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We study the relation between measure functional differential equations, impulsive measure func-
tional differential equations, and impulsive functional dynamic equations on time scales. For both
types of impulsive equations, we obtain results on the existence and uniqueness of solutions, con-
tinuous dependence, and periodic averaging. Along the way, we also clarify the relation between
time scale integrals and Kurzweil-Henstock-Stieltjes integrals.
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1 Introduction

Let r, σ > 0 be given numbers and t0 ∈ R. In our recent paper [6], we have introduced equations of the
form

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s), t ∈ [t0, t0 + σ],

xt0 = φ,

where xt denotes the function xt(θ) = x(t+ θ), θ ∈ [−r, 0], for every t ∈ [t0, t0 + σ]. The integral on the
right-hand side should be understood as the Kurzweil-Henstock-Stieltjes integral taken with respect to
a nondecreasing function g : [t0, t0 + σ]→ R (see the next section). These equations are called measure
functional differential equations; they generalize the usual type of functional differential equation which
corresponds to the case g(t) = t.

We have shown in [6] that functional dynamic equations on time scales represent a special case of
measure functional differential equations, and obtained various results concerning the existence and
uniqueness of solutions, continuous dependence, and periodic averaging for both types of equations.

The present paper is a continuation of [6]. Our aim is to demonstrate that measure functional differ-
ential equations represent an adequate tool for dealing with differential and dynamic equations involving
impulses. Section 2 summarizes some basic results about Kurzweil-Henstock-Stieltjes integrals. In Sec-
tion 3, we introduce impulsive measure functional differential equations and show how to transform
them into measure functional differential equations without impulses. In Section 4, we present certain
facts from the time scale calculus and explain the relation between time scale integrals and Kurzweil-
Henstock-Stieltjes integrals (this part is independent of the previous sections and might be useful for
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readers interested in integration theory on time scales). Section 5 discusses impulsive functional dy-
namic equations on time scales and demonstrates how to convert them to impulsive measure functional
differential equations. Using the results from the last two sections, we are able to relate impulsive func-
tional dynamic equations and measure functional differential equations. In the final three sections, we
employ this correspondence to obtain theorems on the existence and uniqueness of solutions, continuous
dependence of solutions on parameters, and periodic averaging for impulsive equations.

It is worth mentioning here that in the classical theory of functional differential equations of the form

x′(t) = f(xt, t), t ∈ [t0, t0 + σ], (1.1)

it is common to use the following assumptions on the right-hand side of the equation:

• There exists a constant M > 0 such that ‖f(x, t)‖ ≤M for each x in a certain subset of the phase
space and every t ∈ [t0, t0 + σ].

• There exists a constant L > 0 such that ‖f(x, t) − f(y, t)‖ ≤ L‖x − y‖ for each x, y in a certain
subset of the phase space and every t ∈ [t0, t0 + σ].

However, it became clear (see e.g. [7, 8]) that it is sufficient to impose certain conditions on the indefinite
integral of the function on the right-hand side of (1.1) rather than on the right-hand side itself. In the
present paper, we consider the following weaker conditions:

• There exists a constant M > 0 such that∥∥∥∥∫ u2

u1

f(xt, t) dg(t)

∥∥∥∥ ≤M(g(u2)− g(u1))

for all u1, u2 ∈ [t0, t0 + σ] and all x in a certain subset of the phase space.

• There exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(xt, t)− f(yt, t)) dg(t)

∥∥∥∥ ≤ L∫ u2

u1

‖xt − yt‖∞ dg(t)

for all u1, u2 ∈ [t0, t0 + σ] and all x, y in a certain subset of the phase space.

2 Kurzweil-Henstock-Stieltjes integral

Consider a function δ : [a, b] → R+ (called a gauge on [a, b]). A tagged partition of the interval [a, b]
with division points a = s0 < s1 < · · · < sm = b and tags τi ∈ [si−1, si], i ∈ {1, . . . ,m}, is called δ-fine
if

τi − δ(τi) ≤ si−1 < si ≤ τi + δ(τi), i ∈ {1, . . . ,m}.

A function f : [a, b] → Rn is called Kurzweil-Henstock-Stieltjes integrable on [a, b] with respect to
a function g : [a, b] → R, if there is a vector I ∈ Rn such that for every ε > 0, there is a gauge
δ : [a, b]→ R+ such that∥∥∥∥∥

m∑
i=1

f(τi)(g(si)− g(si−1))− I

∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]. In this case, I is called the Kurzweil-Henstock-Stieltjes integral

of f with respect to g over [a, b] and will be denoted by
∫ b
a
f(t) dg(t), or simply

∫ b
a
f dg. This Stieltjes-

type integral is a special case of the integral studied by J. Kurzweil in [11]; on the other hand, the
choice g(t) = t leads to the well-known Kurzweil-Henstock integral, which generalizes both Lebesgue
and Newton integrals.
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A function f : [a, b]→ Rn is called regulated, if the limits

lim
s→t−

f(s) = f(t−) ∈ Rn, t ∈ (a, b] and lim
s→t+

f(s) = f(t+) ∈ Rn, t ∈ [a, b)

exist. The set of all regulated functions f : [a, b] → B, where B ⊂ Rn, will be denoted by G([a, b], B).
Note that G([a, b],Rn) is a Banach space under the usual supremum norm ‖f‖∞ = supa≤t≤b ‖f(t)‖.

Given a regulated function f , the symbols ∆+f(t) and ∆−f(t) will be used throughout this paper
to denote

∆+f(t) = f(t+)− f(t) and ∆−f(t) = f(t)− f(t−).

In the following sections, we often assume the existence of certain Kurzweil-Henstock-Stieltjes inte-
grals. The next result from [15, Corollary 1.34] is not really necessary for us, but we mention it here as
it provides a useful sufficient condition for the existence of the Kurzweil-Henstock-Stieltjes integral.

Theorem 2.1. If f : [a, b]→ Rn is a regulated function and g : [a, b]→ R is a nondecreasing function,

then the integral
∫ b
a
f dg exists.

The following Hake-type theorem for the Kurzweil-Henstock-Stieltjes integral is a special case of
Theorem 1.14 in [15] (see also Remark 1.15 in the same book).

Theorem 2.2. Consider a pair of functions f : [a, b]→ Rn and g : [a, b]→ R.

1. Assume that the integral
∫ t
a
f dg exists for every t ∈ [a, b) and

lim
t→b−

(∫ t

a

f dg + f(b)(g(b)− g(t))

)
= I.

Then
∫ b
a
f dg = I.

2. Assume that the integral
∫ b
t
f dg exists for every t ∈ (a, b] and

lim
t→a+

(∫ b

t

f dg + f(a)(g(t)− g(a))

)
= I.

Then
∫ b
a
f dg = I.

We also need the following related result, which is a special case of Theorem 1.16 in [15].

Theorem 2.3. Let f : [a, b]→ Rn and g : [a, b]→ R be a pair of functions such that g is regulated and∫ b
a
f dg exists. Then the functions

h(t) =

∫ t

a

f dg and k(t) =

∫ b

t

f dg

are regulated on [a, b] and satisfy

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f(t)∆−g(t), t ∈ (a, b],

k(t+) = k(t)− f(t)∆+g(t), t ∈ [a, b),

k(t−) = k(t) + f(t)∆−g(t), t ∈ (a, b].

We remark here that, according to the previous theorem, solutions of measure functional differential
equations must be regulated functions.
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Lemma 2.4. Let m ∈ N, a ≤ t1 < t2 < · · · < tm ≤ b. Consider a pair of functions f : [a, b] → R
and g : [a, b] → R, where g is regulated, left-continuous on [a, b], and continuous at t1, . . . , tm. Let

f̃ : [a, b] → R and g̃ : [a, b] → R be such that f̃(t) = f(t) for every t ∈ [a, b]\{t1, . . . , tm} and g̃ − g is

constant on each of the intervals [a, t1], (t1, t2], . . . , (tm−1, tm], (tm, b]. Then the integral
∫ b
a
f̃ dg̃ exists

if and only if the integral
∫ b
a
f dg exists; in that case, we have

∫ b

a

f̃ dg̃ =

∫ b

a

f dg +
∑

k∈{1,...,m},
tk<b

f̃(tk)∆+g̃(tk).

P r o o f. Using the definition of the Kurzweil-Henstock-Stieltjes integral, we obtain∫ t1

a

f̃ d(g̃ − g) = 0.

It follows from Theorem 2.2 and the definition of the Kurzweil-Henstock-Stieltjes integral that∫ tk+1

tk

f̃ d(g̃ − g) = lim
τ→tk+

∫ tk+1

τ

f̃ d(g̃ − g) + f̃(tk)∆+(g̃ − g)(tk) = f̃(tk)∆+g̃(tk)

for every k ∈ {1, . . . ,m− 1}. If tm = b, then
∫ b
tm
f̃ d(g̃ − g) = 0; otherwise,

∫ b

tm

f̃ d(g̃ − g) = lim
τ→tm+

∫ b

τ

f̃ d(g̃ − g) + f̃(tm)∆+(g̃ − g)(tm) = f̃(tm)∆+g̃(tm).

