function we mean that the left and right limits at a point t ≥ a
exist whenever they can be defined. Then by BG ([a,∞),Rn) we denote the subspace of G([a,∞),Rn) of
bounded functions.

Next, we define a special set of functions in BG ([t0 − r,∞),Rn) with a property which we call the prolon-
gation property.

Definition 2.1 LetO be an open subset ofBG ([t0 − r,∞),Rn). We say thatO has the prolongation property,
if for every y ∈ O and every t̄ ∈ [t0 − r,∞), the function ȳ given by

ȳ(t) =

{
y(t), t0 − r ≤ t ≤ t̄,
y(t̄), t̄ < t <∞

is also an element of O.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 3

Now, having a set O ⊂ BG ([t0 − r,∞),Rn) with the prolongation property, we also consider the set

S = {yt; y ∈ O, t ∈ [t0,∞)} ⊂ BG([−r, 0],Rn)

and we assume that the function f : S × [t0,∞) → Rn on the right-hand side of the measure FDE (3) is such
that

f(0, t) = 0 for every t ∈ [t0,∞)

so that y ≡ 0 is a solution of (3) on [t0 − r,∞), and the following conditions are satisfied:

(H1) For all y ∈ O, the mapping t 7→ f(yt, t) is Perron–Stieltjes integrable with respect to g : [t0,∞) → R
which we assume to be nondecreasing.

(H2) There exists a function M : [t0,∞) → R which is locally Lebesgue–Stieltjes integrable with respect to g
such that the inequality ∣∣∣∣∫ v

γ

f(ys, s)dg(s)

∣∣∣∣ ≤ ∫ v

γ

M(s)dg(s)

holds for every y ∈ O and every γ, v ∈ [t0,∞).

(H3) There exists a function L : [t0,∞) → R which is locally Lebesgue–Stieltjes integrable with respect to g
such that the inequality∣∣∣∣∫ v

γ

[f(ys, s)− f(zs, s)]dg(s)

∣∣∣∣ ≤ ∫ v

γ

L(s)‖ys − zs‖∞dg(s)

holds for every y, z ∈ O and every γ, v ∈ [t0,∞).

Clearly, the integral form of (3) is given by

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s), t ≥ t0, (4)

where the integral on the right-hand side is in the sense of Perron–Stieltjes integral taken with respect to g :
[t0,∞)→ R which we are assuming to be nondecreasing and left-continuous.

In the following lines, we recall the classical definitions of Lyapunov stability, uniform (Lyapunov) stability
and uniform asymptotic stability of the trivial solution of (3). See [15], for instance.

Definition 2.2 The trivial solution of system (3) is called Lyapunov stable, if for every ε > 0 and γ ∈ R, there
exists δ = δ(ε, γ) > 0 such that if φ ∈ S and y : [γ, v]→ Rn, with [γ, v] ⊂ [t0,∞) and [γ, v] 3 t0, is a solution
of (3) such that yγ = φ and

‖φ‖∞ < δ,

then

‖yt(γ, φ)‖∞ < ε, t ∈ [γ, v].

Definition 2.3 The trivial solution of system (3) is called uniformly stable, if the number δ in Definition 2.2
is independent of γ.

Definition 2.4 The solution y ≡ 0 of (3) is called uniformly asymptotically stable, if there exists a δ0 > 0 and
for every ε > 0, there exists a T = T (ε, δ0) ≥ 0 such that if φ ∈ S, and y : [γ, v] → Rn, with [γ, v] ⊂ [t0,∞)
and [γ, v] 3 t0, is solution of (3) such that yγ = φ and

‖φ‖∞ < δ0,

then

‖yt(γ, φ)‖∞ < ε, t ∈ [γ, v] ∩ [γ + T,∞).
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Now, we consider the perturbed measure FDE

Dy = f (yt, t)Dg + p(t)Du, t ≥ t0 (5)

where p : [t0,∞)→ R. Again, we consider g, u : [t0,∞)→ R to be nondecreasing and left-continuous.
The solution of (5) has to be interpreted as a solution of the integral equation

y (t) = y(t0) +

∫ t

t0

f (ys, s) dg(s) +

∫ t

t0

p(s)du(s), t ≥ t0 (6)

where the integrals are in Perron–Stieltjes sense.
We assume that the conditions (H1), (H2) and (H3) are fulfilled and that the function p : [t0,∞) → Rn

satisfies:

(H4) The Perron–Stieltjes integral
∫ t
t0
p(s)du(s) exists for every t ∈ [t0,∞);

(H5) There exists a function K : [t0,∞) → R which is locally Lebesgue–Stieltjes integrable with respect to u
such that ∣∣∣∣∫ v

γ

p(s)du(s)

∣∣∣∣ ≤ ∫ v

γ

K(s)du(s),

for all γ, v ∈ [t0,∞).

Under conditions (H1) to (H5), a solution y of (6) is regulated and left continuous, that is, y ∈ G−([t0,∞),Rn).
See [9] for a proof of this fact.

The following definitions are based on the definitions given by A. Halanay in [14] concerning integral stability.
Definition 2.5 The solution y ≡ 0 of (3) is said to be integrally stable, if for every ε > 0 there is a δ = δ(ε) >

0 such that if ψ ∈ S with ‖ψ‖∞ < δ and

sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < δ,

where t0 ≤ γ ≤ v <∞, then
‖ȳt(γ, ψ)‖∞ < ε, for every t ∈ [γ, v],

where ȳ(t; γ, ψ) is a solution of the perturbed equation (5) with ȳγ = ψ.

Definition 2.6 The solution y ≡ 0 of (3) is called integrally attracting, if there is a δ̃ > 0 and for every ε > 0,
there exist a T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0 such that if

‖ψ‖∞ < δ̃ and sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < ρ,

where t0 ≤ γ ≤ v <∞, then

‖ȳt(γ, ψ)‖∞ < ε for all t ≥ γ + T, t ∈ [γ, v],

where ȳ(t; γ, ψ) is a solution of the equation (6) satisfying ȳγ = ψ.
Definition 2.7 The solution y ≡ 0 of (3) is called integrally asymptotically stable, if it is integrally stable and

integrally attracting.
Remark 2.8 The reader may note that, if the solution y ≡ 0 of (3) is integrally stable, then it is uniformly

stable. An analogue assertion holds for the asymptotic stability, that is, if the solution y ≡ 0 of (3) is integrally
asymptotically stable, then it is uniformly asymptotically stable.

Remark 2.9 In the present work, we are considering system involving two different measures as described
in equation (6), since they are a powerful tool for applications. For more details, the reader may want to consult
[17, 21].
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Before to proceed, we present an example to illustrate the generality of our definitions. We inspired ourselves
by [24].

Example 2.10 Define a function p : [0,∞)→ R as follows:

p(t) =



2, for t = 0,

t cos
π

2t
+ 2, for 0 < t ≤ 1,

2, for t = 2n+ 1, n is a positive integer,
1

t(t+ 1)
, for other values of t

(7)

and define the function u : [0,∞)→ R as follows:

u(t) =


1, for 0 ≤ t < 1,

t2, for 1 ≤ t < 2,

t2 +

n∑
k=1

2k, for 2n ≤ t < (2n+ 1), n = 1, 2, . . . .

(8)

Notice that p(t) 9 0 as t→∞ and∫ 2n

v

p(s)du(s) = 2

∫ 2n

v

ds

s− 1
+

n−1∑
k=n0/2

1

2k − 1
, (9)

where n0 is the smallest integer greater than v. Thus, by (9), we have∫ ∞
v

p(s)du(s) = +∞.

