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Abstract

We prove a periodic averaging theorem for generalized ordinary differential equations and show
that averaging theorems for ordinary differential equations with impulses and for dynamic equations
on time scales follow easily from this general theorem. We also present a periodic averaging theorem
for a large class of retarded equations.
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1 Introduction

Classical averaging theorems for ordinary differential equations are concerned with the initial-value prob-
lem

x′(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0,

where ε > 0 is a small parameter. Assume that f is T -periodic in the first argument. Then, according
to the periodic averaging theorem, we can obtain a good approximation of this initial-value problem by
neglecting the ε2-term and taking the average of f with respect to t. In other words, we consider the
autonomous differential equation

y′(t) = εf0(y(t)), y(t0) = x0,

where

f0(y) =
1

T

∫ t0+T

t0

f(t, y) dt.

Different proofs of the periodic averaging theorem can be found e. g. in [5], [6], or [10]; these monographs
also include many applications.

In this paper, we derive a periodic averaging theorem for generalized ordinary differential equations,
which were introduced by Jaroslav Kurzweil in 1957 (see [4]). We then show that the classical averaging
theorem (even with the possibility of including impulses) is a simple corollary of our theorem. As a second
application, we obtain a periodic averaging theorem for dynamic equations on time scales. In the final
section, we derive a periodic averaging theorem for a large class of retarded equations.
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2 Generalized ordinary differential equations

We start with a short summary of Kurzweil integration, which plays a crucial role in the theory of
generalized ordinary differential equations.

A partition of a compact interval [a, b] is a finite collection of point-interval pairs (τi, [si−1, si])
m
i=1,

where a = s0 ≤ s1 ≤ . . . ≤ sm = b and τi ∈ [si−1, si], i = 1, 2, . . . ,m. Given a function δ : [a, b] → R+,
we say that the partition (τi, [si−1, si])

m
i=1 is δ-fine whenever [si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)) for every

i = 1, 2, . . . ,m.
A function U : [a, b]× [a, b]→ Rn is called Kurzweil integrable on [a, b], if there is an I ∈ Rn such that

given an ε > 0, there is a δ : [a, b]→ R+ such that for every δ-fine partition (τi, [si−1, si])
m
i=1 of [a, b], we

have ∥∥∥∥∥
m∑
i=1

[U (τi, si)− U (τi, si−1)]− I

∥∥∥∥∥ < ε.

In this case, we write I =
∫ b
a
DU (τ, t). This definition generalizes the well-known Henstock-Kurzweil

integral of a function f : [a, b] → Rn, which is obtained by taking U(τ, t) = f(τ)t. Another important
special case is the Kurzweil-Stieltjes integral of a function f : [a, b] → Rn with respect to a function

g : [a, b]→ R, which corresponds to the choice U(τ, t) = f(τ)g(t) and will be denoted by
∫ b
a
f(s) dg(s).

Consider a set B ⊂ Rn, an interval I ⊂ R and a function F : B × I → Rn. A function x : I → B is
called a solution of the generalized ordinary differential equation

dx

dτ
= DF (x, t),

whenever

x(b)− x(a) =

∫ b

a

DF (x(τ), t)

for every a, b ∈ I.
A basic source in the theory of generalized ordinary differential equations is the book [7]. It is known

that an ordinary differential equation x′(t) = f(x(t), t) is equivalent to the generalized equation

dx

dτ
= DF (x, t),

where F (x, t) =
∫ t
t0
f(x, s) ds. However, generalized equations include many other types of equations such

as impulsive equations, retarded functional differential equations, or dynamic equations on time scales.
Without loss of generality, we can always assume that the right-hand side of a generalized equation

satisfies F (x, 0) = 0 for every x ∈ B. Otherwise, we let

F̃ (x, t) = F (x, t)− F (x, 0), x ∈ B, t ∈ I,

and consider the equation
dx

dτ
= DF̃ (x, t).

Then we have F̃ (x, 0) = 0 for every x ∈ B, and it follows from the definition of the Kurzweil integral
that the new equation has the same set of solutions as the original one.

Definition 1. Let B ⊂ Rn, I ⊂ R an interval on the real line, Ω = B × I. Assume that h : I → R is
a nondecreasing function. We say that a function F : Ω→ Rn belongs to the class F(Ω, h), if it satisfies

‖F (x, s2)− F (x, s1)‖ ≤ |h(s2)− h(s1)|
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for every x ∈ B and every s1, s2 ∈ I, and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ ‖x− y‖ · |h(s2)− h(s1)|

for every x, y ∈ B and every s1, s2 ∈ I.

The following existence theorem is proved in [7, Corollary 1.34]. The inequality follows easily from
the definition of the Kurzweil-Stieltjes integral.

Theorem 2. If f : [a, b] → Rn is a regulated function and g : [a, b] → R is a nondecreasing function,

then the integral
∫ b
a
f(s) dg(s) exists. Moreover,∥∥∥∥∥

∫ b

a

f(s) dg(s)

∥∥∥∥∥ ≤
∫ b

a

‖f(s)‖ dg(s).

The following lemma combines two statements from [7] (see Lemma 3.9 and Corollary 3.15).

Lemma 3. Let B ⊂ Rn, Ω = B × [a, b]. Assume that F : Ω → Rn belongs to the class F(Ω, h). If

x : [a, b]→ B is a regulated function, then the integral
∫ b
a
DF (x(τ), t) exists and∥∥∥∥∥

∫ b

a

DF (x(τ), t)

∥∥∥∥∥ ≤ h(b)− h(a).

We also need the following theorem, which can be found in [7, Lemma 3.12].

Lemma 4. Let B ⊂ Rn, Ω = B × [a, b]. Assume that F : Ω → Rn belongs to the class F(Ω, h). Then
every solution x : [α, β]→ B of the generalized ordinary differential equation

dx

dτ
= DF (x, t)

is a regulated function.

The following inequality will be useful in the proof of the averaging theorem.

Lemma 5. Let B ⊂ Rn, Ω = B × [a, b]. Assume that F : Ω → Rn belongs to the class F(Ω, h). If x,
y : [a, b]→ B are regulated functions, then∥∥∥∥∥

∫ b

a

D[F (x(τ), t)− F (y(τ), t)]

∥∥∥∥∥ ≤
∫ b

a

‖x(t)− y(t)‖ dh(t).

