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Abstract

Using a known correspondence between the solutions of impulsive measure func-
tional differential equations and the solutions of impulsive functional dynamic equa-
tions on time scales, we prove that the limit of solutions of impulsive functional
dynamic equations over a convergent sequence of time scales converges to a solution
of an impulsive functional dynamic equation over the limiting time scale.

1 Introduction

The fact that solutions of dynamic equations on time scales depend continuously on time
scales is a problem that has been investigated by several researchers. See [1, 5, 10], for
instance. In these papers, the authors prove that the sequence of solutions of the problem{

x∆(t) = f(x, t), t ∈ Tn,
x(t0) = x0, t0 ∈ Tn

(1.1)

converges uniformly to the solution of the problem{
x∆(t) = f(x, t), t ∈ T,
x(t0) = x0, t0 ∈ T

(1.2)
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whenever d(Tn,T) → 0 as n → ∞, where d(Tn,T) denotes the Hausdorff metric or the
induced metric from the Fell topology.

To obtain such results, the following conditions on the function f are usually assumed:

• There exists a constant M > 0 such that ‖f(x, t)‖ ≤ M for every x in a certain
subset of the phase space and every t ∈ [t0, t0 + η]T.

• There exists a constant L > 0 such that ‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖ for every x
and y in a certain subset of the phase space and every t ∈ [t0, t0 + η]T.

Here, our goal is to investigate the behavior of solutions of the same initial value
problems over different time scales for impulsive functional dynamic equations; that is,
we prove that, under certain conditions, the sequence of solutions of the system

x(t) = x(t0) +

∫ t

t0

f(xs, s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η]Tn ,

x(t) = φ(t), t ∈ [t0 − r, t0]Tn

(1.3)

converges uniformly to the solution of the problem
x(t) = x(t0) +

∫ t

t0

f(xs, s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T

(1.4)

whenever d(Tn,T) → 0 as n → ∞. Here, d(Tn,T) denotes the Hausdorff metric. Our
results apply to the Fell topology as well.

We also consider the following conditions on the function f :

• There exists a constant M > 0 such that

‖f(xt, t)‖ ≤M,

for all t ∈ [t0, t0 + η]T and all x in a certain subset of the phase space.

• There exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(xt, t)− f(yt, t)) dg(t)

∥∥∥∥ ≤ L

∫ u2

u1

‖xt − yt‖∞ dg(t)

for all u1, u2 ∈ [t0, t0 + η]T and all x, y in a certain subset of the phase space.

Here, we consider the integral in the sense of Henstock–Kurzweil which is known to
integrate highly oscillating functions (see [9], for instance). Thus, the second condition on
the indefinite integral of f allows the function f to behave “badly”, e.g., f may have many
discontinuities or be of unbounded variation, and yet good results can be obtained, as
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long as its indefinite behaves well enough. Alternatively, one could consider the Riemann
or Lebesgue integral.

In order to obtain the continuous dependence result for impulsive functional dynamic
equations on time scales involving variable time scales with these conditions, we use a
known correspondence between the solutions of impulsive functional dynamic equations
on time scales and the solutions of impulsive measure functional differential equations. We
also use a correspondence between these solutions and the solutions of measure functional
differential equations. For details about these correspondences, see [7].

Further, in order to ensure the convergence of solutions, we suppose some convergence
over a operator sequence defined in Section 3. This hypothesis cannot be suppressed as
shown by Examples 5.1 and 5.2 in Section 5.

2 Impulsive Measure Functional Differential Equa-

tions

Let r, η > 0 be given numbers and t0 ∈ R. The theory of functional differential equations
(see e.g., [8]) deals with problems as

ẋ = f(xt, t), t ∈ [t0, t0 + η], (2.1)

where f : Ω × [t0, t0 + η] → Rn, Ω ⊂ C([−r, 0],Rn) and xt is given by xt(θ) = x(t + θ),
θ ∈ [−r, 0], for every t ∈ [t0, t0 + η]. The integral form of (2.1) is given by

x(t) = x(t0) +

∫ t

t0

f(xs, s) ds, t ∈ [t0, t0 + η],

where the integral is in the sense of Henstock–Kurzweil.
The theory of measure functional differential equations deals with problems as

Dx = f(xt, t)Dg,

where Dx and Dg denote the distributional derivatives in the sense of L. Schwartz of the
functions x and g, respectively. The integral form is given by

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s), t ∈ [t0, t0 + η], (2.2)

where we consider the integral on the right-hand side to be Henstock–Kurzweil–Stieltjes
(we write H-K-S, for short) integrable with respect to a nondecreasing function g. See [6,7].