On the other hand, for 2n ≤ t < 2n+ 1, we have∫ 2n+1

2n

p(s)du(s) = 2

∫ 2n+1

2n

ds

s− 1
+

n∑
k=n0/2

1

2k − 1
−

n−1∑
k=n0/2

1

2k − 1

= 2 log(2n)− 2 log(2n− 1) +

n∑
k=n0/2

1

2k − 1
−

n−1∑
k=n0/2

1

2k − 1

= 2 log

(
2n

2n− 1

)
+

1

2n− 1

= 2 log

(
1 +

1

2n− 1

)
+

1

2n− 1
→ 0

as n→ +∞, which implies that t→ +∞, since 2n ≤ t < 2n+ 1. In other words, for every ε > 0, there exists
ρ(ε) > 0 and T = T (ε) such that

sup
t∈[2n,2n+1]

∣∣∣∣∫ t

2n

p(s)du(s)

∣∣∣∣ < ρ,

for t ∈ [2n, 2n + 1] and t ≥ 2n + T (ε). Thus, choosing v = 2n and γ = 2n + 1 the Definition 2.6, we obtain
that if the solution y ≡ 0 of (3) is integrally attracting, then

‖ȳt(γ, ψ)‖∞ < ε, for every t ∈ [γ, v] ∩ [γ + T,+∞),

where ȳ(t; γ, ψ) is a solution of the perturbed equation (5) with ȳγ = ψ.
This example shows that our conditions are very general, since they rely on the Stieltjes integral itself and not

on the integrand. Moreover, this example illustrates that our setting of equations is more general than the one
considered in [12], since the function p is regulated, but not of bounded variation. See [3], for instance.
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3 Measure RFDEs regarded as generalized ODEs

In this section, we present a correspondence between measure FDEs and generalized ODEs, which generalizes
the correspondence presented in [9].

At first, suppose the function f : S × [t0,∞) → Rn satisfies conditions (H1), (H2) and (H3) and p :
[t0,∞) → Rn satisfies conditions (H4) and (H5). Assume, as before, that the functions u : [t0,∞) → R and
g : [t0,∞)→ R are nondecreasing (not necessarily left-continuous).

Let BG−([t0 − r,∞),Rn) denote the set of functions from BG([t0 − r,∞),Rn) which are left-continuous.
Let O a subset of BG−([t0 − r,∞),Rn) with the prolongation property.

For y ∈ O and t ∈ [t0,∞), define

F (y, t)(ϑ) =



0, t0 − r ≤ ϑ ≤ t0,∫ ϑ

t0

f(ys, s)dg(s), t0 ≤ ϑ ≤ t <∞,∫ t

t0

f(ys, s)dg(s), t ≤ ϑ <∞

(10)

and

P (t) (ϑ) =



0, t0 − r ≤ ϑ ≤ t0,∫ ϑ

t0

p(s)du(s), t0 ≤ ϑ ≤ t <∞,∫ t

t0

p(s)du(s), t ≤ ϑ <∞.

(11)

Then,

G (y, t) = F (y, t) + P (t) (12)

defines an element G (y, t) of BG− ([t0 − r,∞),Rn) and G (y, t) (ϑ) ∈ Rn is the value of G (y, t) at a point
ϑ ∈ [t0 − r,∞), that is,

G : O × [t0,∞)→ BG−([t0 − r,∞),Rn).

In order to carry on with our correspondence results, we now need to consider a special type of generalized
ODEs, whose definition is presented in details in the Appendix B (see Definition B.1).

Consider the following generalized ODE

dx

dτ
= DG(x, t), (13)

where the function G is given by (12).
Let h : [t0,∞)→ R be defined by

h(t) =

∫ t

t0

[M(s) + L(s)]dg(s) +

∫ t

t0

K(s)du(s), t ∈ [t0,∞). (14)

Clearly the function h is nondecreasing (and left-continuous whenever u and g are so).
Under the above assumptions, it is a matter of routine to prove that the function G given by (12) belongs to

the class F(Ω, h), given by Definition B.3 in Appendix B, with Ω = O × [t0,∞).
The next result, namely Theorem 3.1, gives a correspondence between the solution of an initial value problem

for a generalized ODEs and the solution of an initial value problem for a measure FDE. Theorem 3.1 generalizes
Theorems 3.8 and 3.9 from [9]. We omit the proof here since it is very similar to the one presented in [32].

Theorem 3.1 Consider O ⊂ G([t0− r, t0 +σ],Rn) with the prolongation property, let S = {xt; x ∈ O, t ∈
[t0, t0 + σ]} and φ ∈ S. Assume that g : [t0, t0 + σ] → R and u : [t0, t0 + σ] → R are nondecreasing,
f : S × [t0, t0 + σ] → Rn satisfies conditions (H1), (H2), (H3) and p : [t0, t0 + σ] → Rn satisfies conditions
(H4) and (H5). Let G be given by (12).

Copyright line will be provided by the publisher



mn header will be provided by the publisher 7

(i) Let y : [t0 − r, t0 + σ]→ O be a solution of the measure functional differential equation

Dy = f(yt, t)Dg + p(t)Du, t ∈ [t0, t0 + σ], (15)

with initial condition yt0 = φ. For every t ∈ [t0 − r, t0 + σ], let

x(t)(ϑ) =

{
y(ϑ), ϑ ∈ [t0 − r, t],
y(t), ϑ ∈ [t, t0 + σ].

Then the function x : [t0, t0 + σ]→ O is a solution of the generalized ordinary differential equation

dx

dτ
= DG (x, t)

with G given by (12) and initial condition

x(t0)(ϑ) =

{
φ(ϑ− t0), for ϑ ∈ [t0 − r, t0],

x(t0)(t0), for t0 ≤ ϑ < t0 + σ.
(16)

(ii) Conversely, if x : [t0, t0 + σ]→ O is a solution of the generalized ordinary differential equation

dx

dτ
= DG (x, t) ,

with initial condition

x(t0)(ϑ) =

{
φ(ϑ− t0), t0 − r ≤ ϑ ≤ t0,
x(t0)(t0), t0 ≤ ϑ < t0 + σ,

then the function y : [t0 − r, t0 + σ]→ O defined by

y (ϑ) =

{
x (t0) (ϑ) , t0 − r ≤ ϑ ≤ t0
x (ϑ) (ϑ) , t0 ≤ ϑ < t0 + σ

is a solution of the measure functional differential equation

Dy = f(yt, t)Dg + p(t)Du, t ∈ [t0, t0 + σ], (17)

with initial condition yt0 = φ.

Now, one can use Theorem 3.1 and Theorem B.4 from Appendix B to obtain the next existence-uniqueness
result for measure FDEs. A proof of it follows as in Theorem 5.3 from [9].

Theorem 3.2 Assume that O ⊂ G([t0 − r, t0 + σ],Rn) has the prolongation property, P = {xt; x ∈
O, t ∈ [t0, t0 + σ]}, g : [t0, t0 + σ] → R and u : [t0, t0 + σ] → R are left-continuous and nondecreasing
functions, f : P × [t0, t0 + σ] → Rn satisfies conditions (H1), (H2), (H3) and p : [t0, t0 + σ] → Rn satisfies
conditions (H4) and (H5). Let G : O × [t0, t0 + σ]→ G([t0 − r, t0 + σ],Rn) be given by (12) and assume that
G(x, t) ∈ G([t0 − r, t0 + σ],Rn) for x ∈ O and t ∈ [t0, t0 + σ]. If φ ∈ P is such that the function

z(t) =

{
φ(t− t0), t ∈ [t0 − r, t0],

φ(0) + f(φ, t0)∆+g(t0) + p(t0)∆+u(t0), t ∈ (t0, t0 + σ]

belongs to O, then there exist δ > 0 and a function y : [t0 − r, t0 + δ]→ Rn which is the unique solution of the
measure functional differential equation{

Dy = f(ys, s)Dg + p(s)Du,

yt0 = φ.
(18)
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4 New concepts of stability for generalized ODEs

Let X be a Banach space and Bc = {x ∈ X; ‖x‖ < c}, where c > 0. Define Ω = Bc × [t0,∞). Suppose F :

Ω→ X belongs toF(Ω, h2), where h2(t) =
∫ t
t0

[M(s)+L(s)]dg(s). Assume further that F (0, t)−F (0, s) = 0,
for t, s ∈ [t0,+∞). Then, for every [γ, v] ⊂ [t0,∞), we have∫ v

γ

DF (0, t) = F (0, v)− F (0, γ) = 0,

which implies that x ≡ 0 is a solution on [t0,∞) of the generalized ODE

dx

dτ
= DF (x, t). (19)

Recall (see [27]) that if x : [γ, v] ⊂ [t0,∞)→ X is a solution of (19), then the following assertions hold:

(a) x is of bounded variation on [γ, v];

(b) x(s) = x(γ) +

∫ s

γ

DF (x(τ), t), for s ∈ [γ, v], by definition.