Proof. The Kurzweil-Stieltjes integral on the right-hand side exists, because h is nondecreasing and ‖x−y‖
is regulated. For an arbitrary partition (τi, [si−1, si])

m
i=1 of [a, b], we have∥∥∥∥∥

m∑
i=1

(F (x(τi), si)− F (x(τi), si−1)− F (y(τi), si) + F (y(τi), si−1))

∥∥∥∥∥ ≤
m∑
i=1

‖F (x(τi), si)− F (x(τi), si−1)− F (y(τi), si) + F (y(τi), si−1)‖ ≤
m∑
i=1

‖x(τi)− y(τi)‖ (h(si)− h(si−1)).

Now, given an ε > 0, there is a partition (τi, [si−1, si])
m
i=1 such that∥∥∥∥∥

∫ b

a

D[F (x(τ), t)− F (y(τ), t)]−
m∑
i=1

(F (x(τi), si)− F (x(τi), si−1)− F (y(τi), si) + F (y(τi), si−1))

∥∥∥∥∥ < ε
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and ∣∣∣∣∣
∫ b

a

‖x(t)− y(t)‖ dh(t)−
m∑
i=1

‖x(τi)− y(τi)‖ (h(si)− h(si−1))

∣∣∣∣∣ < ε.

It follows that∥∥∥∥∥
∫ b

a

D[F (x(τ), t)− F (y(τ), t)]

∥∥∥∥∥ ≤
∥∥∥∥∥
m∑
i=1

(F (x(τi), si)− F (x(τi), si−1)− F (y(τi), si) + F (y(τi), si−1))

∥∥∥∥∥
+

∥∥∥∥∥
∫ b

a

D[F (x(τ), t)− F (y(τ), t)]−
m∑
i=1

(F (x(τi), si)− F (x(τi), si−1)− F (y(τi), si) + F (y(τi), si−1))

∥∥∥∥∥
<

m∑
i=1

‖x(τi)− y(τi)‖ (h(si)− h(si−1)) + ε

≤

∣∣∣∣∣
m∑
i=1

‖x(τi)− y(τi)‖ (h(si)− h(si−1))−
∫ b

a

‖x(t)− y(t)‖ dh(t)

∣∣∣∣∣+

∫ b

a

‖x(t)− y(t)‖ dh(t) + ε

< 2ε+

∫ b

a

‖x(t)− y(t)‖ dh(t).

This proves the statement since ε can be arbitrarily small.

The following theorem represents an analogue of Gronwall’s inequality for the Kurzweil-Stieltjes in-
tegral; the proof can be found in [7, Corollary 1.43].

Theorem 6. Let h : [a, b] → [0,∞) be a nondecreasing left-continuous function, k > 0, l ≥ 0. Assume
that ψ : [a, b]→ [0,∞) is bounded and satisfies

ψ(ξ) ≤ k + l

∫ ξ

a

ψ(τ) dh(τ), ξ ∈ [a, b].

Then ψ(ξ) ≤ kel(h(ξ)−h(a)) for every ξ ∈ [a, b].

We proceed to our main result, which is a periodic averaging theorem for generalized ordinary differen-
tial equations. The proof is inspired by a proof of the classical averaging theorem for ordinary differential
equations given in [6] (see Theorem 2.8.1 and Lemma 2.8.2).

Theorem 7. Let B ⊂ Rn, Ω = B × [0,∞), ε0 > 0, L > 0. Consider functions F : Ω → Rn and
G : Ω× (0, ε0]→ Rn which satisfy the following conditions:

1. There exist nondecreasing left-continuous functions h1, h2 : [0,∞)→ [0,∞) such that F belongs to
the class F(Ω, h1), and for every fixed ε ∈ (0, ε0], the function (x, t) 7→ G(x, t, ε) belongs to the class
F(Ω, h2).

2. F (x, 0) = 0 and G(x, 0, ε) = 0 for every x ∈ B, ε ∈ (0, ε0].

3. There exists a number T > 0 and a bounded Lipschitz-continuous function M : B → Rn such that
F (x, t+ T )− F (x, t) = M(x) for every x ∈ B and t ∈ [0,∞).

4. There exists a constant α > 0 such that h1(iT )− h1((i− 1)T ) ≤ α for every i ∈ N.

5. There exists a constant β > 0 such that |h2(t)/t| ≤ β for every t ≥ L/ε0.
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Let

F0(x) =
F (x, T )

T
, x ∈ B.

Suppose that for every ε ∈ (0, ε0], the initial-value problems

dx

dτ
= D

[
εF (x, t) + ε2G(x, t, ε)

]
, x(0) = x0(ε),

y′(t) = εF0(y(t)), y(0) = y0(ε)

have solutions xε, yε :
[
0, Lε

]
→ B. If there is a constant J > 0 such that ‖x0(ε)− y0(ε)‖ ≤ Jε for every

ε ∈ (0, ε0], then there exists a constant K > 0 such that

‖xε(t)− yε(t)‖ ≤ Kε

for every ε ∈ (0, ε0] and t ∈
[
0, Lε

]
.

Proof. If x ∈ B, then

‖F0(x)‖ =

∥∥∥∥F (x, T )

T

∥∥∥∥ =

∥∥∥∥F (x, T )− F (x, 0)

T

∥∥∥∥ =
‖M(x)‖

T
≤ m

T
,

where m is a bound for M . Let l be a Lipschitz constant for M . The function H : B × [0,∞) → Rn
given by

H(x, t) = F0(x)t =
F (x, T )

T
t

satisfies

‖H(x, s2)−H(x, s1)‖ =
1

T
‖F (x, T )s2 − F (x, T )s1‖ =

1

T
‖F (x, T )‖(s2 − s1) ≤ m

T
(s2 − s1)

and

‖H(x, s2)−H(x, s1)−H(y, s2) +H(y, s1)‖ =
1

T
‖F (x, T )s2 − F (x, T )s1 − F (y, T )s2 + F (y, T )s1‖

=
1

T
‖F (x, T )− F (y, T )‖(s2 − s1) =

1

T
‖M(x)−M(y)‖(s2 − s1) ≤ l

T
‖x− y‖(s2 − s1)

for every x, y ∈ B and every s1, s2 ∈ [0,∞), s1 ≤ s2. It follows that H belongs to the class F(Ω, h3),
where h3(t) = (m+ l)t/T . For every t ∈ [0, L/ε], we have

xε(t) = x0(ε) + ε

∫ t

0

DF (xε(τ), s) + ε2

∫ t

0

DG(xε(τ), s, ε),

yε(t) = y0(ε) + ε

∫ t

0

F0(yε(τ)) dτ = yε(0) + ε

∫ t

0

D[F0(yε(τ))s].

