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Abstract

We study measure functional differential equations and clarify their relation to generalized or-
dinary differential equations. We show that functional dynamic equations on time scales represent
a special case of measure functional differential equations. For both types of equations, we obtain
results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.
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1 Introduction

Let r, o > 0 be given numbers and ¢, € R. The theory of retarded functional differential equations (see
e.g. [10]) is a branch of the theory of functional differential equations concerned with problems of the
form

a'(t) = f(ze,1), t€ [to,to + 0,
where f: Q X [tg,to + 0] = R", Q C C([-r,0],R™), and z; is given by z:(0) = z(t + 6), 6 € [—r,0], for
every t € [tg, tg + o]. The equivalent integral form is

z(t) = z(to) + /tf(acs,s) ds, t € [to,to+ o],

where the integral can be considered, for instance, in the sense of Riemann, Lebesgue or Henstock-
Kurzweil.
In this paper, we focus our attention on more general problems of the form

x(t) = z(to) + f(zs,8)dg(s), t € [to,to+ ], (1.1)

where the integral on the right-hand side is the Kurzweil-Stieltjes integral with respect to a nondecreasing
function g (see the next section). We call these equations measure functional differential equations. As
explained in [3], equation (1.1) is equivalent to

Dz = f(x4,t)Dg,
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where Dz and Dg denote the distributional derivatives of the functions x and g in the sense of L. Schwartz.

While the theories of measure differential equations (including the more general abstract measure
differential equations) and measure delay differential equations are well-developed (see e.g. [3], [4], [5],
[13], [21]), the literature concerning measure functional differential equations is scarce. We start our
exposition by describing the relation between measure functional differential equations and generalized
ordinary differential equations, which were introduced by J. Kurzweil in 1957 (see [15]). The idea of
converting functional differential equations to generalized ordinary differential equations first appeared
in the papers [12], [18] written by C. Imaz, F. Oliva, and Z. Vorel. It was later generalized by M. Federson
and S. Schwabik in the paper [6], which is devoted to impulsive retarded functional differential equations.
Using the existing theory of generalized ordinary differential equations, we obtain results on the existence
and uniqueness of a solution and on the continuous dependence of a solution on parameters for measure
functional differential equations.

Both differential equations and difference equations are important special cases of measure differential
equations. Another unification of continuous-time and discrete-time equations is provided by the theory
of dynamic equations on time scales, which has its roots in the work of S. Hilger (see [11]), and became
increasingly popular during the past two decades (see [1], [2]). In [22], A. Slavik established the relation
between dynamic equations on time scales, measure differential equations, and generalized ordinary dif-
ferential equations. In the present paper, we extend this correspondence to functional dynamic equations
on time scales and measure functional differential equations. Using this relation, we obtain theorems on
the existence and uniqueness of a solution, continuous dependence of a solution on a parameter, and a
periodic averaging theorem for functional dynamic equations on time scales.

Our paper is organized as follows. The second section introduces fundamental concepts and basic
results of the Kurzweil integration theory. In the third section, using some ideas from [6], we present the
correspondence between measure functional differential equations and generalized ordinary differential
equations. We also explain that impulsive functional differential equations represent a special case of
measure functional differential equations. The fourth section is devoted to functional dynamic equations
on time scales. In this section, we establish the relation between functional dynamic equations on time
scales and measure functional differential equations. In the fifth section, we present theorems concerning
existence and uniqueness of a solution. In the sixth section, we prove continuous dependence results.
Finally, a periodic averaging theorem for functional dynamic equations on time scales is presented in the
last section.

2 Kurzweil integration

Throughout this paper, we use the following definition of the integral introduced by J. Kurzweil in [15].
Consider a function § : [a,b] — RT (called a gauge on [a,b]). A tagged partition of the interval [a, b] with
division points a = sg < s1 < --- < s, = b and tags 7; € [s;_1,8i], 4 =1,...,k, is called J-fine if

[Sifl, 87;} C (Ti — 5(7'7;),’7'2' + (5(’7’2)), i=1,...,k.
Let X be a Banach space. A function U : [a, b] X [a,b] — X is called Kurzweil integrable on [a, b], if there
is an element I € X such that given € > 0, there is a gauge ¢ on [a, b] such that

k

Z(U(Ti75i> — U(Ti,Si_l)) -1

i=1

<e€

for every d-fine tagged partition of [a, b]. In this case, I is called the Kurzweil integral of U over [a, b] and
will be denoted by f: DU(r,t).

