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1. Introduction

The theory of time scales was introduced in the literature by Stefan Hilger in 1988, and
since then, it has shown a great potential to represent applications in several fields of knowl-
edge. See, for instance, [1, 8, 9, 10, 11, 14, 16, 21, 25] and the references therein.

This theory allows also to describe continuous-discrete hybrid processes, which have several
applications in economics, biology, engineering, physics, among others. For instance, it is
a known fact that certain economically important phenomena do not possess either only
continuous property nor only discrete aspects, however they contain processes that feature
elements of both the continuous and the discrete phenomena. For instance, the continuous-
discrete hybrid processes might be used to investigate option-pricing and stock dynamics
in finance, the frequency of markets and duration of market trading in economic, large-
scale models of DNA dynamics, gene mutation fixation, electric circuits, population models,
among others. For these applications, we refer the reader to [4, 13, 14, 22, 25].

We point out that the control systems on time scales have been attracting the attention of
several researchers, since they encompass discrete, continuous and hybrid control systems,
allowing more general analysis and results. See, for instance, [4, 9, 10, 11, 15, 17, 24]. On
the other hand, the self-accessibility property for classical humped control systems has been
studied by several authors. For linear systems, the property was considered by Boltyanskii
[12] to establish sufficient conditions of optimality in relation with the maximum principle.
Later, this property was studied in [5, 2] for nonlinear systems, and in [3] for multivalued
systems. In addition, the characterization of distributed control system was studied in [19].
Furthermore, it is worth to mention that the self-accessibility property is related with the
stabilization of systems which was clarified in [20].

As something superficial, the property ensures that an attainable state from an initial
state x can be returned to x using an admissible control function. Hence, if we assume
that x is the operation point of the system, then for self-accessible systems the operation
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point has an stability property under disturbances. However, rather surprisingly, it has been
shown in [18, 23] that trajectories which start and end in the same state are quite large, in a
sense that will be specified later. Motivated by this fact, we focus our attention to the study
of control system on time scales. More specially, in the present paper, our goal is to extend
the mentioned geometric property of self-accessible trajectories to control systems on time
scales.

This paper is organized as follows. In Section 2, we recall some basic aspects of dynamic
systems on time scales and finite dimensional spaces. In Section 3, we study dynamic systems
on Banach spaces and we prove some properties needed to establish our main results. Finally,
in Section 4, we study self-accessible states of control systems on time scales.

2. Preliminaries

In this section, we recall some basic concepts and results concerning the theory of dynamic
equations on time scales. For more details, we refer to [6, 7].

Let T be a time scale, that is, a closed and nonempty subset of R. We assume T has the
topology that it inherits from the real numbers with standard topology.

Definition 2.1. For every t ∈ T, we define the forward and backward jump operator σ, ρ :
T → T, respectively, by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}, where
inf ∅ = supT and sup ∅ = inf T, by convention.

If σ(t) > t, then t is right-scattered. Otherwise, t is right-dense. Similarly, if ρ(t) < t, then
t is left-scattered whereas if ρ(t) = t, then t is left-dense.

Definition 2.2. The graininess function µ : T→ R+ is given by µ(t) = σ(t)− t.

Definition 2.3. A function f : T → R is called rd-continuous if its left-sided limits exist
at all left-dense points in T and is continuous at right-dense points of T. If the functi-
on f : T → R is continuous at each right-dense point and each left-dense point, then the
function f is called continuous on T.

Throughout the paper, given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used
to denote a closed interval in T. On the other hand, [a, b] is the usual closed interval on the
real line.

We define the set Tκ which is derived from T as follows: If T has a left-scattered maximum
m, then Tκ = T− {m}. Otherwise, Tκ = T.

Definition 2.4. For f : T → R and t ∈ Tκ, we define the delta-derivative of f at t to
be the number f∆(t) (if it exists) with the following property: given ε > 0, there exists a
neighborhood U of t for the relative topology such that |f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤
ε|σ(t)− s|, for all s ∈ U . In this case, f∆(t) denotes the delta-derivative of f at t.

In what follows, we present some properties of delta-differentiable functions.