We assume that g is a left-continuous and nondecreasing function and consider the
possibility of adding impulses at preassigned times t1, . . . , tm, where t0 ≤ t1 < · · · <
tm < t0 + η. For every k ∈ {1, . . . ,m}, the impulse at tk is described by the operator
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Ik : Rn → Rn. In other words, the solution x should satisfy ∆+x(tk) = Ik(x(tk)), where
∆+x(tk) = x(tk+)− x(tk) and x(tk+) = lim

t→tk+
x(t). This leads us to the problem


x(v)− x(u) =

∫ v

u

f(xs, s) dg(s), whenever u, v ∈ Jk for some k ∈ {0, . . . ,m},

∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . ,m},
xt0 = φ,

(2.3)
where J0 = [t0, t1], Jk = (tk, tk+1] for k ∈ {1, . . . ,m− 1}, and Jm = (tm, t0 + η].

The value of the integral
∫ v
u
f(xs, s) dg(s), where u, v ∈ Jk, does not change if we

replace g by a function g̃ such that g− g̃ is a constant function on Jk. This follows easily
from the definition of the H-K-S integral (see [12], for instance). Thus, without loss of
generality, we can assume that g is such that ∆+g(tk) = 0 for every k ∈ {1, . . . ,m}. Since
g is a left-continuous function, it follows that g is continuous at t1, . . . , tm. Under this
assumption, our problem (2.3) can be rewritten as

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η],

xt0 = φ.

(2.4)

Alternatively, the sum on the right-hand side of (2.4) can be written in the form

∑
k∈{1,...,m},

tk<t

Ik(x(tk)) =
m∑
k=1

Ik(x(tk))Htk(t),

where Hv denotes the Heaviside function of (v,∞) given by

Hv(t) =

{
0 for t ≤ v,

1 for t > v.
(2.5)

Thus, (2.4) becomes x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s) +
m∑
k=1

Ik(x(tk))Htk(t), t ∈ [t0, t0 + η],

xt0 = φ.

(2.6)

Now, we will define regulated functions, since they are a good framework for dealing
with equations having discontinuous right-hand sides. A function f : [a, b] → X, where
X is a Banach space, is called regulated, if the lateral limits

lim
s→t−

f(s) = f(t−) ∈ X, t ∈ (a, b], and lim
s→t+

f(s) = f(t+) ∈ X, t ∈ [a, b)
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exist. The space of all regulated functions f : [a, b] → X will be denoted by G([a, b], X)
and it is a Banach space under the usual supremum norm ‖f‖∞ = supa≤t≤b ‖f(t)‖. The
subspace of all continuous functions f : [a, b]→ X will be denoted by C([a, b], X).

The following theorem represents an analogue of Gronwall’s inequality for the H-K-S
integral. A proof of it can be found in [15, Corollary 1.43]. This result and the next one
will be essentials to prove our auxiliary results.

Theorem 2.1. Let h : [a, b]→ [0,∞) be a nondecreasing left-continuous function, k > 0,
l ≥ 0. Assume that ψ : [a, b]→ [0,∞) is bounded and satisfies

ψ(ξ) ≤ k + l

∫ ξ

a

ψ(τ) dh(τ), ξ ∈ [a, b].

Then ψ(ξ) ≤ kel(h(ξ)−h(a)) for every ξ ∈ [a, b].

For a proof of the next result, see [15, Corollary 1.34]. The inequality below follows
directly from the definition of the H-K-S integral.

Theorem 2.2. If f : [a, b] → Rn is a regulated function and g : [a, b] → R is a nonde-

creasing function, then the integral
∫ b
a
f dg exists and∥∥∥∥∫ b

a

f(s) dg(s)

∥∥∥∥ ≤ ‖f‖∞(g(b)− g(a)).

3 Dynamic Equations on Time Scales

In this section, we present some basic concepts about the theory of dynamic equations on
time scales. For more details about it, the reader may consult [2, 3, 14].

A time scale is a closed and nonempty subset of R. Throughout this paper, we will
denote it by T. For every t ∈ T, we define the forward and backward jump operators
σ, ρ : T→ T, respectively, by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

In this definition, we use the conventions inf ∅ = supT and sup ∅ = inf T. If σ(t) > t,
then we say that t is right-scattered. Otherwise, t is called right-dense. Analogously, if
ρ(t) < t, then t is called left-scattered whereas if ρ(t) = t, then t is called left-dense. We
also define the graininess function µ : T→ R+ by

µ(t) = σ(t)− t.