This definition generalizes the well-known Henstock-Kurzweil integral of a function f : [a,b] — X,
which is obtained by setting U(7,t) = f(7)t. The Kurzweil-Stieljtes integral of a function f : [a,b] — X



with respect to a function g : [a, b] — R, which appears in the definition of a measure functional differential
equation, corresponds to the choice U(7,t) = f(7)g(t) and will be denoted by ff f(s)dg(s) or simply
J. £ dg.

The Kurzweil integral has the usual properties of linearity, additivity with respect to adjacent intervals,
integrability on subintervals etc. More information can be found in the book [19].

A function f : [a,b] — X is called regulated, if the limits

lim f(s)= f(t—), t€ (a,b], and slggf(s) = f(t+), te€la,b)

s—t—

exist. The space of all regulated functions f : [a,b] — X will be denoted by G([a, ], X), and is a Banach
space under the usual supremum norm || f|lcoc = sup,<;<p || (t)]]. The subspace of all continuous functions
f:[a,b] = X will be denoted by C([a, ], X). o

A proof of the next result can be found in [19], Corollary 1.34; the inequalities follow directly from
the definition of the Kurzweil-Stieljtes integral.

Theorem 2.1. If f : [a,b] = R™ is a requlated function and g : [a,b] — R is a nondecreasing function,
then the integral f; fdg exists and

The following result, which describes the properties of the indefinite Kurzweil-Stieljtes integral, is
a special case of Theorem 1.16 in [19].

b b
/f(S)dg(S) S/ 1£(s)l dg(s) < | Flloc(9(b) — g(a))-

Theorem 2.2. Let f : [a,b] = R™ and g : [a,b] — R be a pair of functions such that g is regulated and
f; fdg exists. Then the function

ht) = / f(s)dg(s), t € [a,b],

1s requlated and satisfies

h(t=) = h(t) = f(t)A"g(t), t € (a,b],

where AT g(t) = g(t+) — g(t) and A™g(t) = g(t) — g(t-).

3 Measure functional differential equations and generalized or-
dinary differential equations

In the present section, our goal is to establish a correspondence between functional differential equations
and generalized ordinary differential equations. We start by introducing some basic definitions and
notation. More information about generalized ordinary differential equations can be found in [19].

Definition 3.1. Let X be a Banach space. Consider a set O C X, an interval [a,b] C R and a function
F:0 x[a,b] - X. A function z : [a,b] — O is called a solution of the generalized ordinary differential
equation

dx

— = DF(z,t
dT (1.7 )



on the interval [a, b], if
d
2(d) ~a(e) = [ DF(a(r).0)
for every ¢, d € [a, b].

To obtain a reasonable theory of generalized ordinary differential equations, we restrict our attention
to equations whose right-hand sides satisfy the following conditions.

Definition 3.2. Let X be a Banach space. Consider a set O C X and an interval [a,b] C R. If
h: [a,b] — R is a nondecreasing function, we say that a function F : O x [a,b] — X belongs to the class
F(O x [a,b],h), if

1F(z,52) = F(z,51)]| < [h(s2) = h(s1)]|

for all (z, s2), (x,s1) € O X [a,b] and
[1F(x,82) = F(z,81) = F(y,s2) + Fy,s1)[| < ||z =yl - [(s2) = h(s1)]
for all ($,82), (1‘,81), (y782)7 (yasl) €0 x [aab]'

When the right-hand side of a generalized ordinary differential equation satisfies the above mentioned
conditions, we have the following information about its solutions (see Lemma 3.12 in [19]).

Lemma 3.3. Let X be a Banach space. Consider a set O C X, an interval [a,b] C R and a function
F:0x[a,b) = X. If x: [a,b] = O is a solution of the generalized ordinary differential equation

dx
— = DF(x,t
dr (z,)
and F € F(O x [a,b], h), then x is a regulated function.
Let O C G([to —r.to + o,R") and P = {ys; y € O, t € [to,to + o]} C G([-r,0],R™). Consider
a nondecreasing function g : [tg, o + o] — R and a function f : P X [tg,to + 0] — R™. We will show that
under certain assumptions, a measure functional differential equation of the form

y(t) = y(to) + / F(yer8)dg(s), € [to,to + o], (3.1)

where the solution y : [tg — r,t9 + 0] — R™ is supposed to be a regulated function, can be converted to
a generalized ordinary differential equation of the form

dx
= DF(z,t), (3.2)

where x takes values in O, i.e. we transform the original measure functional differential equation, whose
solution takes values in R™, into a generalized ordinary equation, whose solution takes values in an
infinite-dimensional Banach space. The right-hand side F' of this generalized equation will be given by