Theorem 2.5 (See [6, Theorem 1.20]). Assume f, g : T→ R are ∆-differentiable at t ∈ Tκ.
Then,

(i) The sum f + g : T→ R is ∆-differentiable at t with (f + g)∆(t) = f∆(t) + g∆(t).
(ii) For any constant α, αf : T→ R is ∆-differentiable at t with (αf)∆(t) = αf∆(t).
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(iii) The product fg : T→ R is ∆-differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

In sequel, we present the definition of a partition of [a, b]T. See [7].

Definition 2.6. A partition of [a, b]T is a finite sequence of points {t0, t1, . . . , tm} ⊂ [a, b]T,
where a = t0 < t1 < . . . < tm = b.

A tagged partition consists of a partition and a sequence of tags {ξ1, . . . , ξm} such that
ξi ∈ [ti−1, ti) for every i ∈ {1, . . . ,m}. If δ > 0, then Dδ(a, b) denotes the set of all tagged
partitions of [a, b]T such that for every i ∈ {1, . . . ,m}, either ∆ti ≤ δ, or ∆ti = ti − ti−1 > δ
and σ(ti−1) = ti.

Definition 2.7. We say that f is Riemann ∆-integrable on [a, b]T, if there exists a number
I with the following property: for every ε > 0, there exists δ > 0 such that∣∣∣∣∣∑

i

f(ξi)(ti − ti−1)− I

∣∣∣∣∣ < ε,

for every P ∈ Dδ(a, b) independently of ξi ∈ [ti−1, ti)T for 1 ≤ i ≤ n. It is clear that the
number I is unique, and I is the Riemann ∆-integral of f from a to b.

The next results contain some important properties of Riemann ∆-integrable functions.

Theorem 2.8 (Fundamental Theorem of Calculus, [7, Theorem 5.34]). Let g be a continuous
function on [a, b]T such that g is ∆-differentiable on [a, b). If g∆ is ∆-integrable from a to b,

then
∫ b
a
g∆(t)∆t = g(b)− g(a).

In the sequel, we present some basic results concerning the theory.

Theorem 2.9 (See [7, Theorems 5.12, 5.26 and 5.29]). Let f and g be ∆-integrable functions
on [a, b]T and let c ∈ R. Then,

(i) cf is ∆-integrable and
∫ b
a
(cf)∆t = c

∫ b
a
f(t)∆t.

(ii) f + g is ∆-integrable and
∫ b
a
(f + g)(t)∆t =

∫ b
a
f(t)∆t+

∫ b
a
g(t)∆t.

(iii) If f(t) ≤ g(t) for every t ∈ [a, b)T, then
∫ b
a
f(t)∆t ≤

∫ b
a
g(t)∆t.

(iv) If f is a constant function, then f : T→ R is ∆-integrable from a to b and
∫ b
a
K∆t =

K(b− a).

As usual, a function f : [a, b]T → Rn, f(t) = (f1(t), . . . , fn(t)), is said to be ∆-integrable
if each component fi is integrable. In this case, we define∫ b

a

f(t)∆t =

(∫ b

a

f1(t)∆t, . . . ,

∫ b

a

fn(t)∆t

)
.

As a consequence of Theorem 2.9, the following property follows immediately.

Lemma 2.10. Let x∗ ∈ (Rn)∗. Then〈
x∗,

∫ b

a

f(t)∆t

〉
=

∫ b

a

〈x∗, f(t)〉∆t.
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Proof. Assume that x∗ = (a1, . . . , an). Applying Theorem 2.9, we can write〈
x∗,

∫ b

a

f(t)∆t

〉
=

n∑
i=1

ai

∫ b

a

fi(t)∆t =

∫ b

a

n∑
i=1

aifi(t)∆t =

∫ b

a

〈x∗, f(t)〉∆t,

obtaining the desired result. �

In the sequel, we present some important concepts which will be fundamental to our
purposes (see [6]).

Definition 2.11. We say that a function p : T→ R is regressive provided 1 + µ(t)p(t) 6= 0,
for all t ∈ Tκ holds. The set of all regressive and rd-continuous functions will be denoted by
R = R(T) = R(T,R).

Definition 2.12. If p ∈ R, then the generalized exponential function is given by ep(t, s) =

exp
(∫ t

s
ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T, where the cylinder transformation ξh : Ch → Zh is given

by ξh(z) = 1
h
Log(1+zh), where Log is the principal logarithm function. For h = 0, we define

ξ0(z) = z for all z ∈ C.