Consequently,
∫ b
a
f̃ d(g̃ − g) exists and

∫ b

a

f̃ d(g̃ − g) =
∑

k∈{1,...,m},
tk<b

f̃(tk)∆+g̃(tk).

By Theorems 2.2 and 2.3, we have∫ t1

a

f̃ dg = lim
τ→t1−

∫ τ

a

f̃ dg = lim
τ→t1−

∫ τ

a

f dg =

∫ t1

a

f dg,

∫ tk+1

tk

f̃ dg = lim
σ→tk+,
τ→tk+1−

∫ τ

σ

f̃ dg = lim
σ→tk+,
τ→tk+1−

∫ τ

σ

f dg =

∫ tk+1

tk

f dg, k ∈ {1, . . . ,m− 1},

∫ b

tm

f̃ dg = lim
τ→tm+

∫ b

τ

f̃ dg = lim
τ→tm+

∫ b

τ

f dg =

∫ b

tm

f dg.

These three relations might be read not only from left to right, but also from right to left; in other
words, the integrals on the left-hand sides exist if and only if the integrals on the right-hand sides exist.

Combining the three relations, we see that
∫ b
a
f̃ dg exists if and only if

∫ b
a
f dg exists; in this case, their

values are equal. To conclude the proof, it is sufficent to observe that∫ b

a

f̃ dg̃ =

∫ b

a

f̃ dg +

∫ b

a

f̃ d(g̃ − g) =

∫ b

a

f dg +
∑

k∈{1,...,m},
tk<b

f̃(tk)∆+g̃(tk).
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3 Impulsive measure functional differential equations

A measure functional differential equation has the form

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s), t ∈ [t0, t0 + σ],

xt0 = φ,

where the Kurzweil-Henstock-Stieltjes integral on the right-hand side is taken with respect to a nonde-
creasing function g : [t0, t0 + σ]→ R; these equations have been studied in [6].

We assume that g is a left-continuous function and consider the possibility of adding impulses at
preassigned times t1, . . . , tm, where t0 ≤ t1 < · · · < tm < t0 + σ. For every k ∈ {1, . . . ,m}, the
impulse at tk is described by the operator Ik : Rn → Rn. In other words, the solution x should satisfy
∆+x(tk) = Ik(x(tk)). This leads us to the following problem:

x(v)− x(u) =
∫ v
u
f(xs, s) dg(s), whenever u, v ∈ Jk for some k ∈ {0, . . . ,m},

∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . ,m},
xt0 = φ,

where J0 = [t0, t1], Jk = (tk, tk+1] for k ∈ {1, . . . ,m− 1}, and Jm = (tm, t0 + σ].
The value of the integral

∫ v
u
f(xs, s) dg(s), where u, v ∈ Jk, does not change if we replace g by

a function g̃ such that g − g̃ is a constant function on Jk (this follows easily from the definition of the
Kurzweil-Henstock-Stieltjes integral). Thus, without loss of generality, we can assume that g is such
that ∆+g(tk) = 0 for every k ∈ {1, . . . ,m}. Since g is a left-continuous function, it follows that g is
continuous at t1, . . . , tm. Under this assumption, our problem can be rewritten as

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + σ], (3.1)

xt0 = φ.

Indeed, the function t 7→
∫ t
t0
f(xs, s) dg(s) is continuous at t1, . . . , tm (see Theorem 2.3), and therefore

∆+x(tk) = Ik(x(tk)) for every k ∈ {1, . . . ,m}.
Alternatively, the sum on the right-hand side of (3.1) might be written as

∑m
k=1 Ik(x(tk))Htk(t),

where Hv denotes the characteristic function of (v,∞), i.e. Hv(t) = 0 for t ≤ v and Hv(t) = 1 for t > v.
The following theorem shows that impulsive measure functional differential equations of the form

(3.1) can always be transformed to measure functional differential equations without impulses.

Theorem 3.1. Let m ∈ N, t0 ≤ t1 < · · · < tm < t0 + σ, B ⊂ Rn, I1, . . . , Im : B → Rn, P =
G([−r, 0], B), f : P × [t0, t0 + σ] → Rn. Assume that g : [t0, t0 + σ] → R is a regulated left-continuous
function which is continuous at t1, . . . , tm. For every y ∈ P , define

f̃(y, t) =

{
f(y, t), t ∈ [t0, t0 + σ]\{t1, . . . , tm},
Ik(y(0)), t = tk for some k ∈ {1, . . . ,m}.

Moreover, let the function g̃ : [t0, t0 + σ]→ R be given by

g̃(t) =


g(t), t ∈ [t0, t1],

g(t) + k, t ∈ (tk, tk+1] for some k ∈ {1, . . . ,m− 1},
g(t) +m, t ∈ (tm, t0 + σ].

Then x ∈ G([t0 − r, t0 + σ], B) is a solution of

x(t) = x(t0) +

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + σ], (3.2)

xt0 = φ

Copyright line will be provided by the publisher



6 M. Federson et al.: Basic results for functional differential and dynamic equations involving impulses

if and only if

x(t) = x(t0) +

∫ t

t0

f̃(xs, s) dg̃(s), t ∈ [t0, t0 + σ], (3.3)

xt0 = φ.

P r o o f. By the definition of g̃, we have ∆+g̃(tk) = 1 for every k ∈ {1, . . . ,m}. According to Lemma 2.4,
we obtain ∫ t

t0

f̃(xs, s) dg̃(s) =

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

f(xtk , tk)∆+g̃(tk)

=

∫ t

t0

f(xs, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(x(tk)),

i.e. the right-hand sides of (3.2) and (3.3) are indeed identical.

Remark 3.2. When g(t) = t for every t ∈ [t0, t0 + σ], Eq. (3.2) reduces to the usual type of impulsive
functional differential equation

x(t) = x(t0) +

∫ t

t0

f(xs, s) ds+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + σ].

Basic results concerning this type of equations were obtained by M. Federson and Š. Schwabik in [7];
the main tool in their investigations was the theory of generalized ordinary differential equations. The
previous theorem suggests a different approach: impulsive functional differential equations represent
a special case of measure functional differential equations, and therefore the existing theory of measure
equations can be used in the study of impulsive equations.

Lemma 3.3. Let m ∈ N, t0 ≤ t1 < · · · < tm < t0 +σ, B ⊂ Rn, I1, . . . , Im : B → Rn, P = G([−r, 0], B),
O = G([t0 − r, t0 + σ], B). Assume that g : [t0, t0 + σ]→ R is a left-continuous nondecreasing function
which is continuous at t1, . . . , tm. Let f : P × [t0, t0 + σ] → Rn be a function such that the integral∫ t0+σ

t0
f(yt, t) dg(t) exists for every y ∈ O. For every y ∈ P , define

f̃(y, t) =

{
f(y, t), t ∈ [t0, t0 + σ]\{t1, . . . , tm},
Ik(y(0)), t = tk for some k ∈ {1, . . . ,m}.

Moreover, let the function g̃ : [t0, t0 + σ]→ R be given by

g̃(t) =


g(t), t ∈ [t0, t1],

g(t) + k, t ∈ (tk, tk+1] for some k ∈ {1, . . . ,m− 1},
g(t) +m, t ∈ (tm, t0 + σ].

Then the following statements are true:

1. The function g̃ is nondecreasing.

2. Assume there exist constants M1,M2 ∈ R+ such that∥∥∥∥∫ u2

u1

f(yt, t) dg(t)

∥∥∥∥ ≤M1(g(u2)− g(u1))
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whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ, y ∈ O, and

‖Ik(x)‖ ≤M2

for every k ∈ {1, . . . ,m} and x ∈ B. Then∥∥∥∥∫ u2

u1

f̃(yt, t) dg̃(t)

∥∥∥∥ ≤ (M1 +M2)(g̃(u2)− g̃(u1))

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y ∈ O.

3. Assume there exist constants L1, L2 ∈ R+, such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) dg(t)

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt − zt‖∞ dg(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ, y, z ∈ O, and

‖Ik(x)− Ik(y)‖ ≤ L2‖x− y‖

for every k ∈ {1, . . . ,m} and x, y ∈ B. Then∥∥∥∥∫ u2

u1

(
f̃(yt, t)− f̃(zt, t)

)
dg̃(t)

∥∥∥∥ ≤ (L1 + L2)

∫ u2

u1

‖yt − zt‖∞ dg̃(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y, z ∈ O.