07 to—r< 9 < tOv

9
F(z,t)(¥) =} [y, f(ws,8)dg(s), to <9 <t<ty+o, (3.3)

f:o f(zs,s)dg(s), t<I<to+o
for every x € O and t € [tg,to + o]. As we will show, the relation between the solution x of (3.2) and the
solution y of (3.1) is described by
y(9), € [to—r,t,
y(t)7 Ve [t7t0+0]a



where t € [to,to + O’].
The following property will be important for us because it ensures that if y € O, then z(¢t) € O for
every t € [to, to + 0].

Definition 3.4. Let O be a subset of G([tg — r,to + o], R™). We will say that O has the prolongation
property, if for every y € O and every t € [tg — r,to + o], the function 3 given by
o [y, w-r<i<t
y(t), t<t<tp+o
is also an element of O.

For example, let B be an arbitrary subset of R”. Then both the set of all regulated functions
f i [to —mto + o] — B and the set of all continuous functions f : [tg — r,t9p + 0] — B have the
prolongation property.

Recall that O C G([to — r,to + 0],R™), P ={y; y € O, t € [to,to + 0]}, f: P X [to,to + 0] = R,
and g : [to, to + o] — R is nondecreasing.

We introduce the following three conditions, which will be used throughout the rest of this paper:
(A) The integral f:og'w f(ys, 1) dg(t) exists for every y € O.

(B) There exists a constant M > 0 such that

1f(y, Dl < M

for every y € P and every t € [tg,to + o].

(C) There exists a constant L > 0 such that

1y, t) = f(z, ) < Llly — zllos
for every y,z € P and every t € [tg, tg + o).
Before proceeding further, we need the following property of regulated functions.
Lemma 3.5. Ify: [to—7,to+0] — R™ is a regulated function, then s — ||ys||oo is regulated on [to,to+0].

Proof. We will show that lims_,s,— ||ys||co exists for every sg € (to,to + o]. The function y is regulated,
and therefore satisfies the Cauchy condition at sy — r and so: Given an arbitrary € > 0, there exists
a d € (0,59 — to) such that

ly(u) —y()|| <e, u,v€(sg—r—258 —r), (3.4)

and
ly(w) —y() <&, u,v € (50— 6,50). (3.5)
Now, consider a pair of numbers s1, so such that sop —d < 51 < s2 < sg. For every s € [s1 — 7,82 — 1],
it follows from (3.4) that
ly()ll < lly(s2 =)l +& < [[ys,lloc + e

It is also clear that ||y(s)]] < ||ys, |loo for every s € [so —r, s1]. Consequently, ||ys, [co < ||Us,|loo + €. Using
(3.5) in a similar way, we obtain ||ys,|lco < ||¥s; [|eo + €. It follows that

1Ys: loo = ysa llc| <&, 1,52 € (50— 8 50),

i.e. the Cauchy condition for the existence of lims_,,_ ||ys|| o is satisfied. The existence of lims_ .+ ||Ys] oo
for sp € [to,to + o) can be proved similarly. O



Lemma 3.6. Let O C G([to — r,to + o],R™) and P = {y;; y € O, t € [to,to + o]}. Assume that
g : [to, to + 0] = R is a nondecreasing function and that f : P X [tg,to + o] — R™ satisfies conditions (A),
(B), (C). Then the function F' : O X [to,to+ 0] = G([to — 7, to + 0], R™) given by (3.3) belongs to the class
F(O x [to,to + o], h), where

h(t) = (L + M)(g(t) — 9(to)), ¢ € [to,to + o].

Proof. Condition (A) implies that the integrals in the definition of F' exist. Given y € O and tp < s1 <
so < tg + o, we see that

07 tO_TSTSSD

F(ya32)(7) - F(y,Sl)(T) = fSTI f(ys,S) dg(S), 51 S T S 52,
f:lQ f(ys,8)dg(s), s2 <71 <ty+o.