Let A be an m × n matrix-valued function on T. A is called rd-continuous on T if each
entry of A is rd-continuous on T. On the other hand, A is delta-differentiable at T if each
entry of A is delta-differentiable on T.

Definition 2.13. An n× n matrix-valued function A on a time scale T is called regressive
(with respect to T) provided I + µ(t)A(t) is invertible for all t ∈ Tκ, and the class of all
such regressive rd-continuous matrices is denoted by R(T,Rn×n).

Definition 2.14. (Matrix Exponential Function) Let t0 ∈ T and A ∈ R(T,Rn×n). The
unique matrix-valued solution of the IVP Y ∆(t) = AY (t), Y (t0) = I, where I denotes as
usual the n × n-identity matrix, is called the matrix exponential function at t0 and it is
denoted by eA(·, t0).

Next, we state a result which describes the properties of the matrix exponential function.

Theorem 2.15 (See [6, Theorem 5.21]). If A ∈ R(T,Rn×n), then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I.
(ii) eA(σ(t), s) = (I + µ(t)A)eA(t, s).

(iii) eA(t, s) = e−1
A (s, t) and eA(t, s)eA(s, r) = eA(t, r).

Using these notions, one can obtain the following result, which corresponds to the Variation
of Constants Formula on time scales, whose proof can be found in [6, Theorem 5.24].

Theorem 2.16 (Variation of Constants Formula). Let A ∈ R(T,Rn×n), f : T → Rn be
rd-continuous, t0 ∈ T and y0 ∈ Rn. Then, the IVP{

y∆ = Ay + f(t),

y(t0) = y0

has a unique solution y : T → Rn. Moreover, this solution is given by y(t) = eA(t, t0)y0 +∫ t
t0
eA(t, σ(τ))f(τ)∆τ.

As an immediate consequence, we obtain the next important result.
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Corollary 2.17. Let A ∈ R(T,Rn×n) and t0, t1 ∈ T. Then Im(I − eA(t1, t0)) ⊆ Im(A).

Proof. We consider the homogeneous system{
y∆ = Ay,

y(t0) = y0.

It follows from Theorems 2.8 and 2.16 that

y(t1)− y(t0) = (eA(t1, t0)− I)y0 = A

∫ t1

t0

y(t)∆t.

Since y0 ∈ Rn is an arbitrary element, this implies the assertion. �

3. Vector functions

In this section, we study vector functions from T into Banach spaces. The concepts and
basic results of continuity, ∆-differentiability and ∆-integrability established in Section 2 can
be generalized to vector functions. In what follows, X, Y denote Banach spaces provided
with a norm ‖ · ‖.

In the sequel, we mention a few properties needed to establish our results. For Banach
spaces X, Y , we denote by B(X, Y ) the Banach space consisting of bounded linear maps
from X into Y endowed with the norm of operators. When X = Y , we abbreviate this
notation by B(X). Moreover, X∗ denotes the topological dual space of X, and we use the
notation x∗(x) = 〈x∗, x〉 for x∗ ∈ X∗ and x ∈ X.

The following properties are a direct consequence from Definition 2.7.

Proposition 3.1. Let f : [a, b]T → X be an rd-continuous function. Then∥∥∥∥∫ b

a

f(t)∆t

∥∥∥∥ ≤ ∫ b

a

‖f(t)‖∆t.

Proposition 3.2. Let f : [a, b]T → X be a ∆-integrable function, and let A ∈ B(X, Y ).
Then Af : [a, b]T → Y is a ∆-integrable function, and∫ b

a

Af(t)∆t = A

∫ b

a

f(t)∆t.

Theorem 3.3 (Fundamental Theorem of Calculus, First Version). Let g : [a, b]T → X
be an rd-continuous function on [a, b]T such that g is ∆-differentiable on [a, b)T. If g∆ is
∆-integrable from a to b. Then ∫ b

a

g∆(t)∆t = g(b)− g(a).

Proof. Let x∗ ∈ X∗. Then 〈x∗, g〉 satisfies the condition of Theorem 2.8. Combining this
with Proposition 3.2, we have∫ b

a

〈x∗, g〉∆(t)∆t = 〈x∗, g(b)〉 − 〈x∗, g(a)〉 = 〈x∗, g(b)− g(a)〉 =

〈
x∗,

∫ b

a

g∆(t)∆t

〉
.