Consequently,

‖xε(t)− yε(t)‖ =

∥∥∥∥x0(ε)− y0(ε) + ε

∫ t

0

DF (xε(τ), s) + ε2

∫ t

0

DG(xε(τ), s, ε)− ε
∫ t

0

D[F0(yε(τ))s]

∥∥∥∥ ≤
≤ Jε+ε

∥∥∥∥∫ t

0

D[F (xε(τ), s)− F (yε(τ), s)]

∥∥∥∥+ε

∥∥∥∥∫ t

0

D[F (yε(τ), s)− F0(yε(τ))s]

∥∥∥∥+ε2

∥∥∥∥∫ t

0

DG(xε(τ), s, ε)

∥∥∥∥ .
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According to Lemma 3, we have the estimate

ε2

∥∥∥∥∫ t

0

DG(xε(τ), s, ε)

∥∥∥∥ ≤ ε2(h2(t)− h2(0)) ≤ ε2h2(L/ε) = εL
h2(L/ε)

L/ε
≤ εLβ.

Also, it follows from Lemma 5 that∥∥∥∥∫ t

0

D[F (xε(τ), s)− F (yε(τ), s)]

∥∥∥∥ ≤ ∫ t

0

‖xε(s)− yε(s)‖dh1(s).

Let p be the largest integer such that pT ≤ t. Then∫ t

0

D[F (yε(τ), s)−F0(yε(τ))s] =

p∑
i=1

∫ iT

(i−1)T

D[F (yε(τ), s)−F0(yε(τ))s]+

∫ t

pT

D[F (yε(τ), s)−F0(yε(τ))s]

For every i ∈ {1, . . . , p}, we obtain∫ iT

(i−1)T

D[F (yε(τ), s)− F0(yε(τ))s] =

∫ iT

(i−1)T

D[F (yε(τ), s)− F (yε(iT ), s)]

−
∫ iT

(i−1)T

D[F0(yε(τ))s− F0(yε(iT ))s] +

∫ iT

(i−1)T

D[F (yε(iT ), s)− F0(yε(iT ))s].

We estimate the first integral as follows:∥∥∥∥∥
∫ iT

(i−1)T

D[F (yε(τ), s)− F (yε(iT ), s)]

∥∥∥∥∥ ≤
∫ iT

(i−1)T

‖yε(s)− yε(iT )‖dh1(s)

Since yε satisfies y′ε(t) = εF0(yε(t)), the mean value theorem gives

‖yε(s)− yε(iT )‖ ≤ εm
T

(iT − s) ≤ εm, s ∈ [(i− 1)T, iT ],

and consequently ∫ iT

(i−1)T

‖yε(s)− yε(iT )‖dh1(s) ≤ εm(h1(iT )− h1((i− 1)T )) ≤ εmα.

The same procedure applied to the second integral gives∥∥∥∥∥
∫ iT

(i−1)T

D[F0(yε(τ))s− F0(yε(iT ))s]

∥∥∥∥∥ ≤ εm(h3(iT )− h3((i− 1)T )) ≤ εm(m+ l).

The third integral is zero, because for an arbitrary y ∈ B, we have∫ iT

(i−1)T

D[F (y, s)− F0(y)s] = F (y, iT )− F (y, (i− 1)T )− F0(y)T = M(y)− F (y, T ) = 0.

Since pT ≤ L/ε, we obtain∥∥∥∥∥
p∑
i=1

∫ iT

(i−1)T

D[F (yε(τ), s)− F0(yε(τ))s]

∥∥∥∥∥ ≤ pεmα+ pεm(m+ l) ≤ Lmα

T
+
m(m+ l)L

T
.
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Finally, the following estimate is a consequence of Lemma 3:∥∥∥∥∫ t

pT

D[F (yε(τ), s)− F0(yε(τ))s]

∥∥∥∥ ≤ ∥∥∥∥∫ t

pT

DF (yε(τ), s)

∥∥∥∥+

∥∥∥∥∫ t

pT

D[F0(yε(τ))s]

∥∥∥∥
≤ h1(t)− h1(pT ) + h3(t)− h3(pT ) ≤ h1(pT + T )− h1(pT ) + h3(pT + T )− h3(pT ) ≤ α+m+ l

By combining the previous inequalities, we obtain∥∥∥∥∫ t

0

D[F (yε(τ), s)− F0(yε(τ))s]

∥∥∥∥ ≤ K,
where K is a certain constant. It follows that

‖xε(t)− yε(t)‖ ≤ ε
∫ t

0

‖xε(s)− yε(s)‖ dh1(s) + ε(J +K + Lβ).

Since xε is a regulated function (we have used Lemma 4) and yε is a continuous functions, both of them
must be bounded and we can apply Gronwall’s inequality from Theorem 6 to obtain

‖xε(t)− yε(t)‖ ≤ eε(h1(t)−h1(0))ε(J +K + Lβ).

The proof is concluded by observing that

ε(h1(t)− h1(0)) ≤ ε(h1(L/ε)− h1(0)) ≤ ε(h1(dL/(εT )eT )− h1(0))

≤ ε
⌈
L

εT

⌉
α ≤ ε

(
L

εT
+ 1

)
α ≤

(
L

T
+ ε0

)
α.