Hence for an arbitrary y € O and for tg < 51 < s2 < tg + o, we have by (B)

[1E(y;82) = F(y,81)lle0 = sup  [[F(y,52)(7) = F(y, s1)(7)[| =

to—r<t<to+o
/ f(ys,s)dg(s

g/ M dg(s) < h(ss) — h(s1).
S1
Similarly, using (C), if y,z € O and tg < s1 < 89 < ty + 0, then

||F(y782) - F(yasl) - F(za‘SQ) + F(Zasl)”oo ==

[ s = 1ol dg@)| < s [ Ll - zlwdgls) <

s1 51<7<s2 J 51

= sup ||F(y,s2)(7) — F(y,s1)(7)[| = sup

51 <7<52 $1<7<8s2

= sup
51<7<s2

<y — 2l / " Ldg(s) < ly — oo (hs2) — h(s1)

51
(note that the function s — ||ys — 2s||eo is regulated according to Lemma 3.5, and therefore the integral
f; Lilys — 25|00 dg(s) exists). .

The following statement is a slightly modified version of Lemma 3.3 from [6] (which is concerned with
the special case g(t) = t). The proof from [6] can be carried over without any changes and we repeat it
here for reader’s convenience.

Lemma 3.7. Let O be a subset of G([tg —r,to + o], R™) with the prolongation property and P = {y:; y €
O, t € [to,to + o]}. Assume that ¢ € P, g : [to,to + 0] — R is a nondecreasing function, and f :
P x [tg,to + o] = R™ is such that the integral ft0+a flye,t)dg(t) exists for every y € O. Consider F
given by (3.3) and assume that x : [to, to + o] = O is a solution of

dx
— =DF(x.,t
& = DF(r,1)

with initial condition x(to) () = ¢(9) for ¥ € [to — r,to], and x(to)(¥) = x(to)(to) for ¥ € [to,to + o). If
v € [to,to + o] and ¥ € [to — r,to + 0], then

z(v)(¥) = z(v)(v), I >, (3.6)

and

z(v)(¥) = z(H)(¥), v=>9. (3.7)



Proof. Assume that ¥ > v. Since z is a solution of

dx

— = DF(z,t
dT (x’ )7

we have
z(v)(v) = w(to) (v) + /t DF(z(7),1)(v)
and similarly

o0)9) = a(ta)9) + [ " DF((r).t)(9).

Since x(to)(¥) = x(to)(v) by the properties of the initial condition, we have
o)) - a(0)(0) = [ DF@(r).00) - [ DFa(r).0(0),

It follows from the existence of the integral | tl; DF(x(7),t) that for every € > 0, there is a gauge ¢ on
[to,to + o] such that if {(7;, [s;-1,:]), i =1,...,k} is a d-fine tagged partition of [tg,v], then

k

Z(F(x(n), s;) — F(x(1:), 8i-1)) — /tv DF(xz(7),t) <e.
Therefore we have
k k
[z (v)(9) —z(v)(v)]| < 2e+ Z(F(x(ﬂ),&) = F(z(r), 8-1))(0) — Z(F(x(ﬂ),sl') — F(z(r), 8i-1))(v)]| -

By the definition of F' in (3.3), it is a matter of routine to check that, for every i € {1,...,k}, we have
F(x(7i), 5:)(0) — F(2(r:), 5i-1)(0) = F(x(73), 5:)(v) = F(x(7i), si-1) (v),

and consequently

[2(v)(9) = 2(v) (V)] < 2e.

Since this holds for an arbitrary € > 0, the relation (3.6) is satisfied.
To prove the second statement, assume that ¥ < v. Similarly to the first part of the proof, we have

2(0)(9) = 2(t0)(9) + t“ DF(a(r),1)(9)

and
9

z(9)(9) = z(to)(W) + | DF(x(r),1)(V).
Hence

o0)0) - 2(0)(0) = [ " DF(a(r). 0)(9).

Now, if {(74,[si-1,8:]), i = 1,...,k} is an arbitrary tagged partition of [, v], it is straightforward to
check by (3.3) that, for every ¢ € {1,...,k}, we have

F(Z’(Ti), Sl)(ﬁ) — F(Z’(TZ), 81;1)(19) =0.

This means that [ DF(z(7),t)(d) = 0 and z(v)(d) = z(9) (V). O



The proofs of the following two theorems are inspired by similar proofs from the paper [6], which
describes the special case g(t) = t, i.e. the usual type of functional differential equations.