Now, we present some new concepts concerning stability of the trivial solution of generalized ODEs.

Definition 4.1 The trivial solution x ≡ 0 of (19) is called regularly stable, if for every ε > 0, there exists
δ = δ(ε) > 0 such that if x : [γ, v]→ Bc, with t0 ≤ γ < v <∞, is a regulated function which satisfies

‖x(γ)‖ < δ and sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ < δ,

then

‖x(t)‖ < ε, t ∈ [γ, v].

Definition 4.2 The trivial solution x ≡ 0 of (19) is called regularly attracting if there exists a δ0 > 0 and for
every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if x : [γ, v]→ Bc, with t0 ≤ γ < v <∞, is
a regulated function satisfying

‖x(γ)‖ < δ0 and sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ < ρ,

then

‖x(t)‖ < ε, for t ∈ [γ, v] ∩ [γ + T,∞) and γ ≥ t0.

Definition 4.3 The trivial solution x ≡ 0 of (19) is called regularly asymptotically stable, if it is regularly
stable and regularly attracting.

Note that if the trivial solution x ≡ 0 of (19) is regularly stable, then it is variational stable in the sense defined
by Štefan Schwabik in [28] (see also [27]). Similar statements hold for regular attractivity and regular asymptotic
stability.

Besides the generalized ODE (19), we consider the perturbed generalized ODE

dx

dτ
= D[F (x, t) + P (t)], (20)

where F : Bc × [t0,∞)→ X and P : [t0,∞)→ X , and consider the following definitions.
Let G−([γ, v], X) denote the space of regulated functions from [γ, v] to X which are left-continuous.
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Definition 4.4 The trivial solution x ≡ 0 of (19) is called regularly stable with respect to perturbations, if for
every ε > 0, there exists δ = δ(ε) > 0 such that, if ‖x0‖ < δ and P ∈ G−([γ, v], X) with

sup
s∈[γ,v]

‖P (s)− P (γ)‖ < δ,

then
‖x̄(t, γ, x0)‖ < ε, for every t ∈ [γ, v]

where x̄(t, γ, x0) is a solution of the perturbed generalized ODE (20), with initial condition x̄(γ, γ, x0) = x0 and
[γ, v] ⊂ [t0,∞).

Definition 4.5 The trivial solution x ≡ 0 of (19) is called regularly attracting with respect to perturbations,
if there exists δ̃ > 0 and for every ε > 0, there exist T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0 such that, if

‖x0‖ < δ̃ and sup
s∈[γ,v]

‖P (s)− P (γ)‖ < ρ

with P ∈ G−([γ, v], X), then

‖x̄(t, γ, x0)‖ < ε, for all t ≥ γ + T, t ∈ [γ, v]

where x̄(t, γ, x0) is a solution of the perturbed generalized ODE (20) with initial condition x̄(γ, γ, x0) = x0 and
[γ, v] ⊂ [t0,∞).

Definition 4.6 The trivial solution x ≡ 0 of (19) is called regularly asymptotically stable with respect to
perturbations if it is both stable and attracting with respect to perturbations.

The following result shows us how all the previous concepts of stability can be related.

Theorem 4.7 The following statements hold.

(i) The trivial solution x ≡ 0 of (19) is regularly stable, if and only if, it is regularly stable with respect to
perturbations.

(ii) The trivial solution x ≡ 0 of (19) is regularly attracting, if and only if, it is regularly attracting with respect
to perturbations.

(iii) The trivial solution x ≡ 0 of (19) is regularly asymptotically stable, if and only if, it is regularly asymptoti-
cally stable with respect to perturbations.

P r o o f. Let us prove (i). Assume that the trivial solution x ≡ 0 of (19) is regularly stable. Let ε > 0 and
δ = δ(ε) > 0 be given according to Definition 4.4.

Let x(t) = x(t, γ, x0) be a solution of the perturbed generalized equation (20) on [γ, v]. Then, by the defini-
tion, we obtain

x(s)− x(γ) =

∫ s

γ

DF (x(τ), t) + P (s)− P (γ). (21)

Also, suppose ‖x(γ)‖ = ‖x(γ, γ, x0)‖ < δ and sups∈[γ,v] ‖P (s)− P (γ)‖ < δ. It follows from (21) that

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ = sup
s∈[γ,v]

‖P (s)− P (γ)‖ < δ.

Then, by regularly stability, we have

‖x(t)‖ = ‖x(t, γ, x0)‖ < ε for t ∈ [γ, v]

and the trivial solution of (19) is regularly stable with respect to perturbations.
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Conversely, if the trivial solution x ≡ 0 of (19) is regularly stable with respect to perturbations, let x : [γ, v]→
Bc, t0 ≤ γ < v <∞, be regulated function on [γ, v] such that

‖x(γ)‖ < δ and sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ < δ,

where δ > 0 corresponds to some ε > 0 from the Definition 4.4.
For s ∈ [γ, v], define

P (s) = P (γ) + x(s)− x(γ)−
∫ s

γ

DF (x(τ), t).

Then, for all s1, s2 ∈ [γ, v],

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t) + P (s2)− P (s1),

which implies that x is a solution of (20) on [γ, v]. Moreover,

sup
s∈[γ,v]

‖P (s)− P (γ)‖ = sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ < δ.

Thus the regular stability with respect to perturbations implies ‖x(t)‖ = ‖x(t, γ, x0)‖ < ε, for all t ∈ [γ, v],
which implies that the trivial solution x ≡ 0 of (19) is regularly stable.

Now, assume that the trivial solution x ≡ 0 of (19) is regularly attracting. Then there exists δ̃ > 0 and for
every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if x : [γ, v] → Bc, t0 ≤ γ < v < ∞, is a
regulated function such that ‖x(γ)‖ < δ̃ and

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ < ρ,

then

‖x(t)‖ < ε, t ∈ [γ, v] ∩ [γ + T,∞), γ ≥ t0.

Denote x(t) = x(t, γ, x0) the solution of the perturbed generalized equation (20) satisfying x(γ, γ, x0) = x0.
Suppose there exists δ̃ > 0 and for every ε > 0, there exists ρ = ρ(ε) > 0 such that ‖x0‖ < δ̃ and

sup
s∈[γ,v]

‖P (s)− P (γ)‖ < ρ.

Moreover, suppose P ∈ G−([γ, v], X). It follows that ‖x0‖ = ‖x(γ)‖ < δ̃ and by the definition of a solution of
equation (20), we obtain

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF (x(τ), t)

∥∥∥∥ = sup
s∈[γ,v]

‖P (s)− P (γ)‖ < ρ.

Hence, since x is regularly attracting, we have

‖x(t, γ, x0)‖ = ‖x(t)‖ < ε, for all t ≥ γ + T, t ∈ [γ, v],

that is, the trivial solution x ≡ 0 of (19) is regularly attracting with respect to perturbations.
Conversely, we assume that the trivial solution x ≡ 0 of (19) is regularly attracting with respect to perturba-

tions. Let x : [γ, v]→ Bc, t0 ≤ γ < v <∞, be a regulated and left continuous function on [γ, v] satisfying

‖x(γ)‖ < δ̃ and sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)

∫ s

γ

DF (x(τ), t)

∥∥∥∥ < ρ.
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Again, for s ∈ [γ, v], let P (s) = P (γ) + x(s) − x(γ) −
∫ s
γ
DF (x(τ), t). Then, x(t) is a solution of (20) on

[γ, v]. Thus,
sup
s∈[γ,v]

‖P (s)− P (γ)‖ < ρ.

Therefore, Definition 4.5 yields

‖x(t)‖ < ε, t ∈ [γ, v] ∩ [γ + T,∞), γ ≥ t0.

which implies the regular attractivity of the trivial solution of (19).
Finally, item (iii) follows from items (i) and (ii) and the proof is complete.

5 Stability relations between generalized ODEs and measure FDEs

We are now able to present a result which relates the concepts of regular stability and regular attractivity of the
trivial solution of the generalized ODE (24) and the concepts of integral stability and integral attractivity of the
trivial solution of its corresponding measure FDE (22).