3 Ordinary differential equations with impulses

We now use the theorem from the previous section to obtain a periodic averaging theorem for ordinary
differential equations with impulses. Given a set B ⊂ Rn, a function f : B × [0,∞)→ Rn, an increasing
sequence of numbers 0 ≤ t1 < t2 < · · · , and a sequence of mappings Ii : B → Rn, i ∈ N, consider the
impulsive differential equation

x′(t) = εf(x(t), t) + ε2g(x(t), t, ε), t ∈ [0,∞)\{t1, t2, . . .},

∆+x(ti) = εIi(x(ti)), i ∈ N,
where ∆+x(ti) = x(ti+)− x(ti).

Since we are interested in deriving a periodic averaging theorem, we will assume that f is T -periodic
in the second argument and that the impulses are periodic in the following sense: There exists a k ∈ N
such that 0 ≤ t1 < t2 < · · · < tk < T and for every integer i > k, we have ti = ti−k + T , Ii = Ii−k.

It is known (see Chapter 5 in [7]) that if f is a bounded function which is Lipschitz-continuous in the
first argument and continuous in the second argument, and if the impulse operators Ii are bounded and
Lipschitz-continuous, then the impulsive differential equation

x′(t) = f(x(t), t), t ∈ [0,∞)\{t1, t2, . . .},

∆+x(ti) = Ii(x(ti)), i ∈ N,
is equivalent to a generalized ordinary differential equation with the right-hand side

F (x, t) =

∫ t

0

f(x, s) ds+
∑

i; 0≤ti<t

Ii(x) =

∫ t

0

f(x, s) ds+

∞∑
i=1

Ii(x)Hti(t),

where Hv denotes the characteristic function of (v,∞), i.e. Hv(t) = 0 for t ≤ v and Hv(t) = 1 for t > v.
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Theorem 8. Assume that B ⊂ Rn, Ω = B × [0,∞), T > 0, ε0 > 0, L > 0. Consider functions
f : Ω → Rn and g : Ω × (0, ε0] → Rn which are bounded, Lipschitz-continuous in the first argument and
continuous in the second argument. Moreover, let f be T -periodic in the second argument. Assume that
k ∈ N, 0 ≤ t1 < t2 < · · · < tk < T , and that Ii : B → Rn, i = 1, 2, . . . , k are bounded and Lipschitz-
continuous functions. For every integer i > k, define ti and Ii by the recursive formulas ti = ti−k + T
and Ii = Ii−k. Denote

f0(x) =
1

T

∫ T

0

f(x, s) ds and I0(x) =
1

T

k∑
i=1

Ii(x)

for every x ∈ B. Suppose that for every ε ∈ (0, ε0], the impulsive equation

x′(t) = εf(x(t), t) + ε2g(x(t), t, ε) t ∈ [0,∞)\{t1, t2, . . .},

∆+x(ti) = εIi(x(ti)), i ∈ N, x(0) = x0(ε)

and the ordinary differential equation

y′(t) = ε(f0(y(t)) + I0(y(t))), y(0) = y0(ε)

have solutions xε, yε : [0, Lε ]→ B. If there is a constant J > 0 such that ‖x0(ε)− y0(ε)‖ ≤ Jε for every
ε ∈ (0, ε0], then there exists a constant K > 0 such that

‖xε(t)− yε(t)‖ ≤ Kε

for every ε ∈ (0, ε0] and t ∈ [0, Lε ].

Proof. Let

F (x, t) =

∫ t

0

f(x, s) ds+

∞∑
i=1

Ii(x)Hti(t),

G(x, t, ε) =

∫ t

0

g(x, s, ε) ds.

Given an ε ∈ (0, ε0], the function xε satisfies

dxε
dτ

= D[εF (xε, t) + ε2G(xε, t, ε)].

According to the assumptions, there exists a constant C > 0 such that

‖f(x, t)‖ ≤ C, ‖f(x, t)− f(y, t)‖ ≤ C‖x− y‖

for every x, y ∈ B, t ∈ [0,∞), a constant D > 0 such that

‖Ii(x)‖ ≤ D, ‖Ii(x)− Ii(y)‖ ≤ D‖x− y‖

for every x, y ∈ B and i ∈ N, and a constant N > 0 such that

‖g(x, t, ε)‖ ≤ N, ‖g(x, t, ε)− g(y, t, ε)‖ ≤ N‖x− y‖

for every x, y ∈ B, t ∈ [0,∞), ε ∈ (0, ε0]. The function h1 : [0,∞)→ R given by

h1(t) = Ct+D

∞∑
i=1

Hti(t)
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is left-continuous and nondecreasing. If 0 ≤ u ≤ t, then

‖F (x, t)− F (x, u)‖ =

∥∥∥∥∥
∫ t

u

f(x, s) ds+

∞∑
i=1

Ii(x)(Hti(t)−Hti(u))

∥∥∥∥∥ ≤
≤
∫ t

u

‖f(x, s)‖ ds+

∞∑
i=1

‖Ii(x)‖(Hti(t)−Hti(u)) ≤ C(t− u) +D

∞∑
i=1

(Hti(t)−Hti(u)) = h1(t)− h1(u)

and

‖F (x, t)−F (x, u)−F (y, t)+F (y, u)‖ =

∥∥∥∥∥
∫ t

u

(f(x, s)− f(y, s)) ds+

∞∑
i=1

(Ii(x)− Ii(y)) (Hti(t)−Hti(u))

∥∥∥∥∥
≤
∫ t

u

‖f(x, s)− f(y, s)‖ds+

∞∑
i=1

‖Ii(x)− Ii(y)‖ (Hti(t)−Hti(u)) ≤

≤ ‖x− y‖

(
C(t− u) +D

∞∑
i=1

(Hti(t)−Hti(u))

)
= ‖x− y‖(h1(t)− h1(u)).

It follows that F belongs to the class F(Ω, h1). Define h2 : [0,∞)→ R by h2(t) = Nt. If 0 ≤ u ≤ t, then

‖G(x, t, ε)−G(x, u, ε)‖ =

∥∥∥∥∫ t

u

g(x, s, ε) ds

∥∥∥∥ ≤ N(t− u) = h2(t)− h2(u).

Also, if 0 ≤ u ≤ t and x, y ∈ B, we have

‖G(x, t, ε)−G(x, u, ε)−G(y, t, ε) +G(y, u, ε)‖ =

∥∥∥∥∫ t

u

(g(x, s, ε)− g(y, s, ε)) ds

∥∥∥∥ ≤
≤ N‖x− y‖(t− u) = ‖x− y‖(h2(t)− h2(u)).