P r o o f. It is clear from the definition of g̃ that it is nondecreasing if g is nondecreasing. Moreover,

g̃(v)− g̃(u) ≥ g(v)− g(u) (3.4)

whenever t0 ≤ u ≤ v ≤ t0 + σ.
To prove the second statement, let t0 ≤ u1 ≤ u2 ≤ t0 + σ, y ∈ O. From Lemma 2.4, we obtain∫ u2

u1

f̃(yt, t) dg̃(t) =

∫ u2

u1

f(yt, t) dg(t) +
∑

k∈{1,...,m},
u1≤tk<u2

Ik(y(tk))∆+g̃(tk),

and therefore∥∥∥∥∫ u2

u1

f̃(yt, t) dg̃(t)

∥∥∥∥ ≤M1(g(u2)− g(u1)) +M2

∑
k∈{1,...,m},
u1≤tk<u2

∆+g̃(tk)

≤M1(g̃(u2)− g̃(u1)) +M2(g̃(u2)− g̃(u1)) = (M1 +M2)(g̃(u2)− g̃(u1)).

To prove the third statement, let t0 ≤ u1 ≤ u2 ≤ t0 + σ and y, z ∈ O. Using Lemma 2.4 again, we
obtain ∫ u2

u1

(
f̃(yt, t)− f̃(zt, t)

)
dg̃(t)

=

∫ u2

u1

(f(yt, t)− f(zt, t)) dg(t) +
∑

k∈{1,...,m},
u1≤tk<u2

(Ik(y(tk))− Ik(z(tk)))∆+g̃(tk).

Consequently,∥∥∥∥∫ u2

u1

(
f̃(yt, t)− f̃(zt, t)

)
dg̃(t)

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt−zt‖∞ dg(t)+L2

∑
k∈{1,...,m},
u1≤tk<u2

‖y(tk)−z(tk)‖∆+g̃(tk).
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8 M. Federson et al.: Basic results for functional differential and dynamic equations involving impulses

Using Eq. (3.4) and the definition of the Kurzweil-Henstock-Stieltjes integral, we see that∫ u2

u1

‖yt − zt‖∞ dg(t) ≤
∫ u2

u1

‖yt − zt‖∞ dg̃(t).

Next, we observe that the function

h(s) =

∫ s

t0

‖yt − zt‖∞ dg̃(t), s ∈ [t0, t0 + σ],

is nondecreasing and ∆+h(tk) = ‖ytk − ztk‖∞∆+g̃(tk) for k ∈ {1, . . . ,m}. Therefore

L2

∑
k∈{1,...,m},
u1≤tk<u2

‖y(tk)− z(tk)‖∆+g̃(tk) ≤ L2

∑
k∈{1,...,m},
u1≤tk<u2

‖ytk − ztk‖∞∆+g̃(tk)

= L2

∑
k∈{1,...,m},
u1≤tk<u2

∆+h(tk) ≤ L2(h(u2)− h(u1)) = L2

∫ u2

u1

‖yt − zt‖∞ dg̃(t),

and it follows that∥∥∥∥∫ u2

u1

(
f̃(yt, t)− f̃(zt, t)

)
dg̃(t)

∥∥∥∥ ≤ (L1 + L2)

∫ u2

u1

‖yt − zt‖∞ dg̃(t).

4 Integration on time scales

This section presents a short overview of time scales, which were introduced in order to unify and extend
continuous, discrete and quantum calculus (see e.g. [3], [4]). We also clarify the relation between time
scale integrals and Kurzweil-Henstock-Stieltjes integrals. The results obtained here will be used later in
our investigation of functional dynamic equations on time scales.

A time scale is a closed nonempty subset T of the real line. For every t ∈ T, we define the forward jump
operator by σ(t) = inf{s ∈ T, s > t} and the backward jump operator by ρ(t) = sup{s ∈ T, s < t};
we make the convention that inf ∅ = supT and sup ∅ = inf T. The graininess function is defined as
µ(t) = σ(t)− t.

If σ(t) > t, we say that t is a right-scattered point; otherwise, t is right-dense. Similarly, we distinguish
between left-scattered and left-dense points, depending on whether ρ(t) < t, or ρ(t) = t.

A function f : T → R is called rd-continuous, if it is regulated on T and continuous at right-dense
points of T.

For each pair of numbers a, b ∈ T, a ≤ b, let [a, b]T = [a, b] ∩ T. Given a set B ⊂ Rn, the symbol
G([a, b]T, B) will be used to denote the set of all regulated functions f : [a, b]T → B.

In the time scale calculus, the usual derivative f ′(t) and integral
∫ b
a
f(t) dt of a function f : [a, b]→ R

are replaced by the ∆-derivative f∆(t) and ∆-integral
∫ b
a
f(t) ∆t, where f : [a, b]T → R. Similarly

to the classical case, there exist various definitions of the ∆-integral
∫ b
a
f(t) ∆t, such as the Riemann

∆-integral or Lebesgue ∆-integral; these definitions as well as the definition of the ∆-derivative can be
found in [3], [4]. The more general Kurzweil-Henstock ∆-integral was introduced in [14] (see below).

Given a real number t ≤ supT, let

t∗ = inf{s ∈ T; s ≥ t}.

(Note that t∗ might be different from σ(t).) Since T is a closed set, we have t∗ ∈ T. Further, let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.
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Finally, given a function f : T→ Rn, we consider its extension f∗ : T∗ → Rn given by

f∗(t) = f(t∗), t ∈ T∗.

The following theorem from [16] describes the relation between the ∆-integral and the Kurzweil-
Henstock-Stieltjes integral.

Theorem 4.1. Let f : T→ Rn be an rd-continuous function. Choose an arbitrary a ∈ T and define

F1(t) =

∫ t

a

f(s)∆s, t ∈ T,

F2(t) =

∫ t

a

f∗(s) dg(s), t ∈ T∗,

where g(s) = s∗ for every s ∈ T∗. Then F2 = F ∗1 .

In particular, if f : [a, b]T → Rn is an rd-continuous function, we obtain∫ b

a

f(s)∆s =

∫ b

a

f∗(s) dg(s). (4.1)

Since the solutions of impulsive equations are discontinuous, we need to relax the assumption of
rd-continuity. It is not difficult to show that Eq. (4.1) remains true in the more general case where f is
a regulated function; it is sufficient to use uniform convergence theorems for both types of integrals and
the fact that every regulated function is a uniform limit of continuous functions. Although regulated
functions are general enough for our purposes, we take this opportunity to prove a much stronger result:
All we need to require for Eq. (4.1) to hold is that f is ∆-integrable in Kurzweil-Henstock’s sense. At
first, we recall the definition of the Kurzweil-Henstock ∆-integral as introduced by A. Peterson and
B. Thompson in [14].

Let δ = (δL, δR) be a pair of nonnegative functions defined on [a, b]T. We say that δ is a ∆-gauge for
[a, b]T provided δL(t) > 0 on (a, b] ∩ T, δR(t) > 0 on [a, b) ∩ T, and δR(t) ≥ µ(t) for all t ∈ [a, b) ∩ T.

A tagged partition of [a, b]T consists of division points s0, . . . , sm ∈ [a, b]T such that a = s0 < s1 <
· · · < sm = b, and tags τ1, . . . , τm ∈ [a, b]T such that τi ∈ [si−1, si] for every i ∈ {1, . . . ,m}. Such
a partition is called δ-fine if

τi − δL(τi) ≤ si−1 < si ≤ τi + δR(τi), i ∈ {1, . . . ,m}.

A function f : [a, b]T → Rn is called Kurzweil-Henstock ∆-integrable, if there exists a vector I ∈ Rn
such that for every ε > 0, there is a ∆-gauge δ on [a, b]T such that∥∥∥∥∥

m∑
i=1

f(τi)(si − si−1)− I

∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]T. In this case, I is called the Kurzweil-Henstock ∆-integral of

f over [a, b]T and will be denoted by
∫ b
a
f(t)∆t.

Here is the promised result which shows that ∆-integrals are in fact special cases of Kurzweil-
Henstock-Stieltjes integrals.

Theorem 4.2. Let f : [a, b]T → Rn be an arbitrary function. Define g(t) = t∗ for every t ∈ [a, b]. Then

the Kurzweil-Henstock ∆-integral
∫ b
a
f(t)∆t exists if and only if the Kurzweil-Henstock-Stieltjes integral∫ b

a
f∗(t) dg(t) exists; in this case, both integrals have the same value.
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P r o o f. For an arbitrary tagged partition P of [a, b] consisting of division points a = s0 < s1 < · · · <
sm = b and tags τ1, . . . , τm, let

S(P ) =

m∑
i=1

f∗(τi)(g(si)− g(si−1)) =

m∑
i=1

f(τ∗i )(s∗i − s∗i−1). (4.2)

At first, assume that
∫ b
a
f(t)∆t exists. Then, given an arbitrary ε > 0, there is a ∆-gauge δ = (δL, δR)

on [a, b]T such that∥∥∥∥∥
m∑
i=1

f(τi)(si − si−1)−
∫ b

a

f(t)∆t

∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]T. We construct a gauge δ̃ : [a, b]→ R+ in the following way:

δ̃(t) =


min(δL(t), sup{d; t+ d ∈ [a, b]T, d ≤ δR(t)}) if t ∈ (a, b) ∩ T,
sup{d; a+ d ∈ [a, b]T, d ≤ δR(a)} if t = a,

δL(b) if t = b,
1
2 inf {|t− s|, s ∈ T} if t ∈ [a, b]\T.