Since x∗ ∈ X∗ was arbitrarily chosen, the assertion is a consequence of the Hahn-Banach
Theorem. �
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In this case, we also have the following version.

Theorem 3.4 (Fundamental Theorem of Calculus, Second Version). Let f : [a, b]T → X

be an rd-continuous function. Let F : [a, b]T → X be given by F (t) =
∫ t
a
f(s)∆s, then F is

∆-differentiable on [a, b)T and F∆(t) = f(t) for t ∈ [a, b)T.

We omit the proof of this result because it is essentially the same as that performed in [7,
Theorem 5.36].

For vector functions, we can establish the following mean value theorem. We denote by
c(S) the convex hull of the set S.

Theorem 3.5. Let f : [a, b]T → X be a ∆-integrable function. Then∫ b

a

f(t)∆t ∈ (b− a)c(Im(f)).

Proof. Let x =
∫ b
a
f(t)∆t, and assume that x 6∈ (b − a)c(Im(f)). Since (b − a)c(Im(f)) is a

closed convex set, then applying the Hahn-Banach Theorem, we deduce the existence of a
linear functional x∗ ∈ X∗ and a constant α ∈ R such that

Re

〈
x∗,

1

b− a
x

〉
> α > sup

t∈T
Re〈x∗, f(t)〉.

On the other hand, using now Theorem 2.9 and Lemma 2.10, we deduce that

Re

〈
x∗,

1

b− a
x

〉
=

1

b− a
Re

〈
x∗,

∫ b

a

f(t)∆t

〉
=

1

b− a

∫ b

a

Re〈x∗, f(t)〉∆t

≤ 1

b− a

∫ b

a

α∆t

= α,

which is a contradiction. This completes the proof. �

We will now study the abstract Cauchy problem (abbreviated, ACP) in the space X,
but previously, we establish the following property which is an immediate consequence of
Definition 2.7.

Lemma 3.6. Let a, b ∈ T with a < b and k ∈ N. Then∫ b

a

sk∆s ≤ 1

k + 1
(bk+1 − ak+1).

Proof. For every ε > 0, there exist δ > 0 and a partition P ∈ Dδ(a, b) consisting of points
a = t0 < t1 . . . < tm = b such that∫ b

a

sk∆s ≤
m∑
i=1

tki−1(ti − ti−1) + ε

≤ 1

k + 1

m∑
i=1

(ti − ti−1)
k∑
j=0

tji−1t
k−j
i + ε
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=
1

k + 1

m∑
i=1

(tk+1
i − tk+1

i−1 ) + ε

=
1

k + 1
(bk+1 − ak+1) + ε.

Since ε > 0 is arbitrarily chosen, this shows the assertion. �

Theorem 3.7. Let A ∈ B(X), t0 ∈ T, and f : [t0,∞)T → X be an rd-continuous function.
Then, the ACP

(3.1)

{
x∆(t) = Ax(t) + f(t), t ∈ T, t ≥ t0,

x(t0) = x0,

has a unique solution x(·) : [t0,∞)T → X. Moreover, if we denote by x(·, t0;x0) the solution
corresponding to f = 0, then for every t, t0 ∈ T, x(t, t0; ·) : X → X is a bounded linear map.

Proof. We fix a ∈ T, t0 < a. We define the map Γ : Crd([t0, a]T, X)→ Crd([t0, a]T, X) by

(3.2) Γx(t) = x0 + A

∫ t

t0

x(s)∆s+

∫ t

t0

f(s)∆s.

It is clear that

‖Γx(t)− Γy(t)‖ ≤ ‖A‖
∫ t

t0

‖x(s)− y(s)‖∆s

Then, we have

‖Γx(t)− Γy(t)‖ ≤ ‖A‖(t− t0) sup
t0≤s≤t

‖x(s)− y(s)‖.