Therefore, for every fixed ε ∈ (0, ε0], the function (x, t) 7→ G(x, t, ε) belongs to the class F(Ω, h2). It is
clear that F (x, 0) = 0 and G(x, 0, ε) = 0 for every x ∈ B. Moreover, for every t ≥ 0, the difference

F (x, t+ T )− F (x, t) =

∫ t+T

t

f(x, s) ds+
∑

i; t≤ti<t+T

Ii(x) =

∫ T

0

f(x, s) ds+
∑

i; 0≤ti<T

Ii(x)

is independent of t, so we can define M(x) = F (x, t+ T )− F (x, t). The following calculations show that
M is bounded and Lipschitz-continuous:

‖M(x)‖ = ‖F (x, T )− F (x, 0)‖ =

∥∥∥∥∥
∫ T

0

f(x, s) ds+

k∑
i=1

Ii(x)

∥∥∥∥∥ ≤ CT + kD

‖M(x)−M(y)‖ = ‖F (x, T )− F (y, T )− F (x, 0) + F (y, 0)‖ =

=

∥∥∥∥∥
∫ T

0

(f(x, s)− f(y, s)) ds+

k∑
i=1

(Ii(x)− Ii(y))

∥∥∥∥∥ ≤
∫ T

0

‖f(x, s)− f(y, s)‖ ds+

k∑
i=1

‖Ii(x)− Ii(y)‖

≤ CT‖x− y‖+ kD‖x− y‖ = ‖x− y‖(CT + kD)
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For every j ∈ N, we have

h1(jT )− h1((j − 1)T ) = CjT +D

∞∑
i=1

Hti(jT )− C(j − 1)T −D
∞∑
i=1

Hti((j − 1)T ) =

= CT +D
∑

i; (j−1)T≤ti<jT

1 = CT +Dk.

Finally, note that |h2(t)/t| = N for every t > 0. We see that the assumptions of Theorem 7 are satisfied.
To conclude the proof, it is now sufficient to define

F0(x) =
F (x, T )

T
=

1

T

∫ T

0

f(x, s) ds+
1

T

k∑
i=1

Ii(x) = f0(x) + I0(x)

and apply Theorem 7.

4 Dynamic equations on time scales

In this section, we use Theorem 7 to derive a periodic averaging theorem for dynamic equations on time
scales. We assume that the reader is familiar with the basic notions of time scales calculus as described
in [1], and with integration on time scales as presented in [2]. According to [8], dynamic equations on time
scales can be converted to generalized ordinary differential equations. Before describing the corresponding
procedure, we introduce the following notation, which is taken over from [8].

Let T be a time scale. If t is a real number such that t ≤ supT, let

t∗ = inf{s ∈ T; s ≥ t}.

Since T is a closed set, we have t∗ ∈ T. Further, let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.

Given a function f : T→ Rn, we define a function f∗ : T∗ → Rn by

f∗(t) = f(t∗), t ∈ T∗.

The following theorem, which is a special case of Theorem 12 from [8], describes a one-to-one correspon-
dence between the solutions of a dynamic equation and the solutions of a certain generalized ordinary
differential equation.

Theorem 9. Consider a bounded set B ⊂ Rn and a bounded Lipschitz-continuous function f : B ×T→
Rn. Moreover, assume that f is rd-continuous, i.e. the function t 7→ f(x(t), t) is rd-continuous whenever
x : T→ B is a continuous function. If x : T→ B is a solution of

x∆(t) = f(x(t), t), t ∈ T, (1)

then x∗ : T∗ → B is a solution of generalized ordinary differential equation

dx

dτ
= DF (x, t), t ∈ T∗, (2)

where

F (x, t) =

∫ t

t0

f(x, s∗) du(s), x ∈ B, t ∈ T∗,

t0 ∈ T is an arbitrary fixed number, and u(s) = s∗ for every s ∈ T∗. Conversely, every solution y : T∗ → B
of (2) has the form y = x∗ , where x : T→ B is a solution of (1).
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We now proceed to the periodic averaging theorem for dynamic equations on time scales.

Definition 10. Let T > 0 be a real number. A time scale T is called T -periodic if t ∈ T implies t+T ∈ T
and µ(t) = µ(t+ T ).

Theorem 11. Let T be a T -periodic time scale, t0 ∈ T, ε0 > 0, L > 0, B ⊂ Rn bounded. Consider a pair
of bounded Lipschitz-continuous functions f : B × [t0,∞)T → Rn and g : B × [t0,∞)T × (0, ε0] → Rn.
Assume that f is T -periodic in the second variable, and that both f and g are rd-continuous. Define
f0 : B → Rn by

f0(x) =
1

T

∫ t0+T

t0

f(x, s)∆s, x ∈ B.

Suppose that for every ε ∈ (0, ε0], the dynamic equation

x∆(t) = εf(x(t), t) + ε2g(x(t), t, ε), x(t0) = x0(ε)

has a solution xε : [t0, t0 + L
ε ]T → B, and the ordinary differential equation

y′(t) = εf0(y(t)), y(t0) = y0(ε)

has a solution yε : [t0, t0 + L
ε ]→ B. If there is a constant J > 0 such that ‖x0(ε)− y0(ε)‖ ≤ Jε for every

ε ∈ (0, ε0], then there exists a constant K > 0 such that

‖xε(t)− yε(t)‖ ≤ Kε,

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + L
ε ]T.

Proof. Without loss of generality, we can assume that t0 = 0; otherwise, consider a shifted problem with
the time scale T̃ = {t−t0; t ∈ T} and right-hand side f̃(x, t) = f(x, t0 +t). According to the assumptions,
there exist constants m, l > 0 such that

‖f(x, t)‖ ≤ m, ‖g(x, t, ε)‖ ≤ m,

‖f(x, t)− f(y, t)‖ ≤ l‖x− y‖, ‖g(x, t, ε)− g(y, t, ε)‖ ≤ l‖x− y‖

for every x, y ∈ B, t ∈ [0,∞)T, ε ∈ (0, ε0]. Let u(t) = t∗, h1(t) = h2(t) = (m+ l)u(t),

F (x, t) =

∫ t

0

f(x, s∗) du(s), x ∈ B, t ∈ [0,∞),

G(x, t, ε) =

∫ t

0

g(x, s∗, ε) du(s), x ∈ B, t ∈ [0,∞).