Let P be an arbitrary δ̃-fine tagged partition of [a, b] with division points a = s0 < s1 < · · · < sm = b
and tags τi ∈ [si−1, si], i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, there are two possibilities: either
τi ∈ T, or [si−1, si] ∩ T = ∅.

The division points s0, . . . , sm and tags τ1, . . . , τm need not belong to T, but we can find a partition P ′

whose division points and tags belong to T, S(P ) = S(P ′), and P ′ is δ-fine. We proceed by induction:
Clearly, s0 = a ∈ T. Now, consider an interval [si−1, si] with si−1 ∈ T. Since [si−1, si]∩T 6= ∅, we must
have τi ∈ T. If si /∈ T, we replace the division point si by s∗i , delete all division points sj belonging to
(si, s

∗
i ), and also all tags τj belonging to (si, s

∗
i ). This operation keeps the value of the integral sum (4.2)

unchanged: The contributions of the intervals [si−1, si] and [si−1, s
∗
i ] to the value of the sum are the

same, and the contributions of intervals [sj−1, sj ] contained in (si, s
∗
i ) are zero because s∗j−1 = s∗j = s∗i .

It remains to check that the modified partition is δ-fine. Let M = sup([a, τi + δR(τi)] ∩ T). Obviously,

M ∈ [a, b]T. Since our original partition was δ̃-fine, it follows that

si ≤ τi + δ̃(τi) ≤ τi + sup{d; τi + d ∈ [a, b]T, d ≤ δR(τi)} = M.

But si /∈ T and M ∈ T implies s∗i ≤ M , because s∗i is the smallest time scale point larger than si.
Consequently, s∗i ≤M ≤ τi + δR(τi).

Now, P ′ is a δ-fine tagged partition of [a, b]T, and therefore∥∥∥∥∥S(P )−
∫ b

a

f(t)∆t

∥∥∥∥∥ =

∥∥∥∥∥S(P ′)−
∫ b

a

f(t)∆t

∥∥∥∥∥ < ε,

which proves that
∫ b
a
f∗(t) dg(t) exists and equals

∫ b
a
f(t)∆t.

Conversely, assume that
∫ b
a
f∗(t) dg(t) exists. Then, given an arbitrary ε > 0, there is a gauge

δ̃ : [a, b]→ R+ such that∥∥∥∥∥
m∑
i=1

f(τ∗i )(s∗i − s∗i−1)−
∫ b

a

f∗(t) dg(t)

∥∥∥∥∥ < ε

for every δ̃-fine tagged partition of [a, b]. We construct a ∆-gauge δ = (δL, δR) on [a, b]T by letting

δL(t) = δ̃(t) and δR(t) = max(δ̃(t), µ(t)) for every t ∈ [a, b]T.
Consider an arbitrary δ-fine tagged partition P of [a, b]T with division points a = s0 < s1 < · · · <

sm = b and tags τi ∈ [si−1, si], i ∈ {1, . . . ,m}; by definition, all these points belong to T.
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Our δ-fine partition need not be δ̃-fine: for certain values of i ∈ {1, . . . ,m}, it can happen that

δR(τi) + τi ≥ si > δ̃(τi) + τi. In this case, we have δR(τi) = µ(τi), the point τi is right-scattered, and

si = σ(τi). We claim that it is possible to find a modified tagged partition P ′ of [a, b] which is δ̃-fine

and S(P ) = S(P ′). To this end, replace the division point si by τi + δ̃(τi) while keeping τi as the tag

for the interval [si−1, τi + δ̃(τi)], and cover the interval [τi + δ̃(τi), si] by an arbitrary δ̃-fine partition.
The equality S(P ) = S(P ′) follows from the fact that t∗ = si for every t ∈ (τi, si].

The proof is concluded by observing that∥∥∥∥∥
m∑
i=1

f(τi)(si − si−1)−
∫ b

a

f∗(t) dg(t)

∥∥∥∥∥
=

∥∥∥∥∥S(P )−
∫ b

a

f∗(t) dg(t)

∥∥∥∥∥ =

∥∥∥∥∥S(P ′)−
∫ b

a

f∗(t) dg(t)

∥∥∥∥∥ < ε,

which implies that
∫ b
a
f(t)∆t exists and equals

∫ b
a
f∗(t) dg(t).

Remark 4.3. Several authors have been interested in Stieltjes-type integrals on time scales (see

e.g. [10], [13]). For example, the definition of the Riemann-Stieltjes ∆-integral
∫ b
a
f(t)∆g(t) of a function

f : [a, b]T → Rn with respect to a function g : [a, b]T → R can be obtained in a straightforward way by
taking the definition of the Riemann ∆-integral and replacing the usual integral sums by

m∑
i=1

f(τi)(g(si)− g(si−1)).

Alternatively, we can start with the definition of the Kurzweil-Henstock ∆-integral and modify the
integral sums in the same way. Using exactly the same reasoning as in the proof of Theorem 4.2, one
can show that the resulting Stieltjes-type ∆-integral satisfies∫ b

a

f(t)∆g(t) =

∫ b

a

f∗(t) dg∗(t).

Consequently, many properties of the ∆-integrals can be simply derived from the known properties of
the Kurzweil-Henstock-Stieltjes integrals.

Lemma 4.4. Let a, b ∈ T, a < b, g(t) = t∗ for every t ∈ [a, b]. If f : [a, b]→ Rn is such that the integral∫ b
a
f(t) dg(t) exists, then∫ d

c

f(t) dg(t) =

∫ d∗

c∗
f(t) dg(t)

for every c, d ∈ [a, b].

P r o o f. Using the definition of the Kurzweil-Henstock-Stieltjes integral and the fact that g is constant

on [c, c∗] and on [d, d∗], we see that
∫ c∗
c
f(t) dg(t) = 0 and

∫ d∗
d
f(t) dg(t) = 0. Therefore∫ d

c

f(t) dg(t) =

∫ c∗

c

f(t) dg(t) +

∫ d

c∗
f(t) dg(t) +

∫ d∗

d

f(t) dg(t) =

∫ d∗

c∗
f(t) dg(t).

Theorem 4.5. Let f : T→ Rn be a function such that the Kurzweil-Henstock integral
∫ b
a
f(s)∆s exists

for every a, b ∈ T, a < b. Choose an arbitrary a ∈ T and define

F1(t) =

∫ t

a

f(s)∆s, t ∈ T,
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F2(t) =

∫ t

a

f∗(s) dg(s), t ∈ T∗,

where g(s) = s∗ for every s ∈ T∗. Then F2 = F ∗1 .

P r o o f. The statement is a simple consequence of Lemma 4.4 and Theorem 4.2:

F2(t) =

∫ t

a

f∗(s) dg(s) =

∫ t∗

a

f∗(s) dg(s) =

∫ t∗

a

f(s)∆s = F1(t∗) = F ∗1 (t)

5 Impulsive functional dynamic equations on time scales

In this section, we focus our attention on functional dynamic equations with impulses. In particular,
we explain the relation between this type of equations and impulsive measure functional differential
equations, which were discussed in Section 3. In [6], we dealt with functional dynamic equations of the
form

x∆(t) = f(x∗t , t), t ∈ [t0, t0 + σ]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T.

The symbol x∗t should be understood as (x∗)t; as explained in [6], the advantage of using x∗t rather
than xt stems from the fact that x∗t is always defined on the whole interval [−r, 0], whereas xt is defined
only on a subset of [−r, 0]; moreover, this subset depends on t.

Our aim here is to study functional dynamic equations with impulses. Several authors have already
considered impulsive dynamic equations on time scales (see for example [1], [2], [5], [9]); to this end, let
t1, . . . , tm ∈ T, t0 ≤ t1 < t2 < · · · < tm < t0 + σ and I1, . . . , Im : Rn → Rn. The usual condition which
can be found in the existing literature is that the solution should satisfy

x(tk+)− x(tk−) = Ik(x(tk−)), k ∈ {1, . . . ,m}. (5.1)

The convention is that x(t+) = x(t) when t ∈ T is a right-scattered point and x(t−) = x(t) when t ∈ T
is left-scattered. Moreover, it is usually assumed that the solution x should be left-continuous. In this
case, Eq. (5.1) reduces to

x(tk+)− x(tk) = Ik(x(tk)), k ∈ {1, . . . ,m}. (5.2)

Note that if tk is right-scattered, then the left-hand side of Eq. (5.2) is zero. In other words, it makes
sense to consider impulses at right-dense points only (the same assumption is made in [2], [5]).