Combining this estimate with Lemma 3.6, and proceeding inductively, we can establish as
usual that

‖Γkx− Γky‖ ≤ 1

k!
‖A‖k(t− t0)k‖x− y‖,

which shows that there exists n ∈ N sufficiently large such that Γn is a contraction. Con-
sequently, by Banach Fixed-Point Theorem, there is a unique fixed point x(·) of Γ. As a
consequence of Theorem 3.4, we obtain that x(·) is a solution of problem (3.1). Now, we
abbreviate x(t) = x(t, t0;x0). Using the uniqueness of the solution, we obtain easily that
x(t, t0; ·) : X → X is a linear map. Indeed, since

x(t) = x0 + A

∫ t

t0

x(s)∆s,

we can estimate

‖x(t)‖ ≤ ‖x0‖+ ‖A‖
∫ t

t0

‖x(s)‖∆s

≤ ‖x0‖+ ‖A‖(t− t0) sup
t0≤s≤t

‖x(s)‖.
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Repeating this argument and using again Lemma 3.6, we infer

‖x(t)‖ = ‖Γnx(t)‖

≤
n−1∑
i=0

1

i!
‖A‖i(t− t0)i‖x0‖+

1

n!
‖A‖n(t− t0)n sup

t0≤s≤t
‖x(s)‖

≤
n−1∑
i=0

1

i!
‖A‖i(a− t0)i‖x0‖+

1

n!
‖A‖n(a− t0)n sup

t0≤s≤a
‖x(s)‖.

Selecting n ∈ N such that α = 1
n!
‖A‖n(a− t0)n < 1, we obtain

‖x‖ ≤ 1

1− α

n−1∑
i=0

1

i!
‖A‖i(a− t0)i‖x0‖,

which shows that x(t, t0; ·) : X → X is a bounded linear map. �

In what follows, we denote by eA(t, t0) the bounded linear map x(t, t0; ·) involved in The-
orem 3.7. It follows from the previous estimate that there exists a constant Ma ≥ 0 such
that ‖eA(t, t0)‖ ≤ Ma for all t0 ≤ t with t − t0 ≤ a. The next proposition abridges a few
properties of eA(t, t0).

Proposition 3.8. The following properties are fulfilled.

(i) e0(t, s) = I and eA(t, t) = I.
(ii) Let r, s, t ∈ T, r ≤ s ≤ t, then eA(t, s)eA(s, r) = eA(t, r).

(iii) Let t0, t ∈ T, t− t0 ≤ a, then ‖eA(t, t0)− I‖ ≤Ma‖A‖(t− t0).
(iv) Let t0 ∈ T. The operator valued map [t0,∞)T → B(X), t 7→ eA(t, t0), is ∆-

differentiable.
(iv) Let t0, t ∈ T, t0 < t. The operator valued map [t0, t]T → B(X), s 7→ eA(t, s), is

∆-differentiable.

Proof. The assertion (i) is immediate. The assertion (ii) is a consequence of the uniqueness
of solutions of problem (3.1). To prove the assertion (iii), we note

(eA(t, t0)− I)x0 = A

∫ t

t0

eA(s, t0)x0∆s,

which implies that

‖(eA(t, t0)− I)x0‖ ≤ ‖A‖
∫ t

t0

Ma‖x0‖∆s

= ‖A‖Ma(t− t0)‖x0‖
for all x0 ∈ X.

Finally, assertion (iv) and (v) are immediate consequences of (ii) and (iii). �

It is worth to point out that eA(t, t0) is defined only for t ≥ t0. However, to simplify the
writing of our statements in the following result, we consider eA(t, s) = I for s ≥ t. Using
this convention, and the fact that the function σ(·) is rd-continuous ([6, Theorem 1.60]), we
can reobtain the variation of constants formula.
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Theorem 3.9 (Variation of Constants Formula). Let A ∈ B(X) and suppose f : T→ X is
rd-continuous. Let t0 ∈ T and x0 ∈ X. Then the solution x(·) of problem (3.1) is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Proof. We define

y(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Define the map Γ : Crd(T, X)→ Crd(T, X) by

Γx(t) = x0 + A

∫ t

t0

x(s)∆s+

∫ t

t0

f(s)∆s.