Theorem 3.8. Assume that X is a closed subspace of G([to —r,to + o], R™), O is a subset of X with the
prolongation property, P = {xy; © € O, t € [to,to + o]}, ¢ € P, g : [to,to + 0] = R is a nondecreasing
function, f: P X [tg,to + o] = R™ satisfies conditions (A), (B), (C). Let F : O X [tg,to + o] = G([to —
T, to + o], R™) be given by (3.3) and assume that F(z,t) € X for every x € O, t € [to,to+ 0]. Lety € O
be a solution of the measure functional differential equation

t
v0) = olto)+ [ fo9)dgls), tE fiota-+ol,
to
Yto = ¢.

For every t € [to — r,to + o], let

y(ﬂ)a 795[750—7"75],
y(t), Y€ lt,to+ o]

Then the function x : [to,to + o] = O is a solution of the generalized ordinary differential equation
d
L DF(a,t).
dr

Proof. We will show that, for every v € [to, %o + o], the integral f;; DF(xz(7),t) exists and

2(v) — (ty) = /t DF(a(r),1).

Let an arbitrary € > 0 be given. Since g is nondecreasing, it can have only a finite number of points ¢ €
[to, v] such that Atg(t) > e/M; denote these points by t1,...,t,,. Consider a gauge ¢ : [to, to + 0] — RT
such that

tr —te_
5(7’)<min{k2kl7 k:27...,m}, T € [to,to + 0]

and
O0(7) <min{|r —tx|; k=1,...,m}, 7€ [to,to + o).

These conditions assure that if a point-interval pair (7, [c,d]) is d-fine, then [c, d] contains at most one of
the points t1,...,tn, and, moreover, T = t; whenever t;, € [c,d].
Since y;, = x(tg)t,, it follows from Theorem 2.2 that

lim [ Lllys — 2(tr)slloo dg(s) = Lllye, — 2(tr)e, e AT g(te) =0

s—tr+ the

for every k € {1,...,m}. Thus the gauge § might be chosen in such a way that

tip+0(tk)
/ Lllys — 2(t1)slloo dg(s) <

3
— kefl,...,m}.
" 2m + 1 {m)

Using Theorem 2.2 again, we see that

ly(r+) =yl = 1f (=, ) AT ()] < M% =&, 7€ [to,to+ o\t tm}.



Thus we can assume that the gauge § is such that

ly(p) —y(T)|| <e

for every 7 € [to, to + o]\{t1,....tm} and p € [7, 7+ (7)).
Assume now that {(7, [si—1,5:]), ¢ = 1,...,1} is a d-fine tagged partition of the interval [to, v]. Using
the definition of z, it can be easily shown that
0, 9 e [tO_T,Si_1L
9
(z(si) —2(si-1)) () =< [, fys,8)dg(s), 9 € [si-1,8i,]
[0 flys,s)dg(s), 9 € [si o+ 0]

Si—1

Similarly, it follows from the definition of F' that

0, 196 [to*T,Si_ﬂ,
(F(z(75),81) — F(2(7:),8i-1)) (9) = fz,l f(z(ri)s,8)dg(s), U € [si—1,sil,

fSi f(x(7i)s,8)dg(s), v € [si,to + o]

Si—1

By combination of the previous equalities, we obtain
((s1) = x(5i-1)) () = (F(2(73), 80) — F((r),5i-1)) (9) =
0, ¥ € [to — 1y 8i-1],
) dg(s), U € [si—1,si],
I (fys,s) = f(x(mi)s, 8)) dg(s), O € [si,to+ o]

|
=
53
—~
~
—
<
w
N
I
s
—~
8
—~
3
S~—
2
»

Consequently,
2(si) = x(si—1) = (F(x(7), 8) = F(a(1:), 8i-1)) loo =

= sup [(z(si) —a(si1)) (9) — (F(x(mi), 80) — F(a(7:), 8i-1)) (0)]| =

ﬁe[tofr,t()%»a']

= sup
VE[s:—1,54]

9
/ (F(yer5) — F(@(71)s,5)) dg(s)

i—

By the definition of x, we see that x(7;)s = ys whenever s < 7;. Thus

/19 (f(ys,5) = fla(m:) ))d()—{o7 V€ [si-1,7i],
Si—1 Yss i)ss g fz(f(ys, 5) — f(l’(Tl)g’s)) dg(5)7 9 e [Ti75i]~

Then condition (C) implies

Given a particular point-interval pair (7;, [s;—1, 8;]), there are two possibilities:

v Sq
< / Lllys — 2(m2)slloo dg(s) < / Lllys — 2(72)slloo da(5).