This motivates us to consider impulsive functional dynamic equations of the form

x∆(t) = f(x∗t , t), t ∈ [t0, t0 + σ]T\{t1, . . . , tm},
∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . ,m},

x(t) = φ(t), t ∈ [t0 − r, t0]T,

where t1, . . . , tm ∈ T are right-dense points, t0 ≤ t1 < t2 < · · · < tm < t0 +σ, and I1, . . . , Im : Rn → Rn.
The solution is assumed to be left-continuous. It is not difficult to see that the above problem can be
written more compactly in the form

x(t) = x(t0) +

∫ t

t0

f(x∗s, s)∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + σ]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T.

Our immediate goal is to rewrite this equation as an impulsive measure functional differential equa-
tion. We need the following proposition from [6] (see Theorem 4.2 there).
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Theorem 5.1. Let T be a time scale, g(s) = s∗ for every s ∈ T∗, [a, b] ⊂ T∗. Consider a pair of

functions f1, f2 : [a, b]→ Rn such that f1(t) = f2(t) for every t ∈ [a, b]∩T. If
∫ b
a
f1(s) dg(s) exists, then∫ b

a
f2(s) dg(s) exists as well and both integrals have the same value.

The following theorem describes the relation between impulsive functional dynamic equations and
impulsive measure functional differential equations.

Theorem 5.2. Let [t0− r, t0 +σ]T be a time scale interval, t0 ∈ T, B ⊂ Rn, f : G([−r, 0], B)× [t0, t0 +
σ]T → Rn, φ ∈ G([t0 − r, t0]T, B). Define g(s) = s∗ for every s ∈ [t0, t0 + σ]. If x : [t0 − r, t0 + σ]T → B
is a solution of the impulsive functional dynamic equation

x(t) = x(t0) +

∫ t

t0

f(x∗s, s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(x(tk)), t ∈ [t0, t0 + σ]T, (5.3)

x(t) = φ(t), t ∈ [t0 − r, t0]T, (5.4)

then x∗ : [t0 − r, t0 + σ]→ B is a solution of the impulsive measure functional differential equation

y(t) = y(t0) +

∫ t

t0

f(ys, s
∗) dg(s) +

∑
k∈{1,...,m},

tk<t

Ik(y(tk)), t ∈ [t0, t0 + σ], (5.5)

yt0 = φ∗t0 . (5.6)

Conversely, if y : [t0− r, t0 +σ]→ B satisfies (5.5) and (5.6), then it must have the form y = x∗, where
x : [t0 − r, t0 + σ]T → B is a solution of (5.3) and (5.4).

P r o o f. Assume that x satisfies (5.3) and (5.4). Clearly, x∗t0 = φ∗t0 . By Theorem 4.5,

x∗(t) = x∗(t0) +

∫ t

t0

f(x∗s∗ , s
∗) dg(s) +

∑
k∈{1,...,m},

tk<t
∗

Ik(x(tk)), t ∈ [t0, t0 + σ].

We have tk ∈ T for every k ∈ {1, . . . ,m}. It follows that x(tk) = x∗(tk), and tk < t∗ if and only if
tk < t. Moreover, since f(x∗s∗ , s

∗) = f(x∗s, s
∗) for every s ∈ T, we can use Theorem 5.1 to conclude that

x∗(t) = x∗(t0) +

∫ t

t0

f(x∗s, s
∗) dg(s) +

∑
k∈{1,...,m},

tk<t

Ik(x∗(tk)), t ∈ [t0, t0 + σ],

which proves the first part.
Conversely, assume that y satisfies (5.5) and (5.6). If t ∈ [t0, t0 + σ]\T, then g is constant on [t, t∗]

and therefore y(t) = y(t∗). It follows that y = x∗, where x : [t0 − r, t0 + σ]T → B is the restriction of y
to [t0− r, t0 +σ]T. By reversing our previous reasoning, we conclude that x satisfies (5.3) and (5.4).

Lemma 5.3. Let [t0 − r, t0 + σ]T be a time scale interval, t0 ∈ T, O = G([t0 − r, t0 + σ], B), P =
G([−r, 0], B), f : P × [t0, t0 + σ]T → Rn an arbitrary function. Define g(t) = t∗ and f∗(y, t) = f(y, t∗)
for every y ∈ P and t ∈ [t0, t0 + σ].

1. If the integral
∫ t0+σ

t0
f(yt, t)∆t exists for every y ∈ O, then the integral

∫ t0+σ

t0
f∗(yt, t) dg(t) exists

for every y ∈ O.

2. Assume there exists a constant M > 0 such that∥∥∥∥∫ u2

u1

f(yt, t)∆t

∥∥∥∥ ≤M(u2 − u1)
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for every y ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2. Then∥∥∥∥∫ u2

u1

f∗(yt, t) dg(t)

∥∥∥∥ ≤M(g(u2)− g(u1))

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y ∈ O.

3. Assume there exists a constant L > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) ∆t

∥∥∥∥ ≤ L∫ u2

u1

‖yt − zt‖∞∆t

for every y, z ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2. Then∥∥∥∥∫ u2

u1

(f∗(yt, t)− f∗(zt, t)) dg(t)

∥∥∥∥ ≤ L∫ u2

u1

‖yt − zt‖∞ dg(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y, z ∈ O.

P r o o f. Consider an arbitrary y ∈ O. If the integral
∫ t0+σ

t0
f(yt, t)∆t exists, then, using Theorems 4.2

and 5.1, we have∫ t0+σ

t0

f(yt, t)∆t =

∫ t0+σ

t0

f(yt∗ , t
∗) dg(t) =

∫ t0+σ

t0

f(yt, t
∗) dg(t) =

∫ t0+σ

t0

f∗(yt, t) dg(t),

i.e. the last integral exists as well. This proves the first part.
The remaining two statements follow from Theorem 5.1, Lemma 4.4, and Theorem 4.2. In the first

case, we have∥∥∥∥∫ u2

u1

f∗(yt, t) dg(t)

∥∥∥∥ =

∥∥∥∥∫ u2

u1

f(yt∗ , t
∗) dg(t)

∥∥∥∥ =

∥∥∥∥∥
∫ u∗

2

u∗
1

f(yt∗ , t
∗) dg(t)

∥∥∥∥∥ =

∥∥∥∥∥
∫ u∗

2

u∗
1

f(yt, t)∆t

∥∥∥∥∥
≤M(u∗2 − u∗1) = M(g(u2)− g(u1)).

In the second case, we obtain∥∥∥∥∫ u2

u1

(f∗(yt, t)− f∗(zt, t)) dg(t)

∥∥∥∥ =

∥∥∥∥∫ u2

u1

(f(yt∗ , t
∗)− f(zt∗ , t

∗)) dg(t)

∥∥∥∥
=

∥∥∥∥∥
∫ u∗

2

u∗
1

(f(yt∗ , t
∗)− f(zt∗ , t

∗)) dg(t)

∥∥∥∥∥ =

∥∥∥∥∥
∫ u∗

2

u∗
1

(f(yt, t)− f(zt, t)) ∆t

∥∥∥∥∥
≤ L

∫ u∗
2

u∗
1

‖yt − zt‖∞∆t = L

∫ u∗
2

u∗
1

‖yt − zt‖∞ dg(t) = L

∫ u2

u1

‖yt − zt‖∞ dg(t).

6 Existence-uniqueness theorems

In this section, we present results on local existence and uniqueness of solutions for impulsive measure
functional differential equations and impulsive functional dynamic equations on time scales.

Our main tools in the proofs of these results are the correspondence between measure functional
differential equations and impulsive measure functional differential equations presented in Section 3 (see
Theorem 3.1), and the relation between this last type of equations and impulsive functional dynamic
equations on time scales (see Theorem 5.2). We also make use of the existence-uniqueness theorem for
measure functional differential equations, which was proved in [6].
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Theorem 6.1. Assume that X = G([t0−r, t0+σ],Rn), B ⊂ Rn is an open set, O = G([t0−r, t0+σ], B),
P = G([−r, 0], B), m ∈ N, t0 ≤ t1 < t2 < . . . < tm < t0 + σ, g : [t0, t0 + σ] → R is a left-continuous
nondecreasing function which is continuous at t1, . . . , tm. Also, suppose that I1, . . . , Im : B → Rn and
f : P × [t0, t0 + σ]→ Rn satisfy the following conditions:

1. The integral
∫ t0+σ

t0
f(yt, t) dg(t) exists for every y ∈ O.

2. There exists a constant M1 > 0 such that∥∥∥∥∫ u2

u1

f(yt, t) dg(t)

∥∥∥∥ ≤M1(g(u2)− g(u1))

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y ∈ O.

3. There exists a constant L1 > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) dg(t)

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt − zt‖∞ dg(t)

whenever t0 ≤ u1 ≤ u2 ≤ t0 + σ and y, z ∈ O.

4. There exists a constant M2 > 0 such that

‖Ik(x)‖ ≤M2

for every k ∈ {1, . . . ,m} and x ∈ B.