Consider the measure FDE

Dx = f(xt, t)Dg, (22)

where f : S×[t0,∞)→ Rn satisfies the conditions (H1), (H2) and (H3) and g : [t0,∞)→ R is a nondecreasing
and left-continuous function. Furthermore, assume that Dx and Dg are the distributional derivatives with respect
to x and g in the sense of L. Schwartz and f(0, t) = 0 for every t ∈ [t0,∞) so that y ≡ 0 is necessarily a solution
of (22).

Consider the function
F : O × [t0,∞)→ BG−([t0 − r,∞),Rn)

defined by

F (y, t)(ϑ) =



0, t0 − r ≤ ϑ ≤ t0,∫ ϑ

t0

f(ys, s)dg(s), t0 ≤ ϑ ≤ t <∞,∫ t

t0

f(ys, s)dg(s), t ≤ ϑ <∞.

(23)

Since f(0, t) = 0, for every t ∈ [t0,∞), then F (0, t) = 0, for all t ∈ [t0,∞). Hence, as we observed in the
previous section, x ≡ 0 is a solution, on [t0,∞), of the generalized ODE

dx

dτ
= DF (x, t). (24)

We also consider the perturbed measure FDE

Dy = f(yt, t)Dg + p(t)Du, (25)

where p : [t0,∞) → Rn satisfies conditions (H4) and (H5) and u : [t0,∞) → R is a nondecreasing and
left-continuous function. Moreover, Du is the distributional derivative in the sense of L. Schwartz in respect to
u.

By Theorem 3.1, the generalized ODE corresponding to the perturbed FDE (25) is given by

dx

dτ
= DG(x, t) = D[F (x, t) + P (t)], (26)
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12 M. Federson, J. G. Mesquita, and E. Toon: Lyapunov theorems

where F : O × [t0,∞)→ BG−([t0 − r,∞),Rn) is given by (23) and P : [t0,∞)→ BG−([t0 − r,∞),Rn) is
given by

P (t) (ϑ) =



0, t0 − r ≤ ϑ ≤ t0,∫ ϑ

t0

p(s)du(s), t0 ≤ ϑ ≤ t <∞,∫ t

t0

p(s)du(s), t ≤ ϑ <∞.

(27)

Theorem 5.1 Suppose the function f : S × [t0,∞)→ Rn satisfies conditions (H1), (H2) and (H3). Assume
that the functions g, u : [t0,∞) → R are nondecreasing and left-continuous and the function p : [t0,∞) → Rn
satisfies conditions (H4) and (H5). Also, suppose that the functions F : O × [t0,∞)→ BG−([t0 − r,∞),Rn)
and P : [t0,∞)→ BG−([t0−r,∞),Rn) are given, respectively, by (23) and (27). Then the following statements
hold:

(i) The trivial solution y ≡ 0 of (22) is integrally stable, if and only if, the trivial solution x ≡ 0 of (24) is
regularly stable.

(ii) If the trivial solution x ≡ 0 of (24) is regularly attracting, then the trivial solution y ≡ 0 of (22) is integrally
attracting.

(iii) If the trivial solution x ≡ 0 of (24) is regularly asymptotically stable, then the trivial solution y ≡ 0 of (22)
is integrally asymptotically stable.

P r o o f. We start by proving (i). Suppose the trivial solution of (22) is integrally stable. Then given ε > 0,
there exists δ = δ(ε) > 0 such that, if φ ∈ P with ‖φ‖ < δ and

sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < δ,

then

|ȳt(γ, φ)| < ε

2
, t ∈ [γ, v],

where ȳ(t; γ, φ) is a solution of (25) such that ȳγ = φ.
We will prove that the trivial solution of generalized equation (24), with F given by (10), is regularly stable

with respect to perturbations, then the result will follow by Proposition 4.7.
Let x(t; γ, x0) be a solution of the perturbed generalized ODE (26) with the initial condition x(γ; γ, x0) = x0,

where F and P are given by (10) and (11), respectively. Let ε > 0 and suppose that there exists a δ = δ(ε) > 0
such that δ < ε/2 and moreover, assume that

‖x0‖∞ < δ and sup
t∈[γ,v]

‖P (t)− P (γ)‖ < δ,

where x0 ∈ BG−([t0 − r,∞),Rn) and P ∈ G−([γ, v],Rn).
We have ‖x(γ)‖ = ‖x(γ; γ, x0)‖ = ‖x0‖ < δ which means that supθ∈[γ−r,∞) |x(γ)(θ)| < δ and therefore

supθ∈[γ−r,γ] |φ(θ − γ)| < δ/2. Thus,

‖φ‖∞ <
δ

2
.

Since x is a solution of the perturbed generalized ODE on [γ, v], we have

x(u2)− x(u1) =

∫ u2

u1

DF (x(τ), t) + P (u2)− P (u1),
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for u1, u2 ∈ [γ, v].
Therefore,

sup
t∈[γ,v]

∥∥∥∥x(t)− x(t0)−
∫ t

t0

DF (x(τ), s)

∥∥∥∥ = sup
t∈[γ,v]

‖P (s)− P (t0)‖ < δ/2.

Then, it follows that

‖P (t)− P (γ)‖ = sup
ϑ∈[γ−r,t]

|P (t)(ϑ)− P (γ)(ϑ)|

≥ sup
ϑ∈[γ,t]

|P (t)(ϑ)− P (γ)(ϑ)|

= sup
ϑ∈[γ,t]

∣∣∣∣∣
∫ ϑ

γ

p(s)du(s)

∣∣∣∣∣ ≥
∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ (28)

and we get

sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < δ

2
.

Thus, by the integral stability of the trivial solution of (22), we have

|y(t)| < ε/2, for all t ∈ [γ, v].

Finally, for t ∈ [γ, v], we have

‖x(t)‖∞ = sup
θ∈[γ−r,∞)

|x(t)(θ)| = sup
θ∈[γ−r,t]

|y(θ)|

≤ ‖φ‖∞ + sup
θ∈[γ,t]

|y(θ)| ≤ δ

2
+
ε

2
< ε

since δ < ε, and we have the sufficiency of item (i).
Now, using (i) from Proposition 4.7, we assume that the trivial solution of (24) is regularly stable with respect

to perturbations. Thus, given ε > 0, let δ = δ(ε) > 0 be the quantity from Definition 4.4.
Let y(t; γ, φ) be a solution of the perturbed measure FDE (25). Suppose φ ∈ P with ‖φ‖∞ < δ and

sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < δ/2.

We want to prove that y ≡ 0 is integrally stable, that is, |y(t; γ, φ)| < ε, t ∈ [γ, v].
Let x(t; γ, x0) be the solution of the perturbed generalized ODE (26) with F given by (10) and P given by

(11), that is, x is the solution corresponding to y obtained according to Proposition 3.1.
By the definition of function P and from the fact that supt∈[γ,v]

∣∣∣∫ tγ p(s)du(s)
∣∣∣ < δ/2, we obtain

sup
t∈[γ,v]

‖P (t)− P (γ)‖ < δ/2.

Thus, from the regular stability with respect to perturbations of the trivial solution of (26), we obtain ‖x(t)‖ < ε,
which implies

sup
θ∈[γ−r,v]

|x(t)(θ)| < ε, t ∈ [γ, v].

Therefore, the relation in Proposition 3.1 implies

sup
θ∈[γ−r,t]

|y(θ)| < ε, t ∈ [γ, v].
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In particular,

sup
θ∈[γ,v]

|y(θ)| ≤ sup
θ∈[γ−r,v]

|y(θ)| < ε.

Now, we will prove (ii). Suppose the trivial solution of generalized ODE (24) is regularly attracting with
respect to perturbations. Then there exists δ̃ > 0 and given ε > 0, let T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 be as in
Definition 4.5.

Let y(t; γ, φ) be a solution of the perturbed retarded equation (25). Suppose

‖φ‖∞ < δ̃ and sup
t∈[γ,v]

∣∣∣∣∫ t

γ

p(s)du(s)

∣∣∣∣ < ρ.

Then, it implies that
sup
t∈[γ,v]

‖P (t)− P (γ)‖ < ρ.

By Proposition 3.1, it follows that ‖x0‖∞ = ‖φ‖∞ < δ̃. Thus the regularly attractivity with respect to perturba-
tions of the trivial solution of (24) implies

‖x(t)‖∞ = ‖x(t; γ, x0)‖∞ < ε, t ≥ γ + T, t ∈ [γ, v].