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed interval
in T, that is, [a, b]T = {t ∈ T : a ≤ t ≤ b}. On the other hand, [a, b] is the usual closed
interval on the real line, that is, [a, b] = {t ∈ R : a ≤ t ≤ b}. We define the set Tκ which
is derived from T as follows: If T has a left-scattered maximum m, then Tκ = T− {m}.
Otherwise, Tκ = T.
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Definition 3.1. For f : T→ R and t ∈ Tk, we define the delta-derivative of f to be the
number (if it exists) with the following property: given ε > 0, there exists a neighborhood
U of t such that

|f(σ(t))− f(t)− f∆(t)[σ(t)− s]| < ε|σ(t)− s| for all s ∈ U.

We say δ = (δL, δR) is a ∆-gauge for [a, b]T provided δL(t) > 0 on (a, b]T, δR(t) > 0 on
[a, b)T, δL(a) ≥ 0, δR(b) ≥ 0, and δR(t) ≥ µ(t) for all t ∈ [a, b)T. A partition P for [a, b]T
is a division of [a, b]T denoted by

P = {a = t0 ≤ ξ1 ≤ t1 ≤ . . . ≤ tn−1 ≤ ξn ≤ tn = b}

with ti > ti−1 for 1 ≤ i ≤ n and ti, ξi ∈ T. We call the points ξi tag points and the points
ti end points. If δ is a ∆-gauge for [a, b]T, then we say a partition P is δ-fine if

ξi − δL(ξi) ≤ ti−1 < ti ≤ ξi + δR(ξi) for 1 ≤ i ≤ n.

In what follows, we give a definition of Henstock–Kurzweil delta integrable functions.

Definition 3.2. A function f : [a, b]T → R is called Henstock–Kurzweil delta integrable

on [a, b]T with value I = HK
∫ b
a
f(t)∆t provided given any ε > 0, there exists a ∆-gauge

δ for [a, b]T such that ∣∣∣∣∣I −
n∑
i=1

f(ξi)(ti − ti−1)

∣∣∣∣∣ < ε

for all δ-fine partitions P of [a, b]T.

Now, we present some definitions which will be essential to our purposes. They were
introduced in [16] and here, we use the same notation as in [11]: Let

σ̃(t) = inf{s ∈ T : s ≥ t} for t ∈ R.

It is clear that σ̃(t) can be different from σ(t) depending on T. Since T is a closed set, we
have σ̃(t) ∈ T. Further, let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.

Given a function f : T→ Rn, we consider its extension f σ̃ : T∗ → Rn given by

f σ̃(t) = f(σ̃(t)), t ∈ T∗.
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4 Impulsive Measure Functional Differential Equa-

tions and Impulsive Functional Dynamic Equations

on Time Scales

It is a known fact that there exists a correspondence between impulsive measure functional
differential equations and impulsive functional dynamic equation on time scales (see [7]).

An impulsive functional dynamic equation on time scales can be described by the
system 

x∆(t) = f(xσ̃t , t), t ∈ [t0, t0 + η]T\{t1, . . . , tm},
∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . ,m},
x(t) = φ(t), t ∈ [t0 − r, t0]T,

(4.1)

where t1, . . . , tm ∈ T are points of impulses, t0 ≤ t1 < t2 < · · · < tm < t0 + η, and
I1, . . . , Im : Rn → Rn. The solution is assumed to be left-continuous. The symbol xσ̃t
should be understood as (xσ̃)t; as explained in [6], that is, (xσ̃)t = xσ̃(t+θ) = x(σ̃(t+θ)),
for θ ∈ [−r, 0]. Also, the advantage of using xσ̃t rather than xt stems from the fact that
xσ̃t is always defined on the whole interval [−r, 0], while xt is defined only on a subset of
[−r, 0]. Alternatively, the above problem can be written more compactly in the form

x(t) = x(t0) +

∫ t

t0

f(xσ̃s , s)∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T.

(4.2)

The next result describes the correspondence between measure functional differential
equations with impulses and impulsive functional dynamic equations on time scales. It
can be found in [7].

Theorem 4.1. Let [t0 − r, t0 + η]T be a time scale interval, t0 ∈ T, B ⊂ Rn, f :
G([−r, 0], B) × [t0, t0 + η]T → Rn, φ ∈ G([t0 − r, t0]T, B). If x : [t0 − r, t0 + η]T → B
is a solution of the impulsive functional dynamic equation

x(t) = x(t0) +

∫ t

t0

f(xσ̃s , s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T,

(4.3)

then xσ̃ : [t0− r, t0 + σ]→ B is a solution of the impulsive measure functional differential
equation

y(t) = y(t0) +

∫ t

t0

f(ys, σ̃(s)) dσ̃(s) +
∑

k∈{1,...,m},
tk<t

Ik(y(tk)), t ∈ [t0, t0 + η],

yt0 = φσ̃.