5. There exists a constant L2 > 0 such that

‖Ik(x)− Ik(y)‖ ≤ L2‖x− y‖

for every k ∈ {1, . . . ,m} and x, y ∈ B.

Let φ ∈ P and assume that either t0 < t1 and φ(0)+f(φ, t0)∆+g(t0) ∈ B, or t0 = t1 and φ(0)+I1(φ(0)) ∈
B. Then there exists δ > 0 and a function y : [t0 − r, t0 + δ] → Rn which is a unique solution of the
impulsive measure functional differential equation

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(y(tk)), t ∈ [t0, t0 + δ],

yt0 = φ.

(6.1)

P r o o f. For every y ∈ P , define

f̃(y, t) =

{
f(y, t), t ∈ [t0, t0 + σ]\{t1, . . . , tm},
Ik(y(0)), t = tk for some k ∈ {1, . . . ,m}.

Moreover, let the function g̃ : [t0, t0 + σ]→ R be given by

g̃(t) =


g(t), t ∈ [t0, t1],

g(t) + k, t ∈ (tk, tk+1] for some k ∈ {1, . . . ,m− 1},
g(t) +m, t ∈ (tm, t0 + σ].

Since g is nondecreasing and left-continuous, g̃ has the same properties.
We have either t0 < t1 and φ(0) + f̃(φ, t0)∆+g̃(t0) = φ(0) + f(φ, t0)∆+g(t0) ∈ B, or t0 = t1 and

φ(0) + f̃(φ, t0)∆+g̃(t0) = φ(0) + I1(φ(0)) ∈ B.
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16 M. Federson et al.: Basic results for functional differential and dynamic equations involving impulses

Using these facts and Lemma 3.3, we see that the functions f̃ , g̃, and φ satisfy all hypotheses of the
existence and uniqueness theorem for measure functional differential equations (see Theorem 5.3 and
Remark 3.11 in [6]). Consequently, there exist δ > 0 and a function y : [t0 − r, t0 + δ] → Rn which is
a unique solution of the measure functional differential equation

y(t) = y(t0) +

∫ t

t0

f̃(ys, s) dg̃(s),

yt0 = φ.

Finally, by Theorem 3.1, the function y is also a unique solution of (6.1) on [t0 − r, t0 + δ].

In the sequel, we prove a result on local existence and uniqueness of solutions of impulsive functional
dynamic equations on time scales.

Theorem 6.2. Assume that [t0 − r, t0 + σ]T is a time scale interval, t0 ∈ T, B ⊂ Rn is an open set,
O = G([t0 − r, t0 + σ], B), P = G([−r, 0], B), m ∈ N, t1, . . . , tm ∈ [t0, t0 + σ]T are right-dense points
such that t0 ≤ t1 < · · · < tm < t0 + σ. Let f : P × [t0, t0 + σ]T → Rn and I1, . . . , Im : B → Rn be
functions which satisfy the following conditions:

1. The integral
∫ t0+σ

t0
f(yt, t)∆t exists for every y ∈ O.

2. There exists a constant M1 > 0 such that∥∥∥∥∫ u2

u1

f(yt, t)∆t

∥∥∥∥ ≤M1(u2 − u1)

for every y ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2.

3. There exists a constant L1 > 0 such that∥∥∥∥∫ u2

u1

(f(yt, t)− f(zt, t)) ∆t

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt − zt‖∞∆t

for every y, z ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2.

4. There exists a constant M2 > 0 such that

‖Ik(y)‖ ≤M2

for every k ∈ {1, . . . ,m} and y ∈ B.

5. There exists a constant L2 > 0 such that

‖Ik(x)− Ik(y)‖ ≤ L2‖x− y‖

for every k ∈ {1, . . . ,m} and x, y ∈ B.

Let φ : [t0 − r, t0]T → B be a regulated function such that either t0 < t1 and φ(t0) + f(φ∗t0 , t0)µ(t) ∈ B,
or t0 = t1 and φ(t0) + I1(φ(t0)) ∈ B. Then there exist a δ > 0 such that δ ≥ µ(t0) and t0 + δ ∈ T,
and a function y : [t0 − r, t0 + δ]T → B which is a unique solution of the impulsive functional dynamic
equation

y(t) = y(t0) +

∫ t

t0

f(y∗s , s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(y(tk)), t ∈ [t0, t0 + δ]T,

y(t) = φ(t), t ∈ [t0 − r, t0]T.
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P r o o f. Let g(t) = t∗ and f∗(y, t) = f(y, t∗) for every t ∈ [t0, t0 + σ] and y ∈ P . Note that
∆+g(t0) = µ(t0). Using the hypotheses and Lemma 5.3, we see that the functions f∗, g and φ∗t0 satisfy
all assumptions of Theorem 6.1. Consequently, there exist δ > 0 and a function u : [t0 − r, t0 + δ]→ B
which is a unique solution of

u(t) = u(t0) +

∫ t

t0

f∗(us, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ik(u(tk)), t ∈ [t0, t0 + δ],

ut0 = φ∗t0 .

Then, by Theorem 5.2, u = y∗, where y : [t0 − r, t0 + δ]T → B is a solution of

y(t) = y(t0) +

∫ t

t0

f(y∗s , s) ∆s+
∑

k∈{1,...,m},
tk<t

Ik(y(tk)), t ∈ [t0, t0 + δ]T,

y(t) = φ(t), t ∈ [t0 − r, t0]T.

Without loss of generality, we can assume that δ ≥ µ(t0); otherwise, t0 is right-scattered, t0 < t1,
and we can let

y(σ(t0)) = φ(t0) + f(φ∗t0 , t0)µ(t0)

to obtain a solution defined on [t0− r, t0 +µ(t0)]T. Again, by Theorem 5.2, the solution y is unique.

7 Continuous dependence results

In our paper [6], we have obtained a continuous dependence theorem for measure functional differential
equations. Since we already know that impulsive functional differential and dynamic equations are in
fact special cases of measure functional different equations, we can use the existing result from [6] to
derive continuous dependence theorems for both types of impulsive equations; this is the content of the
present section.

Theorem 7.1. Assume that X = G([t0−r, t0+σ],Rn), B ⊂ Rn is an open set, O = G([t0−r, t0+σ], B),
P = G([−r, 0], B), m ∈ N, t0 ≤ t1 < t2 < . . . < tm < t0 + σ, g : [t0, t0 + σ] → R is a nondecreasing
left-continuous function which is continuous at t1, . . . , tm. Finally, let fp : P × [t0, t0 +σ]→ Rn, p ∈ N0,
and Ip1 , . . . , I

p
m : B → Rn, p ∈ N0, be functions which satisfy the following conditions:

1. The integral
∫ t0+σ

t0
fp(yt, t) dg(t) exists for every p ∈ N0, y ∈ O.

2. There exists a constant M1 > 0 such that∥∥∥∥∫ u2

u1

fp(yt, t) dg(t)

∥∥∥∥ ≤M1(g(u2)− g(u1))

whenever p ∈ N, t0 ≤ u1 ≤ u2 ≤ t0 + σ and y ∈ O.

3. There exists a constant L1 > 0 such that∥∥∥∥∫ u2

u1

(fp(yt, t)− fp(zt, t)) dg(t)

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt − zt‖∞dg(t)

whenever p ∈ N, t0 ≤ u1 ≤ u2 ≤ t0 + σ and y, z ∈ O.

4. For every y ∈ O,

lim
p→∞

∫ t

t0

fp(ys, s) dg(s) =

∫ t

t0

f0(ys, s) dg(s)

uniformly with respect to t ∈ [t0, t0 + σ].
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18 M. Federson et al.: Basic results for functional differential and dynamic equations involving impulses

5. There exists a constant M2 > 0 such that

‖Ipk(x)‖ ≤M2

for every k ∈ {1, . . . ,m}, p ∈ N0 and x ∈ B.

6. There exists a constant L2 > 0 such that

‖Ipk(x)− Ipk(y)‖ ≤ L2‖x− y‖

for every k ∈ {1, . . . ,m}, p ∈ N0 and x, y ∈ B.