If 0 ≤ t1 ≤ t2 and x, y ∈ B, then

‖F (x, t2)− F (x, t1)‖ =

∥∥∥∥∫ t2

t1

f(x, s∗) du(s)

∥∥∥∥ ≤ m(u(t2)− u(t1)) ≤ h1(t2)− h1(t1),

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ =

∥∥∥∥∫ t2

t1

(f(x, s∗)− f(y, s∗)) du(s)

∥∥∥∥ ≤
≤ l‖x− y‖(u(t2)− u(t1)) ≤ ‖x− y‖(h1(t2)− h1(t1)).

It follows that F belongs to the class F(Ω, h1). Similarly, if 0 ≤ t1 ≤ t2 and x, y ∈ B, then

‖G(x, t2, ε)−G(x, t1, ε)‖ =

∥∥∥∥∫ t2

t1

g(x, s∗, ε) du(s)

∥∥∥∥ ≤ m(u(t2)− u(t1)) ≤ h2(t2)− h2(t1),
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‖G(x, t2, ε)−G(x, t1, ε)−G(y, t2, ε) +G(y, t1, ε)‖ =

∥∥∥∥∫ t2

t1

(g(x, s∗, ε)− g(y, s∗, ε)) du(s)

∥∥∥∥ ≤
≤ l‖x− y‖(u(t2)− u(t1)) ≤ ‖x− y‖(h2(t2)− h2(t1)).

Therefore, for every fixed ε ∈ (0, ε0], the function (x, t) 7→ G(x, t, ε) belongs to the class F(Ω, h2). It
is clear that F (x, 0) = 0 and G(x, 0, ε) = 0. Since T is a T -periodic time scale, the function u is also
T -periodic. The function f is T -periodic in the second argument and it follows that the difference

F (x, t+ T )− F (x, t) =

∫ t+T

t

f(x, s∗) du(s) =

∫ T

0

f(x, s∗) du(s)

does not depend on t. The function M(x) = F (x, t+ T )− F (x, t) satisfies

‖M(x)‖ =

∥∥∥∥∥
∫ T

0

f(x, s∗) du(s)

∥∥∥∥∥ ≤ m(u(T )− u(0)) = mT,

‖M(x)−M(y)‖ =

∥∥∥∥∥
∫ T

0

(f(x, s∗)− f(y, s∗)) du(s)

∥∥∥∥∥ ≤ l‖x− y‖(u(T )− u(0)) = l‖x− y‖T,

i.e. M is a bounded Lipschitz-continuous function. For every i ∈ N, we have

h1(iT )− h1((i− 1)T ) = (m+ l)(u(iT )− u((i− 1)T )) = (m+ l)(iT − (i− 1)T ) = (m+ l)T.

If t ≥ L/ε0, then∣∣∣∣h2(t)

t

∣∣∣∣ = (m+ l)
t∗

t
≤ (m+ l)

t+ T

t
= (m+ l)

(
1 +

T

t

)
≤ (m+ l)

(
1 +

Tε0

L

)
.

Thus we have checked that all assumptions of Theorem 7 are satisfied. Moreover,

F0(x) =
F (x, T )

T
=

1

T

∫ T

0

f(x, s∗) du(s) = f0(x),

where the last equality follows from Theorem 5 in [8]. By Theorem 9, for every ε ∈ (0, ε0], the function
x∗ε : [t0, t0 + L

ε ]→ B satisfies

dx∗ε
dτ

= D[εF (x∗ε, t) + ε2G(x∗ε, t, ε)], x∗ε(0) = x0(ε).

According to Theorem 7, there exists a constant K > 0 such that

‖x∗ε(t)− yε(t)‖ ≤ Kε

for every t ∈ [0, Lε ], which proves the theorem.

Note that in our Theorem 11, the averaged equation is an ordinary differential equation, while in
a similar Theorem 9 obtained in [9], the averaged equation is a dynamic equation on the same time scale
as the original equation.
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5 Retarded equations

Let r > 0 be a given number. The theory of retarded functional differential equations is usually concerned
with the initial-value problem

x′(t) = f(xt, t), xt0 = φ,

where xt is given by the formula xt(θ) = x(t+ θ), θ ∈ [−r, 0]. The equivalent integral form is

x(t) = x(t0) +

∫ t

t0

f (xs, s) ds, xt0 = φ.

We will focus on slightly more general problems of the form

x(t) = x(t0) +

∫ t

t0

f (xs, s) dh(s), xt0 = φ,

where the Kurzweil-Stieltjes integral on the right-hand side is taken with respect to a nondecreasing
function h. More precisely, we are interested in deriving a periodic averaging theorem for the equation

x(t) = x(0) + ε

∫ t

0

f(xs, s) dh(s) + ε2

∫ t

0

g(xs, s, ε) dh(s), x0 = φ.

Before proceeding to the averaging theorem, we need the following auxiliary lemma.

Lemma 12. If y : [a− r, b]→ Rn is a regulated function, then s 7→ ‖ys‖∞ is regulated on [a, b].

Proof. We will show that lims→s0− ‖ys‖∞ exists for every s0 ∈ (a, b]. The function y is regulated,
and therefore satisfies the Cauchy condition at s0 − r and s0: Given an arbitrary ε > 0, there exists
a δ ∈ (0, s0 − a) such that

‖y(u)− y(v)‖ < ε, u, v ∈ (s0 − r − δ, s0 − r), (3)

and
‖y(u)− y(v)‖ < ε, u, v ∈ (s0 − δ, s0). (4)

Now, consider a pair of numbers s1, s2 such that s0 − δ < s1 < s2 < s0. For every s ∈ [s1 − r, s2 − r], it
follows from (3) that

‖y(s)‖ ≤ ‖y(s2 − r)‖+ ε ≤ ‖ys2‖∞ + ε.