(4.4)

Conversely, if y : [t0 − r, t0 + η] → B satisfies (4.4), then it must have the form y = xσ̃,
where x : [t0 − r, t0 + η]T → B is a solution of (4.3).
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5 Continuous Dependence for Impulsive Functional

Dynamic Equations on Time Scales

In this section, we present a continuous dependence result involving variable time scales
for impulsive functional dynamic equations on time scales.

Our idea to prove a continuous dependence result for impulsive functional dynamic
equations on time scales is to use the correspondence between the solutions of these equa-
tions and the solutions of impulsive measure functional differential equations (see Theorem
4.1) and the correspondence between the solutions of impulsive measure functional differ-
ential equations and the solutions of measure functional differential equations, which is
given below in Theorem 5.2.

Let Tn be time scales for each n ∈ N with corresponding forward jumps σn and σ̃n.
Assume that the distance d(Tn,T)→ 0 as n→∞. Here, we are considering the Hausdorff
topology and Hausdorff metric in which the distance between two sets is defined by

d(A,B) = max{sup{inf{|a− b| : b ∈ B} : a ∈ A}, sup{inf{|a− b| : a ∈ A} : b ∈ B}}.

Now, our goal is to prove, under certain conditions, a result that guarantees that the
sequence of solutions of the problem xσ̃nn (t) = xσ̃nn (t0) +

∫ t

t0

f((xσ̃nn )s, s) dσ̃n(s), t ∈ T∗n,

(xσ̃nn )t0 = φσ̃n ,

(5.1)

converges uniformly to the solution of the problem xσ̃(t) = xσ̃(t0) +

∫ t

t0

f(xσ̃s , s) dσ̃(s), t ∈ T∗,

xσ̃t0 = φσ̃.

(5.2)

Thus, after proving this result, using the correspondence between impulsive measure func-
tional differential equations and measure functional differential equations, we obtain an
analogous result for measure functional differential equations with impulses and therefore,
using the other correspondence (Theorem 4.1), our main theorem concerning continuous
dependence for impulsive functional dynamic equations on time scales follows as well.

Now, assume O ⊂ G([t0 − r, t0 + η],Rn) is open, P = {yt; y ∈ O, t ∈ [t0, t0 + η]},
f : P × [t0, t0 + η] → Rn, and g : [t0, t0 + η] → R is nondecreasing and left-continuous
function. We assume the following three conditions on the function f : P×[t0, t0+η]→ Rn:

(A) The H-K-S integral
∫ t0+η

t0
f(yt, t) dg(t) exists for every y ∈ O.

(B) There exists a constant M > 0 such that

‖f(yt, t)‖ ≤M,

whenever t0 ≤ t ≤ t0 + η and y ∈ O.

8



(C) There exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) dg(t)

∥∥∥∥ ≤ L

∫ u2

u1

‖yt − zt‖∞ dg(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + η and y, z ∈ O.

Theorem 5.1. Suppose f satisfies conditions (A), (B) and (C), and xσ̃nn is a solution of
the system  xσ̃nn (t) = xσ̃nn (t0) +

∫ t

t0

f((xσ̃nn )s, s) dσ̃n(s), t ∈ T∗n,

(xσ̃nn )t0 = φσ̃n ,

(5.3)

and xσ̃ is a solution of the measure functional differential equation given by xσ̃(t) = xσ̃(t0) +

∫ t

t0

f(xσ̃s , s) dσ̃(s), t ∈ T∗,

xσ̃t0 = φσ̃.

(5.4)

Moreover, suppose d(Tn,T) → 0 as n → ∞ and the sequence of functions {σ̃n}∞n=1 con-
verges uniformly to σ̃ as n→∞. Also, suppose the sequence of initial conditions {φσ̃n}∞n=1

converges uniformly to φσ̃ as n → ∞. Then, for every ε > 0, there exists N > 0 suffi-
ciently large such that, for n > N , we have

‖xσ̃nn (t)− xσ̃(t)‖ < ε for t ∈ T∗n ∩ T∗. (5.5)

Proof. Given ε > 0 and since the sequence of functions {σ̃n} converges uniformly to σ̃,
there exists N1 > 0 sufficiently large such that for every n > N1, we obtain

‖σ̃n(t)− σ̃(t)‖ < ε for every t ∈ T∗n ∩ T∗. (5.6)

Moreover, since the sequence of functions φσ̃n converges uniformly to φσ̃, there exists
N2 > 0 sufficiently large such that for every n > N2, we have

‖φσ̃n − φσ̃‖ < ε for every t ∈ T∗n ∩ T∗. (5.7)