Then, combining the properties of eA(·, ·) with the results in [8], we infer that

Γy(t) = x0 + A

∫ t

t0

y(s)∆s+

∫ t

t0

f(s)∆s

= x0 + A

∫ t

t0

eA(s, t0)x0∆s+ A

∫ t

t0

∫ s

t0

eA(s, σ(τ))f(τ)∆τ∆s+

∫ t

t0

f(s)∆s

= x0 +

∫ t

t0

[eA(s, t0)x0]∆∆s+ A

∫ t

t0

∫ t

σ(τ)

eA(s, σ(τ))f(τ)∆s∆τ +

∫ t

t0

f(s)∆s

= eA(t, t0)x0 +

∫ t

t0

f(s)∆s+

∫ t

t0

∫ t

σ(τ)

AeA(s, σ(τ))f(τ)∆s∆τ

= eA(t, t0)x0 +

∫ t

t0

f(s)∆s+

∫ t

t0

[eA(t, σ(τ))− eA(σ(τ), σ(τ))]f(τ)∆τ

= eA(t, t0)x0 +

∫ t

t0

f(s)∆s+

∫ t

t0

eA(t, σ(τ))f(τ)∆τ −
∫ t

t0

f(τ)∆τ

= y(t),

which implies that y(·) is a fixed point of Γ. This implies that y(t) = x(t). �

4. Self-accessible states

In this section, we focus our attention on control systems on time scales described by

(4.1)

{
x∆(t) = Ax(t) +Bu(t), t ∈ T, t ≥ t0,
x(t0) = z

where t0 ∈ T, the states x(t) ∈ X and controls u(t) ∈ U such that X and U are Ba-
nach spaces. Throughout this section, we keep the notation and assumptions introduced
in Section 3 to ensure the existence of solutions of the system (4.1). Moreover, we assume
A ∈ B(X) and B ∈ B(U,X).

We study the system (4.1) on the interval [t0, t1]T, where t0, t1 ∈ T, t0 < t1. In order to do
that, we restrict us to consider as admissible control the functions u ∈ Crd([t0, t1]T, U). We
denote by x(·; z, u) the solution of (4.1), which is the solution of (3.1) with Bu(t) instead of
f(t).
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Let Y be a closed subspace of X. We denote by

EY = {x ∈ X : Ax+Bu ∈ Y, for some u ∈ U}.
It is clear that EY is a subspace of X.

Lemma 4.1. Assume the solution x(t) = x(t; z, u) of (4.1) satisfies x(t1) − z ∈ Y . Then

y =
∫ t1
t0
x(t)∆t ∈ EY .

Proof. It follows from Theorem 3.3 that

x(t1)− z = A

∫ t1

t0

x(s)∆s+

∫ t1

t0

Bu(s)∆s

= A

∫ t1

t0

x(s)∆s+B

∫ t1

t0

u(s)∆s ∈ Y

which implies y ∈ EY . �

We are now in a position to establish the following geometric property of admissible
trajectories of control systems.

Theorem 4.2. Assume the solution x(t) = x(t; z, u) of (4.1) satisfies x(t1) − z ∈ Y . Let
x0 ∈ X. Then

sup
t∈[t0,t1]T

‖x0 − x(t)‖ ≥ d(x0, EY ).

Proof. We define y0 = 1
t1−t0

∫ t1
t0
x(t)∆t. From Lemma 4.1, we can affirm that y0 ∈ EY .

Moreover, it follows from Theorem 3.5 that y0 ∈ c(Im(x)). Consequently, we get

d(x0, EY ) = inf{‖x0 − ỹ‖ : ỹ ∈ EY }
≤ ‖x0 − y0‖
≤ sup{‖x0 − y‖ : y ∈ c(Im(x))}
= sup{‖x0 − x(t)‖ : t ∈ [t0, t1]T}

and the proof is finished. �

In what follows, let us investigate a particular case.

Definition 4.3. A state z ∈ X is said to be self-accessible for system (4.1) on [t0, t1]T if
there exists an admissible control function u(·) such that x(t0; z, u) = x(t1; z, u) = z. The
system (4.1) is said to be self-accessible on [t0, t1]T if every state z ∈ X is self-accessible on
[t0, t1]T.

We take Y = {0}. The space

E = {x ∈ X : Ax ∈ Im(B)}
is called space of stationary states whenever the following condition is satisfied: if z ∈ E,
and Az+Bu = 0, then the solution of system (4.1) for the control function u(t) = u is given
by x(t; z, u) = z for all t ∈ [t0, t1]T. Moreover, if Im(B) is a closed subspace, then E is also
a closed subspace of X.