It is also clear that ‖y(s)‖ ≤ ‖ys2‖∞ for every s ∈ [s2 − r, s1]. Consequently, ‖ys1‖∞ ≤ ‖ys2‖∞ + ε.
Using (4) in a similar way, we obtain ‖ys2‖∞ ≤ ‖ys1‖∞ + ε. It follows that∣∣‖ys1‖∞ − ‖ys2‖∞∣∣ ≤ ε, s1, s2 ∈ (s0 − δ, s0),

i.e. the Cauchy condition for the existence of lims→s0− ‖ys‖∞ is satisfied. The existence of lims→s0+ ‖ys‖∞
for s0 ∈ [a, b) can be proved similarly.

The proof of the periodic averaging theorem for retarded equations follows the same basic idea as
the proof of Theorem 7. Certain details are inspired by the paper [3], which is devoted to nonperiodic
averaging. Given a set B ⊂ Rn, we use the symbol G([a, b], B) to denote the set of all regulated functions
f : [a, b]→ B.

Theorem 13. Let ε0 > 0, L > 0, B ⊂ Rn, X = G([−r, 0], B). Consider a pair of bounded functions
f : X × [0,∞) → Rn, g : X × [0,∞) × (0, ε0] → Rn and a nondecreasing left-continuous function
h : [0,∞)→ R such that the following conditions are satisfied:
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1. The integral
∫ b

0
f(yt, t) dh(t) exists for every b > 0 and y ∈ G([−r, b], B).

2. f is T -periodic in the second variable.

3. There is a constant α > 0 such that h(t+ T )− h(t) = α for every t ≥ 0.

4. There is a constant C > 0 such that for x, y ∈ X and t ∈ [0,∞),

‖f(x, t)− f(y, t)‖ ≤ C ‖x− y‖∞ .

5. The integral

f0(x) =
1

T

∫ T

0

f(x, s) dh(s)

exists for every x ∈ X.

Let φ ∈ X. Suppose that for every ε ∈ (0, ε0], the initial-value problems

x(t) = x(0) + ε

∫ t

0

f(xs, s) dh(s) + ε2

∫ t

0

g(xs, s, ε) dh(s), x0 = φ,

y(t) = y(0) + ε

∫ t

0

f0(ys) ds, y0 = φ

have solutions xε, yε :
[
−r, Lε

]
→ B. Then there exists a constant J > 0 such that

‖xε(t)− yε(t)‖ ≤ Jε

for every ε ∈ (0, ε0] and t ∈ [0, Lε ].

Proof. There is a constant M > 0 such that ‖f(x, t)‖ ≤ M and ‖g(x, t, ε)‖ ≤ M for every x ∈ X,
t ∈ [0,∞) and ε ∈ (0, ε0]. It follows that

‖f0(x)‖ =

∥∥∥∥∥ 1

T

∫ T

0

f(x, s) dh(s)

∥∥∥∥∥ ≤ M

T
(h(T )− h(0)) =

Mα

T

for every x ∈ X. Thus if ε ∈ (0, ε0], s, t ∈ [0,∞), s ≥ t, the solution yε satisfies

‖yε(s+ θ)− yε(t+ θ)‖ =

∥∥∥∥∥ε
∫ s+θ

t+θ

f0(yεσ) dσ

∥∥∥∥∥ ≤ εM(s− t)α
T

, θ ∈ [−r, 0],

‖yεs − yεt ‖∞ = sup
θ∈[−r,0]

‖yε(s+ θ)− yε(t+ θ)‖ ≤ εM(s− t)α
T

. (5)

For every t ∈ [0, L/ε], we have

‖xε(t)− yε(t)‖ =

∥∥∥∥ε∫ t

0

f(xεs, s) dh(s) + ε2

∫ t

0

g(xεs, s, ε) dh(s)− ε
∫ t

0

f0(yεs) ds

∥∥∥∥ ≤
≤ ε

∥∥∥∥∫ t

0

(f(xεs, s)− f(yεs , s)) dh(s)

∥∥∥∥+ ε

∥∥∥∥∫ t

0

f(yεs , s) dh(s)−
∫ t

0

f0(yεs) ds

∥∥∥∥+ ε2

∥∥∥∥∫ t

0

g(xεs, s, ε) dh(s)

∥∥∥∥ ≤
≤ ε

∫ t

0

C‖xεs − yεs‖∞ dh(s) + ε

∥∥∥∥∫ t

0

f (yεs , s) dh(s)−
∫ t

0

f0 (yεs) ds

∥∥∥∥+ ε2M(h(t)− h(0)). (6)
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(Note that the integral
∫ t

0
C‖xεs− yεs‖∞ dh(s) is guaranteed to exist by Lemma 12, while the existence of∫ t

0
f (yεs , s) dh(s) follows from assumption 1.) First, we estimate the second term. Let p be the largest

integer such that pT ≤ t. Then ∥∥∥∥∫ t

0

f (yεs , s) dh(s)−
∫ t

0

f0 (yεs) ds

∥∥∥∥ ≤
≤

p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

(f(yεs , s)− f(yε(i−1)T , s)) dh(s)

∥∥∥∥∥+

p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

f(yε(i−1)T , s) dh(s)−
∫ iT

(i−1)T

f0(yε(i−1)T ) ds

∥∥∥∥∥
+

p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

(f0(yε(i−1)T )− f0(yεs)) ds

∥∥∥∥∥+

∥∥∥∥∫ t

pT

f(yεs , s) dh(s)−
∫ t

pT

f0(yεs) ds

∥∥∥∥ .
For every i ∈ {1, 2, . . . , p} and every s ∈ [(i− 1)T, iT ], inequality (5) gives

‖yεs − yε(i−1)T ‖∞ ≤
Mεα(s− (i− 1)T )

T
≤Mεα.

Using this estimate together with the fact that pT ≤ L
ε , we obtain

p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

(f(yεs , s)− f(yε(i−1)T , s)) dh(s)

∥∥∥∥∥ ≤
p∑
i=1

CMεα(h(iT )− h((i− 1)T )) = CMεα2p ≤ CMLα2

T
.