Also, for t ∈ T∗n ∩ T∗ and n > max{N1, N2}, we have

∥∥xσ̃nn (t)− xσ̃(t)
∥∥ =

∥∥∥∥xσ̃nn (t0)− xσ̃(t0) +

∫ t

t0

f((xσ̃nn )s, s)dσ̃n(s)−
∫ t

t0

f((xσ̃)s, s)dσ̃(s)

∥∥∥∥
≤ ‖xσ̃nn (t0)− xσ̃(t0)‖+

∥∥∥∥∫ t

t0

f((xσ̃nn )s, s)dσ̃n(s)−
∫ t

t0

f((xσ̃)s, s)dσ̃(s)

∥∥∥∥
≤ ‖φσ̃n − φσ̃‖+

∥∥∥∥∫ t

t0

f((xσ̃nn )s, s)dσ̃n(s)−
∫ t

t0

f((xσ̃)s, s)dσ̃(s)

∥∥∥∥
≤ ‖φσ̃n − φσ̃‖+

∥∥∥∥∫ t

t0

f((xσ̃nn )s, s)dσ̃n(s)−
∫ t

t0

f((xσ̃nn )s, s)dσ̃(s)

∥∥∥∥
9



+

∥∥∥∥∫ t

t0

f((xσ̃nn )s, s)dσ̃(s)−
∫ t

t0

f((xσ̃)s, s)dσ̃(s)

∥∥∥∥
≤ ε+

∫ t

t0

Md[σ̃n(s)− σ̃(s)] +

∫ t

t0

L‖(xσ̃nn )s − (xσ̃)s‖dσ̃(s),

where we used (B) and (C) for the last inequality. Thus, by Theorem 2.2, we obtain

‖xσ̃nn (t)− xσ̃(t)‖ ≤ ε+ 2εM +

∫ t

t0

L‖(xσ̃nn )s − (xσ̃)s‖dσ̃(s).

Using (xσ̃nn )t0 = φσ̃n and (xσ̃)t0 = φσ̃ and the uniform convergence φσ̃n → φσ̃, we have, for
n > N2,

‖(xσ̃nn )s − xσ̃s‖∞ = sup
θ∈[−r,0]

‖xσ̃nn (s+ θ)− xσ̃(s+ θ)‖ ≤ ε+ sup
η∈[0,s]

‖xσ̃nn (σ)− xσ̃(σ)‖

and, therefore,

‖xσ̃nn (t)− xσ̃(t)‖ ≤ ε+ 2εM +

∫ t

t0

L

(
ε+ sup

η∈[0,s]

‖xσ̃nn (η)− xσ̃(η)‖

)
dσ̃(s).

Then,

‖xσ̃nn (t)− xσ̃(t)‖ ≤ ε+ 2εM + Lε(σ̃(t)− σ̃(t0)) +

∫ t

t0

L sup
η∈[0,s]

‖xσ̃nn (η)− xσ̃(η)‖dσ̃(s).

By the Gronwall inequality (Theorem 2.1), we get

‖xσ̃nn (t)− xσ̃(t)‖ ≤ ε(1 + 2M + (σ̃(t)− σ̃(t0)))eL(g(t)−g(t0))

and, since ε > 0 is arbitrary, we have the desired result.

Note that the hypothesis in Theorem 5.1 which guarantees that the sequence of func-
tions {σ̃n}∞n=1 converges uniformly to σ̃ as n → ∞ is necessary, since one cannot expect
this to happen only using the fact that d(Tn,T) → 0 as n → ∞. Below, we present an
example that illustrates this.

Example 5.1. Let T = [0, a] ∪ [a + 1, b] and Tn = [0, a + 1/n] ∪ [a + 1, b], for every
n ∈ N. Then d(T,Tn) = 1/n→ 0 as n→∞. However σ̃n(a + 1/n) = a + 1/n, for every
n ∈ N, while σ̃(a+ 1/n) = a+ 1. In other words, for every n ≥ 2, there exists t such that
σ̃(t)− σ̃n(t) ≥ 1/2, which means that the sequence {σ̃n}∞n=1 does not converge uniformly
to σ̃.

Even if we consider the Fell topology instead of the Hausdorff topology, the hypothesis
of Theorem 5.1 guaranteeing the uniform convergence of the sequence of functions {σ̃n}∞n=1

is necessary. The next example illustrates this. Here, the notation CL(M) represents the
set of all closed, nonempty subsets of M .

10



Example 5.2. Assume R with the usual metric and CL(R) is endowed with the Fell
topology. Then it is known that

Tn = {z + 1/n : z ∈ Z} → Z.

For details, see [5, Lemma 4]. Also,

σ̃n (z + 1/n) = z + 1/n,

whereas σ̃ (z + 1/n) = z + 1, which implies that σ̃n does not converge uniformly to σ̃.