Therefore, for t ≥ γ + T and taking T (ε) > r, we have by Proposition 3.1, for t ∈ [γ, v],

|y(t)| = |y(t; γ, φ)| = |x(t)(t)| ≤ ‖x(t)‖∞ < ε.

Assertion (iii) follows from (i), (ii) and from Proposition 4.7.

6 Lyapunov theorems for generalized ODEs

In this section, we prove some Lyapunov-type theorems for generalized ODEs using the concepts introduced
before. We start by considering the following set

Bρ = {x ∈ O; ‖x‖ ≤ ρ},

where O ⊂ BG([t0 − r,∞),Rn) with the prolongation property.
In what follows, we present a result which will be essential to our purposes. The proof is inspired by [27,

Lemma 10.12].
Lemma 6.1 Let G ∈ F(Ω, h). Suppose V : [t0,∞) × Bρ → R is such that V (·, x) : [t0,∞) → R is

continuous from the left on (t0,∞) for x ∈ Bρ and satisfies

|V (t, z)− V (t, y)| ≤ K‖z − y‖, z, y ∈ Bρ, t ∈ [t0,∞), (29)

where K is a positive constant. Furthermore, suppose there exists a function Φ : Bρ → R such that for every
solution x : [a, b]→ Bρ, [a, b] ⊂ [t0,∞), of (24), we have

V̇ (t, x(t)) = lim sup
η→0+

V (t+ η, x(t+ η))− V (t, x(t))

η
≤ Φ(x(t)), t ∈ [a, b]. (30)

If x : [γ, v]→ Bρ, t0 ≤ γ < v <∞, is left-continuous on (γ, v] and of bounded variation on [γ, v], then

V (v, x(v))− V (γ, x(γ)) ≤ K sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥+M(v − γ), (31)

where M = sup
t∈ [γ,v]

Φ(x(t)).
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P r o o f. Let x : [γ, v] → Bρ be a left-continuous function on (γ, v] and regulated on [γ, v] ⊂ [t0,∞).
By [27], Corollary 3.16, the integral

∫ v
γ
DG(x(τ), t) exists.

Take σ ∈ [γ, v]. By Theorem B.4 from Appendix B, equation (24) has a local solution, say, x : [σ, σ +
η1(σ)] → Bρ on [σ, σ + η1(σ)], satisfying the initial condition x(σ) = x(σ). It is clear that the integral∫ σ+η1(σ)
σ

DG(x(τ), t) exists.
Let η2 > 0 be arbitrarily small such that η2 ≤ η1(σ) and σ + η2 ≤ v. Then the integral

∫ σ+η2
σ

DG(x(τ), t)

exists and the integral
∫ σ+η2
σ

D[G(x(τ), t)−G(x(τ), t)] also exists by the property of integrability on subinter-
vals. Therefore, given ε > 0, there exists a gauge δ on [σ, σ + η2] corresponding to ε in the definition of the last
integral and we can assume, without loss of generality, that η2 < δ(σ). By (30), we can take 0 < η ≤ η2 such
that the inequality

V (σ + η, x(σ + η))− V (σ, x(σ)) ≤ ηΦ(x(σ)) (32)

holds, and we can assume, by Corollary A.7(i) from Appendix A, that∥∥∥∥G(x(σ), σ + η)−G(x(σ), σ)−
∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥ < ηε

2K
(33)

and ∥∥∥∥G(x(σ), σ + η)−G(x(σ), σ)−
∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥ < ηε

2K
. (34)

Notice that ∥∥∥∥∫ σ+η

σ

D[G(x(τ), t)−G(x(τ), t)]

∥∥∥∥
−‖G(x(σ), σ + η)−G(x(σ), σ)−G(x(σ), σ + η) +G(x(σ), σ)‖

≤
∥∥∥∥∫ σ+η

σ

D[G(x(τ), t)−G(x(τ), t)]

−(G(x(σ), σ + η)−G(x(σ), σ)−G(x(σ), σ + η) +G(x(σ), σ))‖

≤
∥∥∥∥G(x(σ), σ + η)−G(x(σ), σ)−

∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥
+

∥∥∥∥G(x(σ), σ + η)−G(x(σ), σ)−
∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥ .
Also

‖G(x(σ), σ + η)−G(x(σ), σ)−G(x(σ), σ + η) +G(x(σ), σ)‖

≤ ‖x(σ)− x(σ)‖|h(σ + η)− h(σ)| = 0,

since x(σ) = x(σ) and (52) from the Appendix is fulfilled. Then, we have by (33) and (34),∥∥∥∥∫ σ+η

σ

D[G(x(τ), t)−G(x(τ), t)]

∥∥∥∥ ≤ ηε

K
. (35)

Moreover, (29) implies

V (σ + η, x(σ + η))− V (σ + η, x(σ + η)) ≤

≤ K‖x(σ + η)− x(σ + η)‖ = K‖x(σ + η)− x(σ) + x(σ)− x(σ + η)‖
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= K

∥∥∥∥x(σ + η)− x(σ)−
∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥ . (36)

Then (32), (35) and (36) imply

V (σ + η, x(σ + η))− V (σ, x(σ))

= V (σ + η, x(σ + η))− V (σ + η, x(σ + η)) + V (σ + η, x(σ + η))− V (σ, x(σ))

≤ K
∥∥∥∥x(σ + η)− x(σ)−

∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥+ ηΦ(x(σ))

≤ K
∥∥∥∥x(σ + η)− x(σ)−

∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥+ ηM

≤ K
∥∥∥∥x(σ + η)− x(σ)−

∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥
+K

∥∥∥∥∫ σ+η

σ

D[G(x(τ), t)−G(x(τ), t)]

∥∥∥∥+ ηM

≤ K
∥∥∥∥x(σ + η)− x(σ)−

∫ σ+η

σ

DG(x(τ), t)

∥∥∥∥+ ηε+ ηM. (37)

Given s ∈ [γ, v], we define

P (s) = x(s)−
∫ s

γ

DG(x(τ), t).

Since x is regulated on [γ, v], we have by [27, Corollary 3.16] that P is also regulated on [γ, v]. Then, we have

P (σ + η)− P (σ) = x(σ + η)− x(σ)−
∫ σ+η

γ

DG(x(τ), t) +

∫ σ

γ

DG(x(τ), t)

= x(σ + η)− x(σ)−
∫ σ+η

σ

DG(x(τ), t).

Now, we define
f(t) = K‖P (t)− P (σ)‖+ εt+Mt.

Notice that

V (σ + η, x(σ + η))− V (σ, x(σ)) ≤ K‖P (σ + η)− P (σ)‖+ ηε+ ηM

= f(σ + η)− f(σ). (38)

By (38) and by [27, Proposition 10.11], we have

V (v, x(v))− V (γ, x(γ)) ≤ f(v)− f(γ)

= K(‖P (v)− P (σ)‖ − ‖P (γ)− P (σ)‖) + ε(v − γ)

+ M(v − γ) ≤ K‖P (v)− P (σ)− [P (γ)− P (σ)]‖
+ ε(v − γ) +M(v − γ) = K‖P (v)− P (γ)‖+ ε(v − γ)

+ M(v − γ) ≤ K
(∥∥∥∥x(v)−

∫ v

γ

DG(x(τ), t)− x(γ)

∥∥∥∥)
+ ε(v − γ) +M(v − γ)

≤ K

∥∥∥∥x(v)− x(γ)−
∫ v

γ

DG(x(τ), t)

∥∥∥∥
+ ε(v − γ) +M(v − γ).

Since ε > 0 is arbitrary, the result follows as well.
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In what follows, we remind the reader the definition of Lyapunov functional for generalized ODEs.
Definition 6.2 We say that V : [t0,∞) × Bρ → R is a Lyapunov functional (with respect to the generalized

ODE (24)), if the following conditions are satisfied:

(i) V (·, x) : [t0,∞)→ R is continuous from the left on (t0,∞), for every x ∈ Bρ;

(ii) There exists a continuous and strictly increasing function b : R+ → R+ satisfying b(0) = 0 (we say that
such function is of Hahn class), such that

V (t, x) ≥ b(‖x‖),

for every t ∈ [t0,∞) and x ∈ Bρ;

(iii) For every solution x̄ : [γ, v]→ Bρ of (24), with [γ, v] ⊂ [t0,∞), we have

V̇ (t, x̄(t)) = lim sup
η→0+

V (t+ η, x̄(t+ η))− V (t, x̄(t))

η
≤ 0, t ∈ [γ, v],

that is, the right-derivative of V is non-positive along the solutions of (24).