3 Ti

/1 (f(ys,5) = fla(7i)s, 5)) dg(s)

i

(i) The intersection of [s;_1,s;] and {t1,...,%,} contains a single point ¢ = 7.

(ii) The intersection of [s;—1,s;] and {t1,...,t,,} is empty.



In case (i), it follows from the definition of the gauge § that

[ Ll = el ds) < 52
ie. c
lz(si) —x(si-1) — (F(ﬂﬁ(Tz),Sz) - F(SU(Tz'),Sz‘—l))Hoo < om 1

In case (ii), we have

lys — 2(Ti)slle = sup |ly(p) —y(m)ll < e, s € [mi,si]
pE[Ti,s

by the definition of the gauge §. Thus

Si

(s:) = 2(si—1) — (F(x(m:), 81) — F(2(73), 8i-1))loo < 5/ Ldg(s).

Ti

Combining cases (i) and (ii) and using the fact that case (i) occurs at most 2m times, we obtain

l toto 2me
x(v) —z(tg) — ;(F(x(n), si) — F(x(r;),si-1))|| < E/to Ldg(s) + 1
Since ¢ is arbitrary, it follows that
xz(v) — z(ty) = DF(xz(1),t). O

to

Theorem 3.9. Assume that X is a closed subspace of G([to —r,to + 7], R™), O is a subset of X with the
prolongation property, P = {xy; © € O, t € [to,to + 0]}, ® € P, g : [to,to + 0] = R is a nondecreasing
function, f: P X [tg,to + o] — R™ satisfies conditions (A), (B), (C). Let F : O X [tg,to + o] = G([to —
r.to + o], R™) be given by (3.3) and assume that F(z,t) € X for every x € O, t € [to,to + o]. Let
x: [to,to + o] = O be a solution of the generalized ordinary differential equation

dx

— = DF(x,t
dr (@,2),

with the initial condition

)0 —to), to—r <9 <t,
)= {I(to)(to% to <V <to+o.

Then the function y € O defined by

_ Ja(to)®), to—1 <V <ty
v = {3?(19)(?9)’ to <9 <to+o.

s a solution of the measure functional differential equation

y(t) = ylto) + / F(yer8)da(s), 1€ [torto + 0],
o.

Yo =
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Proof. The equality y:, = ¢ follows easily from the definitions of y and x(tp). It remains to prove that if

v € [to,to + o], then .
~y(ty) = / £ (o0 5) dg(s)

y(v) — ylto) = 2(v)(v) — (to) (to) = 2(v)(v) — 2(to) ( / DF(x ) (v).

y(to) / £ (ger5) dg(s (/ DF(x )(v) /t:f@s,s)dg(s). (3.8)

Let an arbitrary € > 0 be given. Since g is nondecreasing, it can have only a finite number of
points ¢ € [to,v] such that ATg(¢t) > /(L + M); denote these points by t1,...,t,. Consider a gauge
d: [to,to + o] — RT such that

Using Lemma 3.7, we obtain

Thus

te —tr_
6(7’)<min{k2kl7 k:27...,m}, T € [to,to + 0]

and
O(t) <min{|r —tx|; k=1,...,m}, 7€ [to,to + o).

As in the proof of Theorem 3.8, these conditions assure that if a point-interval pair (7, [c,d]) is 0-fine,
then [c, d] contains at most one of the points ¢1,...,t,,, and, moreover, 7 = t;, whenever t; € [c,d].
Again, the gauge 6 might be chosen in such a way that

ti+6(tn)
/ Lllys — x(tk)slloc dg(s) < ke{l,...,m}.

b 2m+ 1’
According to Lemma 3.6, the function F given by (3.3) belongs to the class F(O x [to,to + o], h), where
h(t) = (L + M)(g(t) — g(to))-

Since
[(m+) = h(7)|| = (L + M)ATg(7)|| <&, 7€ [to,to +o]\{t1, . tm},

we can assume that the gauge § satisfies
[h(p) — h(7)|| < e for every p € [1,7 + &(7)).