When s ≥ t ≥ 0 and y ∈ G([−r, s], B), then

‖f0(ys)− f0(yt)‖ =
1

T

∥∥∥∥∥
∫ T

0

(f(ys, σ)− f(yt, σ)) dh(σ)

∥∥∥∥∥ ≤ C

T
‖ys − yt‖∞(h(T )− h(0)) =

C

T
‖ys − yt‖∞α.

Thus
p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

(f0(yεs)− f0(yε(i−1)T )) ds

∥∥∥∥∥ ≤
p∑
i=1

∫ iT

(i−1)T

∥∥∥f0(yεs)− f0(yε(i−1)T )
∥∥∥ ds ≤

≤ C

T
α

p∑
i=1

∫ iT

(i−1)T

‖yεs − yε(i−1)T ‖∞ ds ≤ C

T
α

p∑
i=1

εMαT = εMCα2p ≤ MCLα2

T
.

The fact that f is T -periodic in the second variable and the definition of f0 imply

p∑
i=1

∥∥∥∥∥
∫ iT

(i−1)T

f(yε(i−1)T , s) dh(s)−
∫ iT

(i−1)T

f0(yε(i−1)T ) ds

∥∥∥∥∥ =

=

p∑
i=1

∥∥∥∥∥
∫ T

0

f(yε(i−1)T , s) dh(s)− f0(yε(i−1)T )T

∥∥∥∥∥ = 0.

Finally, ∥∥∥∥∫ t

pT

f(yεs , s) dh(s)−
∫ t

pT

f0(yεs) ds

∥∥∥∥ ≤ ∥∥∥∥∫ t

pT

f(yεs , s) dh(s)

∥∥∥∥+

∫ t

pT

‖f0(yεs)‖ ds ≤

≤M(h(t)− h(pT )) +
Mα

T
(t− pT ) ≤M(h((p+ 1)T )− h(pT )) +

Mα

T
T = Mα+Mα = 2Mα.
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By combination of the previous results, we obtain∥∥∥∥∫ t

0

f(yεs , s) dh(s)−
∫ t

0

f0(yεs) ds

∥∥∥∥ ≤ 2MCLα2

T
+ 2Mα.

Denote the constant on the right-hand side by K. Returning back to inequality (6), we see that

‖xε(t)− yε(t)‖ ≤ ε
∫ t

0

C‖xεs − yεs‖∞ dh(s) + εK + ε2M(h(t)− h(0)).

Let ψ(s) = supτ∈[0,s] ‖xε(τ)−yε(τ)‖. Since xε and yε are regulated, it is not difficult to see that ψ is also
regulated and therefore Kurzweil-Stieltjes integrable with respect to the function h. For every u ∈ [0, t],
we have

‖xε(u)−yε(u)‖ ≤ ε
∫ u

0

Cψ(s) dh(s)+εK+ε2M(h(u)−h(0)) ≤ ε
∫ t

0

Cψ(s) dh(s)+εK+ε2M(h(t)−h(0)).

Consequently,

ψ(t) ≤ ε
∫ t

0

Cψ(s) dh(s) + εK + ε2M(h(t)− h(0)).

Next, note that

ε(h(t)−h(0)) ≤ ε(h(L/ε)−h(0)) ≤ ε(h(dL/(εT )eT )−h(0)) ≤ ε
⌈
L

εT

⌉
α ≤ ε

(
L

εT
+ 1

)
α ≤

(
L

T
+ ε0

)
α.

Thus

ψ(t) ≤ ε
∫ t

0

Cψ(s) dh(s) + εK + εM

(
L

T
+ ε0

)
α.

Gronwall’s inequality from Theorem 6 gives

ψ(t) ≤ eεC(h(t)−h(0))

(
K +M

(
L

T
+ ε0

)
α

)
ε ≤ eC( L

T +ε0)α
(
K +M

(
L

T
+ ε0

)
α

)
ε.

It follows that if we let J = eC( L
T +ε0)α (K +M

(
L
T + ε0

)
α
)
, then

‖xε(t)− yε(t)‖ ≤ ψ(t) ≤ Jε

for every ε ∈ (0, ε0] and t ∈ [0, Lε ].

In the special case h(t) = t, we obtain a periodic averaging theorem for the usual type of retarded
functional differential equations. However, our theorem is much more general. The following example
shows that it is applicable even to retarded difference equations.

Example 14. Consider the function h(t) = dte and assume that x : [−r,∞)→ Rn satisfies

x(t) = x(0) +

∫ t

0

f(xs, s) dh(s), t ∈ [0,∞). (7)

It follows from the properties of the Kurzweil-Stieltjes integral that for every integer k ≥ 0, the function
x is constant on (k, k + 1], and x(k+) = x(k) + f(xk, k)(h(k+) − h(k)) = x(k) + f(xk, k). Using this
observation, we see that a retarded difference equation of the form

a(k + 1)− a(k) = F (k, a(k), a(k − 1), . . . , a(k − r)), k ∈ N0,
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is equivalent to the integral equation (7), where h(t) = dte and f(y, t) = F (dte, y(0), y(−1), . . . , y(−r))
for every t ≥ 0 and y ∈ G([−r, 0],Rn). Indeed, every solution x of this integral equation must be constant
on (k, k + 1] and satisfy

x(k + 1) = x(k+) = x(k) + f(xk, k) = x(k) + F (k, x(k), x(k − 1), . . . , x(k − r))

for every integer k ≥ 0. Thus our averaging theorem is applicable to retarded difference equations of the
form

a(k + 1)− a(k) = εF (k, a(k), a(k − 1), . . . , a(k − r)), k ∈ N0,

where ε ∈ (0, ε0] is a small parameter. Assuming that F is T -periodic in the first argument (where T is
a positive integer), the corresponding averaged equation has the form

y(t) = y(0) + ε

∫ t

0

f0(ys) ds,

where the function f0 is given by

f0(y) =
1

T

∫ T

0

f(y, s) dh(s) =
1

T

T−1∑
i=0

∫ i+1

i

f(y, s) dh(s) =

=
1

T

T−1∑
i=0

f(y, i) =
1

T

T−1∑
i=0

F (i, y(0), y(−1), . . . , y(−r))

for every y ∈ G([−r, 0],Rn).
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