The next result gives us conditions such that the trivial solution of (24) is regularly stable. We inspire the proof
in [27, Theorem 10.13].

Theorem 6.3 Let V : [t0,∞) × Bρ → R be a Lyapunov functional, where Bρ = {y ∈ X : ‖y‖ ≤ ρ},
0 < ρ < c. Suppose V satisfies the following conditions:

(i) V (t, 0) = 0, t ∈ [t0,∞);

(ii) There exists a constant K > 0 such that

|V (t, z)− V (t, y)| ≤ K‖z − y‖, t ∈ [t0,∞), z, y ∈ Bρ.

Then the trivial solution x ≡ 0 of (24) is regularly stable.

P r o o f. Let x : [γ, v]→ X be a regulated function on [γ, v] ⊂ [t0,∞). By condition (iii) from Definition 6.2
and by Lemma 6.1, we have

V (t, x(t)) ≤ V (γ, x(γ)) +K sup
s∈[γ,t]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥ , (39)

for every t ∈ [γ, v].
Since V is a Lyapunov functional, there exists a function b : R+ → R+ of Hahn class such that

V (t, x) ≥ b(‖x‖), (t, x) ∈ [γ, v]×Bρ. (40)

Let ε > 0 and b(ε) > 0. Let δ(ε) > 0 be such that 2Kδ(ε) < b(ε). If

sup
s∈[γ,t]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥ < δ(ε),

then

V (t, x(t)) ≤ V (γ, x(γ)) + +K sup
s∈[γ,t]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥
< |V (γ, x(γ))|+Kδ(ε)

≤ 2Kδ(ε) < b(ε), t ∈ [γ, v]. (41)

On the other hand, suppose there exists u ∈ [γ, v] such that ‖x(u)‖ ≥ ε. Then, by (40), we have

V (u, x(u)) ≥ b(‖x(u)‖) ≥ b(ε),

which contradicts (41). Thus, ‖x(t)‖ < ε for t ∈ [γ, v] and the result follows.
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The next result shows that, with an additional hypothesis on the Lyapunov functional, the trivial solution of
generalized ODE (24) is regularly asymptotically stable. The proof is inspired in [27, Theorem 10.14].

Theorem 6.4 Let V : [t0,∞) × Bρ → R be a Lyapunov functional, where Bρ = {y ∈ X : ‖y‖ ≤ ρ},
0 < ρ < c. Suppose V satisfies conditions (i) and (ii) from Theorem 6.3. Moreover, suppose there exists a
continuous function Φ : X → R satisfying Φ(0) = 0 and Φ(x) > 0 for x 6= 0, such that for every solution
x : [γ, v]→ Bρ of (24), with [γ, v] ⊂ [t0,∞), we have

V̇ (t, x(t)) ≤ −Φ(x(t)), t ∈ [γ, v]. (42)

Then the trivial solution x ≡ 0 of (24) is regularly asymptotically stable.

P r o o f. Since all hypotheses from Theorem 6.3 are satisfied, the trivial solution x ≡ 0 of (24) is regularly
stable. It remains to prove that the solution x ≡ 0 of (24) is regularly attracting.

Since the solution x ≡ 0 of (24) is regularly stable, we have

(I) There exists δ̃ ∈ (0, ρ) such that if x : [γ, v] → Bc, [γ, v] ⊂ [t0,∞), is a regulated function on [γ, v], such
that

‖x(γ)‖ < δ̃

2

and

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥ < δ̃,

then

‖x(t)‖ < ρ, t ∈ [γ, v].

(II) For every ε > 0, there exists δ = δ(ε) > 0, δ < ε such that, if x : [γ, v] → Bc, [γ, v] ⊂ [t0,∞), is a
regulated function on [γ, v], such that

‖x(γ)‖ < δ

and

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥ < δ,

then

‖x(t)‖ < ε, t ∈ [γ, v].

Let

N = sup{−Φ(y) : δ(ε) ≤ ‖y‖ ≤ ε} = − inf{Φ(y) : δ(ε) ≤ ‖y‖ ≤ ε} < 0.

Define

T (ε) :=

{
−Kδ0 + δ(ε)

N

}
> 0. (43)

Suppose x : [γ, v]→ Bc, [γ, v] ⊂ [t0,∞), is a regulated function on [γ, v], such that

‖x(γ)‖ < δ̃

2
(44)
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and

sup
s∈[γ,v]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥ < δ(ε). (45)

We want to prove that

‖x(t)‖ < ε, t ∈ [γ, v] ∩ [γ + T (ε),∞), γ ≥ t0.

Let us prove that there exists a t∗ ∈ [γ, γ + T (ε)] such that ‖x(t∗)‖ < δ(ε). Suppose the contrary, that is,
‖x(s)‖ ≥ λ(ε), for every s ∈ [γ, γ + T (ε)]. By Lemma 6.1 and conditions (i) and (ii) from Theorem 6.3, (43),
(44) and (45), we obtain

V (γ + T (ε), x(γ + T (ε))) ≤ V (γ, x(γ)) +K sup
s∈[γ,γ+T (ε)]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DG(x(τ), t)

∥∥∥∥
+ N T (ε) < K

δ̃

2
+K δ(ε) +N

(
−K δ̃ + δ(ε)

N

)

≤ Kδ̃ +Kδ(ε) +N

(
−K δ̃ + δ(ε)

N

)
= Kδ̃ −Kδ̃ = 0.

(46)

On the other hand, since V is a Lyapunov functional, there exists a function b : R+ → R+ of Hahn class such
that

V (t, x) ≥ b(‖x‖), for (t, x) ∈ [t0,∞)×Bρ.

Thus,

V (γ + T (ε), x(γ + T (ε))) ≥ b (‖x(γ + T (ε))‖) ≥ b(λ(ε)) > 0,

which contradicts (46). Then, we conclude that there exists a t∗ ∈ [γ, γ + T (ε)] such that ‖x(t∗)‖ < δ(ε).
Therefore ‖x(t)‖ < ε for t ∈ [t∗, v], since (II) holds for γ = t∗ and v = v. Also, ‖x(t)‖ < ε for t > γ + T (ε),
since t∗ ∈ [γ, γ + T (ε)] and, thus, the solution x ≡ 0 of equation (24) is regularly attracting and the result
follows.

7 Lyapunov theorems for measure FDEs

In this section, we prove some Lyapunov theorems for measure FDEs, using Lyapunov theorems for generalized
ODEs presented in the previous section and the correspondence between the solutions.

We consider the following measure FDE

Dy = f(yt, t)Dg, (47)

where Dy and Dg are distributional derivatives in the sense of L. Schwartz and f : S × [t0,∞) → Rn, where
S = {xt; x ∈ O, t ∈ [t0,∞)} and O ⊂ BG([t0 − r,∞),Rn) has the prolongation property.

We also consider that g : [t0,∞)→ R is a nondecreasing and left-continuous function and f(0, t) = 0 for all
t ∈ [t0,∞). Thus y ≡ 0 is a solution of (47). Suppose f satisfies conditions (H1), (H2) and (H3) introduced
previously. We also assume that F from equation (24) is given by the relation described by equation (10), which
means that for y ∈ O and t ∈ [t0,∞), we have

F (y, t)(ϑ) =



0, t0 − r ≤ ϑ ≤ t0,∫ ϑ

t0

f(ys, s)dg(s), t0 ≤ ϑ ≤ t <∞,∫ t

t0

f(ys, s)dg(s), t ≤ ϑ <∞.
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Then F : O × [t0,∞) → BG−([t0 − r,∞),Rn) and by Theorem 3.1, we have a relation between the initial
value problems for the equations (24) and (47).

Given t ≥ t0 and a function ψ ∈ G−([−r, 0],Rn), we consider the measure FDE (47) with initial condition
yt = ψ. We also consider that the GODE (24) is subject to the initial condition x(t) = x̃, where x̃(ϑ) = ψ(ϑ−t),
t− r ≤ ϑ ≤ t, e x̃(ϑ) = ψ(0), ϑ ≥ t.