7. For every y ∈ B and k ∈ {1, . . . ,m}, limp→∞ Ipk(y) = I0
k(y).

Consider functions φp ∈ P , p ∈ N0, such that limp→∞ φp = φ0 uniformly on [−r, 0]. Let yp ∈ O, p ∈ N,
be solutions of

yp(t) = yp(t0) +

∫ t

t0

fp((yp)s, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ipk(yp(tk)), t ∈ [t0, t0 + σ], (7.1)

(yp)t0 = φp, (7.2)

such that limp→∞ yp = y0 ∈ O. Then y0 satisfies

y0(t) = y0(t0) +

∫ t

t0

f0((y0)s, s) dg(s) +
∑

k∈{1,...,m},
tk<t

I0
k(y0(tk)), t ∈ [t0, t0 + σ], (7.3)

(y0)t0 = φ0. (7.4)

P r o o f. We already know that (7.1) and (7.2) imply

yp(t) = yp(t0) +

∫ t

t0

f̃p((yp)s, s) dg̃(s), t ∈ [t0, t0 + σ],

(yp)t0 = φp,

where the construction of f̃p and g̃ is described in Theorem 3.1. Since g is nondecreasing and left-
continuous, g̃ posseses the same properties. For every t ∈ [t0, t0 + σ], we have

lim
p→∞

∫ t

t0

f̃p(ys, s) dg̃(s) = lim
p→∞

∫ t

t0

fp(ys, s) dg(s) + lim
p→∞

∑
k∈{1,...,m},

tk<t

Ipk(y(tk)) =

=

∫ t

t0

f0(ys, s) dg(s) +
∑

k∈{1,...,m},
tk<t

I0
k(y(tk)) =

∫ t

t0

f̃0(ys, s) dg̃(s),

where the convergence is uniform with respect to t ∈ [t0, t0 + σ].
By the continuous dependence theorem for measure functional differential equations (see Theorem 6.3

and Remark 3.11 in [6]), it follows that

y0(t) = y0(t0) +

∫ t

t0

f̃0((y0)s, s) dg̃(s), t ∈ [t0, t0 + σ],

(y0)t0 = φ0.

The proof is finished by applying Theorem 3.1, which implies that y0 satisfies (7.3) and (7.4).

The second result in this section is a continuous dependence theorem for impulsive functional dynamic
equations on time scales.
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Theorem 7.2. Assume that [t0 − r, t0 + σ]T is a time scale interval, t0 ∈ T, B ⊂ Rn is an open set,
O = G([t0 − r, t0 + σ], B), P = G([−r, 0], B), m ∈ N, t1, . . . , tm ∈ [t0, t0 + σ]T are right-dense points
such that t0 ≤ t1 < · · · < tm < t0 +σ. Let fp : P × [t0, t0 +σ]T → Rn, p ∈ N0, and Ip1 , . . . , I

p
m : B → Rn,

p ∈ N0, be functions which satisfy the following conditions:

1. The integral
∫ t0+σ

t0
fp(yt, t)∆t exists for every y ∈ O and p ∈ N0.

2. There exists a constant M1 > 0 such that∥∥∥∥∫ u2

u1

fp(yt, t)∆t

∥∥∥∥ ≤M1(u2 − u1)

for every p ∈ N, y ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2.

3. There exists a constant L1 > 0 such that∥∥∥∥∫ u2

u1

(fp(yt, t)− fp(zt, t)) ∆t

∥∥∥∥ ≤ L1

∫ u2

u1

‖yt − zt‖∞∆t

for every p ∈ N, y, z ∈ O and u1, u2 ∈ [t0, t0 + σ]T, u1 ≤ u2.

4. For every y ∈ O,

lim
p→∞

∫ t

t0

fp(ys, s)∆s =

∫ t

t0

f0(ys, s)∆s

uniformly with respect to t ∈ [t0, t0 + σ]T.

5. There exists a constant M2 > 0 such that

‖Ipk(x)‖ ≤M2

for every k ∈ {1, . . . ,m}, p ∈ N0 and x ∈ B.

6. There exists a constant L2 > 0 such that

‖Ipk(x)− Ipk(y)‖ ≤ L2‖x− y‖

for every k ∈ {1, . . . ,m}, p ∈ N0 and x, y ∈ B.

7. For every x ∈ B and k ∈ {1, . . . ,m}, limp→∞ Ipk(x) = I0
k(x).

Assume that φp ∈ G([t0 − r, t0]T, B), p ∈ N0, is a sequence of functions such that limp→∞ φp = φ0

uniformly on [t0 − r, t0]T. Let yp : [t0 − r, t0 + σ]T → B, p ∈ N be solutions of

yp(t) = yp(t0) +

∫ t

t0

fp((y
∗
p)s, s) ∆s+

∑
k∈{1,...,m},

tk<t

Ipk(yp(tk)), t ∈ [t0, t0 + σ]T,

yp(t) = φp(t), t ∈ [t0 − r, t0]T.

If there exists a function y0 : [t0 − r, t0 + σ]T → B such that limp→∞ yp = y0, then y0 satisfies

y0(t) = y0(t0) +

∫ t

t0

f0((y∗0)s, s) ∆s+
∑

k∈{1,...,m},
tk<t

I0
k(y0(tk)), t ∈ [t0, t0 + σ]T, (7.5)

y0(t) = φ0(t), t ∈ [t0 − r, t0]T. (7.6)

Copyright line will be provided by the publisher



20 M. Federson et al.: Basic results for functional differential and dynamic equations involving impulses

P r o o f. Let g(t) = t∗ for every t ∈ [t0, t0 + σ]; then g is a left-continuous nondecreasing function which
is continuous at t1, . . . , tm. Further, let f∗p (y, t) = fp(y, t

∗) for every p ∈ N0, y ∈ P and t ∈ [t0, t0 + σ].

By Lemma 5.3, the integral
∫ t0+σ

t0
f∗p (yt, t) dg(t) exists for every y ∈ O and p ∈ N0. By Theorems 4.5

and 5.1, we obtain

lim
p→∞

∫ t

t0

f∗p (ys, s) dg(s) = lim
p→∞

∫ t∗

t0

fp(ys, s)∆s =

∫ t∗

t0

f0(ys, s)∆s

=

∫ t

t0

f0(ys∗ , s
∗) dg(s) =

∫ t

t0

f∗0 (ys, s) dg(s),

where the convergence is uniform with respect to t ∈ [t0, t0 + σ].
Further, it is clear that limp→∞ y∗p = y∗0 on [t0, t0 + σ], and limp→∞ φ∗p = φ∗0 uniformly on [t0 − r, t0].

By Theorem 5.2, we have

y∗p(t) = y∗p(t0) +

∫ t

t0

f∗p ((y∗p)s, s) dg(s) +
∑

k∈{1,...,m},
tk<t

Ipk(y∗p(tk)), t ∈ [t0, t0 + σ],

(y∗p)
t0

= (φ∗p)t0 .

for every p ∈ N. Using Lemma 5.3, we see that all hypotheses of Theorem 7.1 are satisfied. Consequently,

y∗0(t) = y∗0(t0) +

∫ t

t0

f∗0 ((y∗0)s, s) dg(s) +
∑

k∈{1,...,m},
tk<t

I0
k(y∗0(tk)), t ∈ [t0, t0 + σ],

(y∗0)t0 = (φ∗0)t0 .

By Theorem 5.2, it follows that y0 satisfies (7.5) and (7.6).

Remark 7.3. According to Remark 6.6 in [6], the assumptions of Theorem 7.1 might be modified in
the following way: Instead of requiring the existence of a function y0 ∈ O such that limk→∞ yk = y0, it
is enough to assume the existence of a closed set B′ ⊂ B such that the functions yk, k ∈ N, take values
in B′. Under this hypothesis, the conclusion is that {yk}∞k=1 has a subsequence which is uniformly
convergent to a function y0 ∈ O such that

y0(t) = y0(t0) +

∫ t

t0

f0((y0)s, s) dg(s), t ∈ [t0, t0 + σ],

(y0)t0 = φ0.

Theorem 7.2 can be modified in a similar way.

8 Periodic averaging theorems

The basic idea behind averaging theorems is that one can approximate solutions of a non-autonomous
equation by solutions of an autonomous equation whose right-hand side corresponds to the average of
the original right-hand side. The method is quite general and can be applied to many types of equations
(see e.g. [12]); it is especially powerful in the case when the original right-hand side is periodic in t.

In this section, we use an existing periodic averaging theorem for measure functional differential equa-
tions to obtain periodic averaging theorems for functional differential and dynamic equations involving
impulses.

Theorem 8.1. Assume that ε0 > 0, L > 0, B ⊂ Rn, X = G([−r, 0], B), m ∈ N and 0 ≤ t1 < t2 <
· · · < tm < T . Consider a pair of bounded functions f : X × [0,∞)→ Rn, g : X × [0,∞)× (0, ε0]→ Rn
and a nondecreasing left-continuous function h : [0,∞) → R which is continuous at t1, . . . , tm. Let
Ik : B → Rn, k ∈ {1, 2, . . . ,m} be bounded and Lipschitz-continuous functions. For every integer
k > m, define tk and Ik by the recursive formulas tk = tk−m + T and Ik = Ik−m. Suppose that the
following conditions are satisfied:
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1. The integral
∫ b

0
f(yt, t) dh(t) exists for every b > 0 and y ∈ G([−r, b], B).

2. f is Lipschitz-continuous with respect to the first variable.

3. f is T -periodic in the second variable.

4. There is a constant α > 0 such that h(t+ T )− h(t) = α for every t ≥ 0.

5. The integral

f0(x) =
1

T

∫ T

0

f(x, s) dh(s)

exists for every x ∈ X.