Now, the next result describes a correspondence between measure functional differ-
ential equations and impulsive measure functional differential equations. A proof of it
can be found in [7]. It will be necessary to prove an analogous result to Theorem 5.1 for
impulsive measure functional differential equations.

Theorem 5.2. Let m ∈ N, t0 ≤ t1 < · · · < tm < t0 + η, B ⊂ Rn, I1, . . . , Im : B → Rn,
P = G([−r, 0], B), f : P × [t0, t0 +η]→ Rn. Assume that g : [t0, t0 +η]→ R is a regulated
left-continuous function which is continuous at the points t1, . . . , tm. For every y ∈ P ,
define

f̄(y, t) =

{
f(y, t), t ∈ [t0, t0 + η]\{t1, . . . , tm},
Ik(y(0)), t = tk for some k ∈ {1, . . . ,m}.

Moreover, let c1, . . . , cm ∈ R be constants such that the function ḡ : [t0, t0 + η]→ R given
by

ḡ(t) =


g(t), t ∈ [t0, t1],

g(t) + ck, t ∈ (tk, tk+1] for some k ∈ {1, . . . ,m− 1},
g(t) + cm, t ∈ (tm, t0 + η]

satisfies ∆+ḡ(tk) = 1 for every k ∈ {1, . . . ,m}. Then x ∈ G([t0−r, t0 +η], B) is a solution
of 

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η],

xt0 = φ

(5.8)

if and only if x satisfies x(t) = x(t0) +

∫ t

t0

f̄(xs, s) dḡ(s), t ∈ [t0, t0 + η],

xt0 = φ.

(5.9)

We also consider the following conditions on the impulse operators Ik : Rn → Rn:

11



(A∗) There exists a constant K1 > 0 such that

‖Ik(x)‖ ≤ K1

for every k ∈ {1, . . . ,m} and x ∈ B.

(B∗) There exists a constant K2 > 0 such that

‖Ik(x)− Ik(y)‖ ≤ K2‖x− y‖

for every k ∈ {1, . . . ,m} and x, y ∈ B.

The next lemma can be found in [7] and it describes how the Carathéodory and
Lipschitz-type conditions concerning the function f and the Lipschitz and boundedness
conditions for the impulse operators can be transferred to f̄ , when it is defined the same
way as described in Theorem 5.2.

Lemma 5.1. Let m ∈ N, t0 ≤ t1 < · · · < tm < t0 + η, B ⊂ Rn, I1, . . . , Im : B → Rn, P =
G([−r, 0], B), O = G([t0−r, t0+η], B). Assume that g : [t0, t0+η]→ R is a left-continuous
nondecreasing function which is continuous at t1, . . . , tm. Let f : P × [t0, t0 + η] → Rn

be a function such that the integral
∫ t0+η

t0
f(yt, t) dg(t) exists for every y ∈ O. For every

y ∈ P , define

f̄(y, t) =

{
f(y, t), t ∈ [t0, t0 + η]\{t1, . . . , tm},
Ik(y(0)), t = tk for some k ∈ {1, . . . ,m}.

Moreover, let c1, . . . , cm ∈ R be constants such that the function ḡ : [t0, t0 + η]→ R given
by

ḡ(t) =


g(t), t ∈ [t0, t1],

g(t) + ck, t ∈ (tk, tk+1] for some k ∈ {1, . . . ,m− 1},
g(t) + cm, t ∈ (tm, t0 + η]

satisfies ∆+ḡ(tk) = 1 for every k ∈ {1, . . . ,m}.

1. If conditions (B) and (A∗) hold, then∥∥f̄(yt, t)
∥∥ ≤M +K1

whenever t0 ≤ t ≤ t0 + η and y ∈ O.

2. If conditions (C) and (B∗) hold, then∥∥∥∥∫ u2

u1

(
f̄(yt, t)− f̄(zt, t)

)
dḡ(t)

∥∥∥∥ ≤ (L+K2)

∫ u2

u1

‖yt − zt‖∞ dḡ(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + η and y, z ∈ O.
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The next theorem shows that, under certain conditions, it is possible to obtain a cor-
respondence between the solutions of impulsive measure functional differential equations,
depending on the conditions about the functions σ̃n and σ̃ and the corresponding time
scales, that is, Tn and T.