By Theorem 3.2, there exists a unique solution y : [t − r, v] → Rn of the measure FDE (47) which satisfies
yt = ψ.

By Theorem 3.1, we can find a solution x : [t, v] → G−([t, v],Rn) of the GODE (24), with initial condition
x(t) = x̃. Then x(t)(t + θ) = y(t + θ) for every θ ∈ [−r, 0] and hence, (x(t))t = yt. In this case, we write
yt+η = yt+η(t, ψ) for every η ≥ 0. Then, given a function U : [t0, ∞)×G−([−r, 0],Rn)→ R, we define

D+U(t, ψ) = lim sup
η→0+

U(t+ η, yt+η(t, ψ))− U(t, yt(t, ψ))

η
, t ≥ t0.

On the other hand, given t ≥ t0, if x̃ ∈ G−([t − r,∞),Rn) is such that x̃(ϑ) = ψ(ϑ − t), t − r ≤ ϑ ≤ t,
and x̃(ϑ) = ψ(0), τ ≥ t, then, by Theorem B.4 from Appendix B, there exists an unique solution x : [t, v] →
G−([t, v],Rn) of the GODE (24) such that x(t) = x̃, with [t, v] ⊂ [t0,∞).

By Theorem 3.1 again, we can find a solution y : [t − r, v] → Rn of (47) which satisfies yt = ψ and it is
described in terms of x. In this case, we write xψ(t) instead of simply x(t). Then we have yt(t, ψ) = (xψ(t))t =
ψ. Thus (t, xψ(t)) 7→ (t, yt(t, ψ)) is a one-to-one mapping and we can define a function V : [t0,∞) × O → R
by

V (t, xψ(t)) = U(t, yt(t, ψ)). (48)

Therefore

D+U(t, ψ) = lim sup
η→0+

V (t+ η, xψ(t+ η))− V (t, xψ(t))

η
, t ≥ t0. (49)

Thus, given t ≥ t0, we have ‖yt(t, ψ)‖ = ‖xψ(t)‖. Indeed,

‖yt(t, ψ)‖ = ‖yt‖ = sup
−r≤θ≤0

|y(t+ θ)| = sup
t−r≤τ≤t

|y(τ)| = sup
t−r≤τ≤t

|xψ(t)(τ)|

= sup
t−r≤τ<∞

|xψ(t)(τ)| = ‖xψ(t)‖,

where the fourth equality follows from Theorem 3.1
Now, we present a concept of Lyapunov functional U : [t0, ∞) × G−([−r, 0],Rn) → R with respect to the

measure FDE (47).

Definition 7.1 We say that U : [t0, ∞)×G−([−r, 0],Rn)→ R is a Lyapunov functional (with respect to the
measure FDE (47)), if the following conditions are satisfied:

(i) U(·, ψ) : [t0,∞)→ R is left-continuous on (t0,∞), for every ψ ∈ G−([−r, 0],Rn);

(ii) There exists a function of Hahn class b : R+ → R+ such that

U(t, ψ) ≥ b(‖ψ‖),

for each t ≥ t0 and for each ψ ∈ G−([−r, 0],Rn);

(iii) The inequality
D+U(t, ψ) ≤ 0

holds for each t ≥ t0 and for each ψ ∈ G−([−r, 0],Rn).
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We assert that if U : [t0,∞) × G−([−r, 0],Rn) → R is a Lyapunov functional, then V : [t0,∞) × O → R
given by the relation (48) satisfies conditions (i), (ii) and (iii) from Definition 6.2, meaning that V is also a
Lyapunov functional. Indeed, by (48) and (49), it is easy to see that V satisfies conditions (i) and (iii) from
Definition 6.2. Therefore, we just have to check that V satisfies (ii). Thus, if t ≥ t0 and z ∈ O, then there exist
a solution x of the GODE (24) and a function ψ ∈ G−([−r, 0],Rn) such that z = xψ(t), (xψ(t))t = yt(t, ψ),
where y is a solution of the measure FDE (47) corresponding to x. But

‖ψ‖ = ‖yt(t, ψ)‖ = ‖xψ(t)‖ = ‖z‖.

Since U is a Lyapunov functional, by condition (ii) of Definition 6.2, we obtain

V (t, z) = V (t, xψ(t)) = U(t, yt(t, ψ)) = U(t, ψ) ≥ b(‖ψ‖) = b(‖z‖),

which shows (ii).
Now, let us consider the set

Eρ = {y ∈ G−([−r, 0],Rn); ‖y‖ ≤ ρ}.
The next result can be carried out as in [2], Lemma 4.4 with obvious adaptations.

Lemma 7.2 Consider the measure functional differential equation (47). Suppose the function U : [t0, ∞)×
Eρ → R satisfies the following conditions:

(i) U(t, 0) = 0, t ∈ [t0,∞);

(ii) There exists a constant K > 0 such that

|U(t, ψ)− U(t, ψ)| ≤ K‖ψ − ψ‖, t ∈ [t0,∞), ψ, ψ ∈ Eρ.

Then the function V : [t0,∞)×Bρ → R defined by (48) satisfies V (t, 0) = 0 for every t ∈ [t0,∞), and

|V (t, z)− V (t, z)| ≤ K‖z − z‖,

for t ≥ t0 e z, z ∈ Bρ.
With Lemma 7.2 at hand, we can prove the next stability result for measure FDEs.
Theorem 7.3 Consider the measure functional differential equation (47). Suppose the function f : S ×

[t0,∞) → Rn satisfies the conditions (H1), (H2) and (H3) and U : [t0, ∞) × Eρ → R is a Lyapunov
functional. Moreover, assume that the following conditions are satisfied:

(i) U(t, 0) = 0, t ∈ [t0,∞);

(ii) There exists a constant K > 0 such that

|U(t, ψ)− U(t, ψ)| ≤ K‖ψ − ψ‖, t ∈ [t0,∞), ψ, ψ ∈ Eρ.

Then the trivial solution y ≡ 0 of (47) is uniformly stable.

P r o o f. Since f satisfies conditions (H1), (H2) and (H3), the function F in the generalized ODE (24) be-
longs to the class F(Ω, h), with Ω = O × [t0,∞) and h : [t0,∞)→ R given by

h(t) =

∫ t

t0

[M(s) + L(s)]dg(s), t ∈ [t0,∞).

Let V : [t0,∞)×Bρ → R be given by (48). By Lemma 7.2,

V (t, 0) = 0, t ∈ [t0,∞)

and
|V (t, z)− V (t, z̄) ≤ K‖z − z̄‖, t ∈ [t0,∞), z, z̄ ∈ Bρ.

Since U is a Lyapunov functional, it follows that V is a Lyapunov functional. Therefore, all the hypotheses
from Theorem 6.3 are satisfied. Then the solution x ≡ 0 of (24) is regularly stable. Thus, by Theorem 5.1, the
solution y ≡ 0 of (47) is integrally stable and, therefore, uniformly stable.
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Theorem 7.4 Consider the measure functional differential equation (47). Suppose U : [t0,∞)×Eρ → R is a
Lyapunov functional and satisfies conditions (i) and (ii) from Theorem 7.3. Furthermore, suppose there exists a
continuous function Λ : R+ → R+ such that Λ(0) = 0 and Λ(x) > 0 if x 6= 0, and such that, for every ψ ∈ Eρ,
we have

D+U(t, ψ) ≤ −Λ(‖ψ‖), t ≥ t0. (50)

Then, the trivial solution y ≡ 0 of (47) is uniformly asymptoticaly stable.

P r o o f. Let V : [t0,∞)×Bρ → R be given by (48). Then all the hypotheses from Theorem 6.3 are satisfied.
Let us define a function Φ : Bρ → R by

Φ(z) = Λ(‖z‖).

It is clear from the definition that Φ is continuous and satisfies Φ(0) = 0 and Φ(z) > 0, z 6= 0.
Suppose x : [t0,∞) → Bρ is a solution of (24) such that (x(t))t = ψ, t ∈ [t0,∞) and ψ ∈ Eρ. Let

y : [t0 − r,∞) → Rn be the solution of (47), given by Theorem 3.1, which satisfies yt = ψ. By equation (50),
we have

lim sup
η→0+

V (t+ η, xψ(t+ η))− V (t, xψ(t))

η
= D+U(t, yt(t, ψ)) =

= D+U(t, ψ) ≤ −Λ(‖ψ‖) = −Λ(‖yt‖).