The next result follows as an immediate consequence of Lemma 4.1 for the case when
Y = {0}. Therefore, we omit its proof.
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Theorem 4.4. Assume the solution x(t) = x(t; z, u) of (4.1) satisfies x(t1) = z. Then

y =
∫ t1
t0
x(t)∆t ∈ E.

Proof. Since x is a solution of (4.1), we get

x(t) = eA(t, t0)x(t0) +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ

which implies∫ t1

t0

x(t)∆t =

∫ t1

t0

eA(t, t0)x(t0)∆t+

∫ t1

t0

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ∆t.

Thus, we have

y =

∫ t1

t0

eA(t, t0)z∆t+

∫ t1

t0

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ∆t

for some admissible control u(·). Moreover,

A

∫ t1

t0

eA(t, t0)z∆t = eA(t1, t0)z − z.

Hence, we obtain

A

∫ t1

t0

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ∆t =

∫ t1

t0

∫ t1

σ(τ)

eA(t, σ(τ))Bu(τ)∆t∆τ

which implies

A

[
y −

∫ t1

t0

eA(t, t0)z∆t

]
=

∫ t1

t0

eA(t1, σ(τ))Bu(τ)∆τ −
∫ t1

t0

eA(σ(τ), σ(τ))Bu(τ)∆τ.

Therefore,

Ay − eA(t1, t0)z + z = x(t1)− eA(t1, t0)x(t0)−
∫ t1

t0

Bu(τ)∆τ.

By the fact that x(t1) = z = x(t0), we obtain

Ay = −
∫ t1

t0

Bu(τ)∆τ,

which implies that y ∈ E. �

Corollary 4.5. Let z be a self-accessible state of system (4.1), and assume the solution
x(t) = x(t; z, u) of (4.1) satisfies x(t1) = z. Then

sup
t∈[t0,t1]T

‖z − x(t)‖ ≥ d(z, E).

Proof. It follows analogously as the proof of Theorem 4.2. �

When Im(B) is a closed subspace and z /∈ E, under the assumptions of Corollary 4.5 we
infer that supt∈[t0,t1]T

‖z − x(t)‖ > 0, which shows that the self-accessible trajectories are
quite large. This occurs in particular for lumped systems. In this case, we can also establish
a sufficient condition for the system to be self-accessible.
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Theorem 4.6. If Im(A) ⊆ Im[B,AB, . . . , An−1B], then the system (4.1) is self-accessible
on [t0, t1]T.

Proof. It follows from Corollary 2.17 that z− eA(t1, t0)z ∈ Im(A). Using our hypothesis and
the characterization of controllability in [24], we infer that z−eA(t1, t0)z is a reachable state.
Hence, there exists an admissible control u(·) such that

z − eA(t1, t0)z =

∫ t1

t0

eA(t1, σ(τ))Bu(τ)∆τ,

which implies that z is a self-accessible state on [t0, t1]T. �

It is easy to see that the converse assertion does not hold.

Example 4.7. Let T = Z and A = −2I, where I is the n × n identity, and B = 0. The
solution of system (4.1) on [0, 2]T is given by x(2) = (I + A)2z = z, for all z ∈ Rn. This
shows that system (4.1) is self-accessible on [0, 2]T. However, it is clear that Im(A) = Rn "
Im[B,AB, . . . , An−1B] = {0}.

Example 4.8. Let T = 2N0 and A = −3
4
I, where I is the n× n identity, and B = 0. Note

that

x∆(2) =
x(σ(2))− x(2)

µ(2)
=
x(4)− x(2)

4− 2
.

Since x is the solution of (4.1) on [2, 8]T, we get

(I + 2A)x(2) = x(4).

On the other hand, by the same procedure, we obtain

(I + 4A)x(4) = x(8).

Inductively, we have
(I + 4A)(I + 2A)x(2) = x(8)

which implies
x(8) = (I + 4A)(I + 2A)z = z

for all z ∈ Rn, where x(2) = z. This shows that the system (4.1) is self-accessible on [2, 8]T.
However, it is clear that Im(A) = Rn " Im[B,AB, . . . , An−1B] = {0}.
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[18] H. R. Henŕıquez, G. Castillo, A. Rodriguez, A geometric property of control systems with states in a
Banach space, Systems & Control Letters 8 (1987), 225–229.
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