Theorem 5.3. Suppose f satisfies the conditions (A), (B) and (C), and for each k =
1, 2, . . . ,m, the impulse operators Ik : Rn → Rn satisfy conditions (A∗) and (B∗). More-
over, suppose xσ̃nn is a solution of the system

xσ̃nn (t) = xσ̃nn (t0) +

∫ t

t0

f((xσ̃nn )s, s) dσ̃n(s) +
∑

k∈{1,...,m},
tk<t

Ik(x
σ̃n
n (tk)), t ∈ T∗n,

(xσ̃nn )t0 = φσ̃n ,

(5.10)

and xσ̃ is a solution of the measure functional differential equation given by
xσ̃(t) = xσ̃(t0) +

∫ t

t0

f(xσ̃s , s) dσ̃(s) +
∑

k∈{1,...,m},
tk<t

Ik(x
σ̃(tk)), t ∈ T∗,

xσ̃t0 = φσ̃.

(5.11)

Moreover, suppose d(Tn,T) → 0 as n → ∞ and the sequence of functions {σ̃n}∞n=1 con-
verges uniformly to σ̃ as n→∞. Also, suppose the sequence of initial conditions {φσ̃n}∞n=1

converges uniformly to φσ̃ as n → ∞. Then, for every ε > 0, there exists N > 0 suffi-
ciently large such that, for n > N , we have

‖xσ̃nn (t)− xσ̃(t)‖ < ε for t ∈ T∗n ∩ T∗.

Proof. Define the functions f̄ , ¯̃σ and ¯̃σn as described in the statement of Theorem 5.2.
Since the sequence of functions {σ̃n}∞n=1 converges uniformly to σ̃, it follows immediately
from the definition that the sequence of functions {¯̃σn}∞n=1 converges uniformly to ¯̃σ. Also,
by Lemma 5.1, we obtain that all hypotheses of Theorem 5.1 are satisfied and then, using
the correspondence (Theorem 4.1), the desired result follows.

Now, consider the next result (see [7]) that will be essential to prove our final theorem
on continuous dependence.

Lemma 5.2. Let [t0−r, t0 +η]T be a time scale interval, t0 ∈ T, O = G([t0−r, t0 +η], B),
P = G([−r, 0], B), f : P × [t0, t0 + η]T → Rn be an arbitrary function. Define f σ̃(y, t) =
f(y, σ̃(t)) for every y ∈ P and t ∈ [t0, t0 + η].

1. If the integral
∫ t0+η

t0
f(yt, t)∆t exists for every y ∈ O, then

∫ t0+η

t0
f σ̃(yt, t) dσ̃(t) exists

for every y ∈ O.

2. Assume there exists a constant M > 0 such that

‖f(yt, t)‖ ≤M
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for every y ∈ O and t ∈ [t0, t0 + η]T. Then∥∥f σ̃(yt, t)
∥∥ ≤M

whenever t0 ≤ t ≤ t0 + η and y ∈ O.

3. Assume there exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) ∆t

∥∥∥∥ ≤ L

∫ u2

u1

‖yt − zt‖∞∆t

for every y, z ∈ O and u1, u2 ∈ [t0, t0 + η]T, u1 ≤ u2. Then∥∥∥∥∫ u2

u1

(
f σ̃(yt, t)− f σ̃(zt, t)

)
dg(t)

∥∥∥∥ ≤ L

∫ u2

u1

‖yt − zt‖∞ dg(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + η and y, z ∈ O.

Now, consider the following conditions concerning the function f : G([−r, 0], B) ×
[t0, t0 + η]Tn → Rn:

(A1) The integral

∫ t0+η

t0

f(yt, t)∆t exists for every y ∈ O.

(B1) There exists a constant M > 0 such that

‖f(yt, t)‖ ≤M

for every y ∈ O and t ∈ [t0, t0 + η]T.

(C1) There exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) ∆t

∥∥∥∥ ≤ L

∫ u2

u1

‖yt − zt‖∞∆t

for every y, z ∈ O and u1, u2 ∈ [t0, t0 + η]T, u1 ≤ u2.

The next theorem is our main result. It concerns continuous dependence for impulsive
functional dynamic equations on time scales involving variable time scales.

Theorem 5.4. Suppose xn : Tn → Rn is a solution of the impulsive functional dynamic
equation on time scales

xn(t) = xn(t0) +

∫ t

t0

fn((xσ̃nn )s, s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(xn(tk)), t ∈ [t0, t0 + η]Tn ,

xn(t) = φ(t), t ∈ [t0 − r, t0]Tn ,

(5.12)
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where the functions fn : G([−r, 0], B)×[t0, t0+η]Tn → Rn satisfy the conditions (A1), (B1)
and (C1). Also, suppose x : T → Rn is a solution of the impulsive functional dynamic
equation on time scales

x(t) = x(t0) +

∫ t

t0

f(xσ̃s , s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + η]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T,

(5.13)

where f : G([−r, 0], B)×[t0, t0+η]T → Rn satisfies the conditions (A1), (B1) and (C1) and
for each k = 1, 2, . . . ,m, the impulse operators Ik : Rn → Rn satisfy conditions (A∗) and
(B∗). Suppose d(Tn,T) → 0 as n → ∞ and the sequence of functions {σ̃n}∞n=1 converges
uniformly to σ̃ as n → ∞. Also, suppose the sequence {φσ̃n}∞n=1 converges uniformly to
φσ̃ as n→∞. Then, for every ε > 0, there exists N > 0 sufficiently large such that, for
n > N , we have

‖xn(t)− x(t)‖ < ε for t ∈ Tn ∩ T.