We also have

‖yt‖ = ‖xψ(t)‖.

Therefore,

lim sup
η→0+

V (t+ η, xψ(t+ η))− V (t, xψ(t))

η
≤ −Λ(‖yt‖) = −Λ(‖xψ(t)‖) = −Φ(xψ(t))

and all the assumptions from Theorem 6.4 are satisfied. Thus, the solution x ≡ 0 of (24) is regularly asymptot-
ically stable. Finally, by Theorem 5.1, the solution y ≡ 0 of (47) is integrally asymptotically stable and, hence,
uniformly asymptoticaly stable.

A Perron integration

Let us recall some basic concepts from the non-absolute Perron integration theory and from the theory of gener-
alized ODEs. For more details, the reader may want to consult [27].

A tagged division of a compact interval [a, b] ⊂ R is a finite collection of point-interval pairs (τi, [si−1, si]),
where a = s0 ≤ s1 ≤ . . . ≤ sk = b is a division of [a, b] and τi ∈ [si−1, si], i = 1, 2, . . . , k.

A gauge on a set E ⊂ [a, b] is any function δ : E → (0,∞). Given a gauge δ on [a, b], a tagged division
d = (τi, [si−1, si]) is δ-fine if, for every i, we have

[si−1, si] ⊂ {t ∈ [a, b] ; |t− τi| < δ (τi)} .

Definition A.1 Let X be a Banach space. A function U : [a, b] × [a, b] → X is called Kurzweil integrable
over [a, b], if there is a unique element I ∈ X such that given ε > 0, there is a gauge δ on [a, b] such that∥∥∥∥∥∑

i

[U (τi, si)− U (τi, si−1)]− I

∥∥∥∥∥ < ε

for every δ-fine tagged division (τi, [si−1, si]) of [a, b]. In this case, I is called the Kurzweil integral of U over
[a, b] and it is denoted by

∫ b
a
DU (τ, t).
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Remark A.2 Notice that, similarly, we can extend the Definition A.1 to functions U defined in unbounded
intervals. See, for instance, [33].

Remark A.3 In particular, the Perron-Stieljtes integral of a function f : [a, b] → X with respect to a given
function g : [a, b] → R corresponds to the choice U(τ, t) = f(τ)g(t). Clearly, thus, the choice U(τ, t) = f(τ)t

corresponds to the well-known Perron integral which we denote by
∫ b
a
f(s)ds.

The Perron and Perron–Stieltjes integrals have the usual properties of linearity, additivity with respect to
adjacent intervals and integrability on subintervals.

In order to present a result on the existence of the Perron–Stieltjes integral
∫ b
a
f(s)dg(s), we need the concept

of regulated functions.
Recall that a function f : [a, b]→ X is regulated, if the lateral limits

lim
s→t−

f(s) = f(t−) ∈ X, t ∈ (a, b], and lim
s→t+

f(s) = f(t+) ∈ X, t ∈ [a, b)

exist. The space of all regulated functions f : [a, b]→ X is denoted byG([a, b], X) and it is a Banach space under
the usual supremum norm ‖f‖∞ = supa≤t≤b ‖f(t)‖. We denote by G−([a, b], X) the subspace of G([a, b], X)
of left-continuous functions.

A proof of the next result can be found in [27, Corollary 1.34].
Theorem A.4 If f : [a, b] → X is a regulated function and g : [a, b] → R is a nondecreasing function, then

the Perron–Stieltjes integral
∫ b
a
f(s) dg(s) exists.

There is also an existence result [27, Corollary 3.16] for the Perron integral
∫ b
a
DU(τ, t), in the particular case,

where U(τ, t) = G(x(τ), t), x : [a, b]→ O, O ⊂ X , is a regulated function and G : O × [a, b]→ X satisfies

‖G(x, s2)−G(x, s1)‖ ≤ |h(s2)− h(s1)| (51)

and

‖G(x, s2)−G(x, s1)−G(y, s2) +G(y, s1)‖ ≤ ‖x− y‖∞|h(s2)− h(s1)| (52)

for all (x, s1), (x, s2), (y, s1), (y, s2) ∈ O × [a, b] and some nondecreasing function h : [a, b]→ R.
Theorem A.5 If G satisfies the equations (51) and (52) and x : [α, β]→ O is a regulated function such that

(x(s), s) ∈ O × [α, β], for every s ∈ [α, β], where [α, β] ⊂ (a, b), then the integral
∫ β
α
DG(x(τ), t) exists.

The following result, which describes the properties of the indefinite Perron-Stieljtes integral, is a special case
of [27][Theorem 1.16].

Theorem A.6 Let f : [a, b] → Rn and g : [a, b] → R be a pair of functions such that g is regulated and∫ b
a
f dg exists. Then the function

h(t) =

∫ t

a

f(s) dg(s), t ∈ [a, b],

is regulated and satisfies

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f(t)∆−g(t), t ∈ (a, b],

where ∆+g(t) = g(t+)− g(t) and ∆−g(t) = g(t)− g(t−).
As a consequence of the Saks-Henstock Lemma [27, Lemma 1.13], we have the following result.
Corollary A.7 Let U : [a, b]× [a, b]→ X be Perron integrable over [a, b]. Given ε > 0, there exists a gauge

δ in [a, b]. Let [γ, v] be a closed subinterval of [a, b]. Then,

(i) (v − γ) < δ (γ) implies∥∥∥∥U (γ, v)− U (γ, γ)−
∫ v

γ

DU (τ, t)

∥∥∥∥ < ε;

(ii) (v − γ) < δ (v) implies∥∥∥∥U (v, v)− U (v, γ)−
∫ v

γ

DU (τ, t)

∥∥∥∥ < ε.
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B Generalized ODEs

Now, we recall the definition of a generalized ODE.
Definition B.1 Let X be a Banach space. Consider a set O ⊂ X , an interval [a, b] ⊂ R and a function

G : O × [a, b] → X . A function x : [a, b] → O is called a solution of the generalized ordinary differential
equation

dx

dτ
= DG(x, t) (53)

on the interval [a, b], if

x(d)− x(c) =

∫ d

c

DG(x(τ), t)

for every c, d ∈ [a, b].

When the right-hand side of a generalized ODE satisfies (51), we have the following information about its
solutions [27, Lemma 3.12].

Lemma B.2 Consider a set O ⊂ X , an interval [a, b] ⊂ R and a function G : O× [a, b]→ X . If x : [a, b]→
O is a solution of the generalized ordinary differential equation

dx

dτ
= DG(x, t)

and G satisfies (51), then x is a function of bounded variation (and hence regulated).
Under the assumptions (51) and (52) on G : O × [a, b] → X , it is possible to obtain an existence-uniqueness

result for an initial value problem for equation (53). See Theorem B.4 in the sequel. As a matter of fact, the class
of functions G fulfilling (51) and (52) is important to several results. We now define this class of functions.

Definition B.3 Given a nondecreasing function h : [a, b] → R, we say that a function G : O × [a, b] → X
belongs to the class F(Ω, h), if for all x, y ∈ G([a, b], X), we have

‖G(x, s2)−G(x, s1)‖ ≤ |h(s2)− h(s1)| (54)

and

‖G(x, s2)−G(x, s1)−G(y, s2) +G(y, s1)‖ ≤ ‖x− y‖∞|h(s2)− h(s1)| (55)

for all s1, s2 ∈ [a, b] and all x, y ∈ O.
For a proof of the next theorem, see [11, Theorem 2.15].
Theorem B.4 LetG : Ω→ X be an element of the classF(Ω, h), where the function h is left continuous (i.e.,

h(t−) = h(t)). Then for every (x̃, t0) ∈ Ω such that for x̃+ = x̃+G(x̃, t0+)−G(x̃, t0), we have (x̃+, t0) ∈ Ω
and there exists a ∆ > 0 such that, on the interval [t0, t0+∆], there exists a unique solution x : [t0, t0+∆]→ X
of the generalized ordinary differential equation (53) for which x(t0) = x̃.
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