Denote

I0(y) =
1

T

m∑
k=1

Ik(y), y ∈ B.

Let φ ∈ X and suppose for every ε ∈ (0, ε0], the initial value problems

x(t) = x(0) + ε

∫ t

0

f(xs, s) dh(s) + ε2

∫ t

0

g(xs, s, ε) dh(s) + ε
∑
k∈N,
tk<t

Ik(x(tk)),

x0 = φ,

y(t) = y(0) + ε

∫ t

0

(f0(ys) + I0(y(s))) ds,

y0 = φ

have solutions xε, yε : [−r, L/ε]→ B. Then there exists a constant J > 0 such that

‖xε(t)− yε(t)‖ ≤ Jε

for every ε ∈ (0, ε0] and t ∈ [0, L/ε].

P r o o f. Define the function h̃(t) : [0,∞)→ R by

h̃(t) =

{
h(t), t ∈ [0, t1],

h(t) + k, t ∈ (tk, tk+1] for some k ∈ N.

Note that ∆+h̃(tk) = 1 for every k ∈ N, h̃ is nondecreasing, left-continuous, and for every t ≥ 0, we

have h̃(t+ T )− h̃(t) = α̃, where α̃ = h(t+ T )− h(t) +m = α+m.
By the assumptions, it follows that

xε(t) = xε(0) +

∫ t

0

(
εf(xεs, s) + ε2g(xεs, s, ε)

)
dh(s) +

∑
k∈N,
tk<t

εIk(xε(tk))

for every ε ∈ (0, ε0] and t ∈ [0, L/ε]. Let

F ε(y, t) =

{
εf(y, t) + ε2g(y, t, ε), t /∈ {t1, t2, . . .},
εIk(y(0)), t = tk for some k ∈ N

for every y ∈ X and t ≥ 0. By Theorem 3.1, we obtain

xε(t) = xε(0) +

∫ t

0

F ε(xεs, s) dh̃(s) (8.1)
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for every ε ∈ (0, ε0] and t ∈ [0, L/ε]. For every y ∈ X and t ≥ 0, we have

F ε(y, t) = εf̃(y, t) + ε2g̃(y, t, ε), (8.2)

where

f̃(y, t) =

{
f(y, t), t /∈ {t1, t2, . . .},
Ik(y(0)), t = tk for some k ∈ N

and

g̃(y, t, ε) =

{
g(y, t, ε), t /∈ {t1, t2, . . .},
0, t = tk for some k ∈ N.

It follows from (8.1) and (8.2) that for every ε ∈ (0, ε0], the function xε : [−r, L/ε]→ B is a solution of
the initial value problem

x(t) = x(0) + ε

∫ t

0

f̃(xs, s) dh̃(s) + ε2

∫ t

0

g̃(xs, s, ε) dh̃(s),

x0 = φ.

The function f̃ is Lipschitz-continuous with respect to the first variable and T -periodic in the second
variable. Using Lemma 2.4, we have∫ T

0

f̃(x, s) dh̃(s) =

∫ T

0

f(x, s) dh(s) +

m∑
k=1

f̃(x, tk)∆+h̃(tk) =

∫ T

0

f(x, s) dh(s) +

m∑
k=1

Ik(x(0))

for every x ∈ X. Consequently, the function

f̃0(x) =
1

T

∫ T

0

f̃(x, s) dh̃(s), x ∈ X,

satisfies

f̃0(x) =
1

T

∫ T

0

f(x, s) dh(s) +
1

T

m∑
k=1

Ik(x(0)) = f0(x) + I0(x(0)), x ∈ X.

By the periodic averaging theorem for measure functional differential equations (see Theorem 13 in [12]),
there is a constant J > 0 such that ‖xε(t)− yε(t)‖ ≤ Jε for every ε ∈ (0, ε0] and t ∈ [0, L/ε].

We now proceed to the periodic averaging theorem for impulsive functional dynamic equations on
time scales.

Definition 8.2. Let T > 0 be a real number. A time scale T is called T -periodic if t ∈ T implies
t+ T ∈ T and µ(t) = µ(t+ T ).

Theorem 8.3. Assume that T is a T -periodic time scale, [t0 − r, t0 + σ]T a time scale interval, t0 ∈ T,
ε0 > 0, L > 0, B ⊂ Rn, X = G([−r, 0], B), m ∈ N, t1, . . . , tm ∈ T are right-dense points such that t0 ≤
t1 < t2 < · · · < tm < t0 + T . Let Ik : B → Rn, k ∈ {1, 2, . . . ,m} be bounded and Lipschitz-continuous
functions. For every integer k > m, define tk and Ik by the recursive formulas tk = tk−m + T and
Ik = Ik−m. Consider a pair of bounded functions f : X× [t0,∞)T → Rn, g : X× [t0,∞)T× (0, ε0]→ Rn
such that the following conditions are satisfied:

1. The integral
∫ b

0
f(yt, t)∆t exists for every b > 0 and y ∈ G([−r, b], B).

2. f is Lipschitz-continuous with respect to the first variable.
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3. f is T -periodic in the second variable.

4. The integral

f0(x) =
1

T

∫ t0+T

t0

f(x, s)∆s

exists for every x ∈ X.

Denote

I0(y) =
1

T

m∑
k=1

Ik(y), y ∈ B.

Let φ ∈ G([t0 − r, t0]T, B) and suppose for every ε ∈ (0, ε0], the initial value problems

x(t) = x(t0) + ε

∫ t

t0

f(x∗s, s)∆s+ ε2

∫ t

t0

g(x∗s, s, ε)∆s+ ε
∑
k∈N,
tk<t

Ik(y(tk)), t ∈ [t0, t0 + L/ε]T,

x(t) = φ(t), t ∈ [t0 − r, t0]T,

y(t) = y(t0) + ε

∫ t

t0

(f0(ys) + I0(y(s))) ds,

yt0 = φ∗t0

have solutions xε : [t0−r, t0 +L/ε]T → B and yε : [t0 − r, t0 + L/ε]→ B, respectively. Then there exists
a constant J > 0 such that

‖xε(t)− yε(t)‖ ≤ Jε,

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + L/ε]T.

P r o o f. Without loss of generality, we can assume that t0 = 0; otherwise, consider a shifted problem

with the time scale T̃ = {t− t0; t ∈ T} and functions f̃(x, t) = f(x, t+ t0) and g̃(x, t, ε) = g(x, t+ t0, ε).
For every t ∈ [t0,∞), x ∈ X and ε ∈ (0, ε0], let

f∗(x, t) = f(x, t∗) and g∗(x, t, ε) = g(x, t∗, ε).

Also, let h(t) = t∗ for every t ∈ [t0,∞). Since T is T -periodic, it follows that

h(t+ T )− h(t) = T, t ≥ 0.

From Theorem 4.5, we obtain

f0(x) =
1

T

∫ T

0

f(x, s)∆s =
1

T

∫ T

0

f∗(x, s) dh(s)

for every x ∈ X.

For every b > 0 and y ∈ G([−r, b], B), the integral
∫ b

0
f(yt, t)∆t exists. Then, Theorems 4.5 and 5.1

imply ∫ b

0

f(yt, t)∆t =

∫ b

0

f(yt∗ , t
∗) dh(t) =

∫ b

0

f(yt, t
∗) dh(t) =

∫ b

0

f∗(yt, t) dh(t),

i.e. the last integral exists as well.
It follows from Theorem 5.2 that for every ε ∈ (0, ε0] and t ∈ [0, L/ε], we have

(xε)∗(t) = (xε)∗(0) + ε

∫ t

0

f∗((xε)∗s, s) dh(s) + ε2

∫ t

0

g∗((xε)∗s, s, ε) dh(s) + ε
∑
k∈N,
tk<t

Ik((xε)∗(tk)),

(xε)∗0 = φ∗0.

Finally, by Theorem 8.1, there exists a constant J > 0 such that ‖(xε)∗(t) − yε(t)‖ ≤ Jε for every
ε ∈ (0, ε0] and t ∈ [0, L/ε]. We conclude the proof by observing that (xε)∗(t) = xε(t) for t ∈ [0, L/ε]T.
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9 Conclusion

In the present paper, we demonstrated how the existing theory of measure functional differential equa-
tions can be helpful in the study of impulsive functional differential equations. Moreover, we showed that
impulsive functional dynamic equations on time scales represent a special type of measure functional
differential equations.

Using known results for measure functional differential equations, we were able to prove theorems
concerning the existence and uniqueness of solutions, continuous dependence of solutions on the right-
hand side, and periodic averaging for impulsive functional differential and dynamic equations.

These facts demonstrate that the study of measure functional differential equations is fully justified,
since they allow us to deal with other types of equations in a unified way.

Acknowledgment. The authors thank the anonymous referees for comments which helped to
improve the paper.
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Birkhäuser, Boston, 2001.

[4] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
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