Proof. Since the function fn : G([−r, 0], B) × [t0, t0 + η]T → Rn satisfies the conditions
(A1), (B1) and (C1), it follows from Lemma 5.2 that the respective ones (conditions
(A), (B)and (C)) are satisfied for the extension of fn and therefore, all hypotheses from
Theorem 5.3 are satisfied, and the desired result follows immediately applying the cor-
respondence between impulsive measure functional differential equations and impulsive
functional dynamic equations on time scales.

6 Applications

In this section, our goal is to discuss some applications of our main results.
The results about continuous dependence of solutions of dynamic equations on vari-

able time scales have several applications for numerical approximations. It is a known
fact that many differential equations cannot be solved analytically, however, a numerical
approximation to the solution is usually good enough to solve a problem described by
models in engineering and sciences. In order to do this, it is possible to construct algo-
rithms to compute such an approximation. Therefore, results as the ones presented in
this paper are very useful to study the solutions of ordinary differential equations as well
as other dynamic equations depending on the chosen time scale without the necessity to
solve them analytically.

In what follows, we present some examples to illustrate this fact. For more details
about them, the reader may want to consult [4, 10,13].

Example 6.1. [4] Consider a simple autonomous linear dynamic equation given by{
x∆(t) = ax(t),

x(0) = x0.
(6.1)
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Solving the equation (6.1) for the case T = R, we get

x(t) = x0e
at.

On the other hand, solving the equation (6.1) for the case T = 1
n
Z, for n ∈ N, we obtain

yn(t) = x0

(
1 +

a

n

)nt
.

It is not difficult to see that

Tn =
1

n
Z→ R as n→∞

and
σ̃n = σ̃ uniformly as n→∞.

Moreover, we have
lim
n→∞

yn(t) = x(t).

Example 6.2. [4, 13] Consider a particular (logistic) initial value problem{
x∆(t) = 4x

(
3
4
− x
)
,

x(0) = x0.
(6.2)

If we take Tn = 1
n
Z+, for n ∈ N, in equation (6.2), we obtain

x

(
t+

1

n

)
− x(t)

1

n

= 4x(t)

(
3

4
− x(t)

)
,

which implies that

x

(
t+

1

n

)
=

4

n
x(t)

(
3

4
− x(t)

)
+ x(t)

=
4

n
x(t)

 3

n
+ 1

4

n

− x(t)


=

4

n
x(t)

(
3 + n

4
− x(t)

)
Notice that the solution is found by iterating the following equation (see [13]):

xn(t) =
4

n
x(t)

(
3 + n

4
− x(t)

)
.

Then, taking n→∞, the solutions tend to the solution of the logistic differential equation
on R+ and 1

n
Z+ → R+ (see [13]). Also, it is clear that σ̃n → σ̃ uniformly as n→∞.
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7 Conclusions

The examples presented in the previous section show the importance of the continuous
dependence results involving variable time scales proved in this paper, since one can
find a good approximation for solutions of differential equations without the necessity to
calculate it analytically.

For instance, as described in the last section, taking a sequence of time scales given
by Tn = 1

n
Z, it is possible to find a good approximation of a solution of a differential

equation, just by using a sequence of solutions of the corresponding dynamic equations
on Tn, since by applying our results, one can obtain that this sequence converges to the
solution of the differential equation. Notice that to get this approximation, one just has
to use iteration of solutions of the dynamic equations on Tn, which can be done by using
a computational algorithm. Thus, due to this fact, the results presented here turn out to
be very useful in numerical approximations.

We point out that our results are general enough to be applied for equations involving
retarded arguments and impulsive behavior, which make them helpful for obtaining these
approximations for more complicated equations without the necessity to calculate their
solutions analytically.

Also, the results presented here can be applied to investigate the stability and asymp-
totic behavior of the solutions of impulsive functional dynamic equations on time scales.
This fact happens since knowing the behavior of the solutions of the dynamic equations
on Tn, it is possible by applying our results to investigate the behavior of the solution of
dynamic equation on T, whenever Tn → T, using the convergence properties.
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