Finally, the gauge § should be such that

. 1
/ DF(x(7),t) — Z(F(z(n), s;) — F(z(my), si_l)) <e (3.9)
to =1 e’}
for every d-fine partition {(7;, [si—1,8i]),% = 1,...,1} of [to,v]. The existence of such a gauge follows from
the definition of the Kurzweil integral. Choose a particular é-fine partition {(7;,[si—1,$:]),e = 1,...,1}

of [to,v]. By (3.8) and (3.9), we have

H y(to) /fyw dg(s

I (/ DF((r).1)) (0) - [ .9t

11




l

S (F(a(m), 50) — Fla(r), si1)) (v) - tv F(ge. ) dg(s)

=1

!
§€—|—Z (F(a(,
i=1

The definition of F' yields

<e+

81) —F(J:( y Si— 1 / .f Yss S dg )

(F(a(m), 5:) — F(a(r), 5i-1)) / Fa(r)ss) dg(s).

which implies

(F(z(),s:) — F(z(7:), 8i-1) / f(ys,s)dg(s)|| =

[f(I(Ti)sa s) = f(ys, s)] dg(s)|| -

Tz 598 dg / f Ys, S dg )

-1

By Lemma 3.7, for every i € {1,...,1}, we have z(7;)s = m(s)é =y, for s € [s;—1, 7] and ys = x(s)s =

x(s;)s for s € [y, s;]. Therefore
[ 1atm)es) = sl =

— ‘ /e [f(z(7i)s,8) — f(z(8:)s,8)] dg(s)|| < /g L||z(7:)s — 2(5)s]loe dg(s),

where the last inequality follows from condition (C). Again, we distinguish two cases:

15 (m)e5) = Fues ) dgls)

k3

(i) The intersection of [s;_1,s;] and {t1,...,%,} contains a single point ¢ = 7.
(ii) The intersection of [s;_1, s;] and {t1,...,tn} is empty.
In case (i), it follows from the definition of the gauge ¢ that

5
om+1’

[ Ll sl dg(s) <

i.e.

<
- +1°

(F(iC(TZ'),SZ') —F(.’E( y Si— 1 / f y37 dg( )

In case (ii), we use Lemma 3.3 to obtain the estimate
[2(si)s = 2(Ti)slloo < ll2(8i) = 2(Ti)lloo < R(si) — h(7) < e

for every s € [r;, s;], and thus

(F(x(r:), 81) — F(2(7), 8i-1) f Ys, s)dg(s)

<5/: Ldg(s).
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Combining cases (i) and (ii) and using the fact that case (i) occurs at most 2m times, we obtain

! s toto 2me
> |Flm)s) - Fatm)so)o) = [ foasdgs)| <2 [ Ldgls) + 5ot <
i=1 Si—1 to m +
to+o
<6(1+/ Ldg(s)> .
to
Consequently,
v to+o
o) = st~ [ ssdata) <e (24 [ Lants).
to to
which completes the proof. O

Remark 3.10. It follows from Lemma 3.7 that the relation

(19)_ CL’(to)(ﬁ)7 to—T’gﬁgto,
) z()(9), to <V <ty+o.

from the previous theorem can be replaced by a single equality
y(9) =a(to +0)(¥), to—r <1 <ty+o.

Remark 3.11. Before proceeding further, we stop for a moment to discuss conditions (A), (B), (C),
which appear in the statements of Theorem 3.8 and Theorem 3.9.

Condition (A) requires the existence of the Kurzweil-Stieltjes integral fttoﬁd fys, t)dg(t) for every
y € O. The class of integrable functions is quite large; for example, if g(t) = ¢, the Kurzweil-Stieltjes
integral reduces to the well-known Henstock-Kurzweil integral, which generalizes both Lebesgue and
Newton integrals (see e.g. [9]). For a general nondecreasing function g, Theorem 2.1 provides a useful
sufficient condition: the Kurzweil-Stieltjes integral exists whenever ¢ — f(y,t) is a regulated function.

Conditions (B) and (C) can be replaced by slightly weaker statements: An inspection of the proofs
of Theorem 3.8 and Theorem 3.9 shows that it is enough to assume the existence of constants M, L > 0
such that

b
/ Pl t) dg()]| < M(g(d) — g(a)

and

/ Flyt) — fznt) dg(0)]| < L / lye — = dg ()

for every a, b € [to,to + 0], y,2z € O.

Remark 3.12. The paper [6] deals with impulsive functional differential equations of the form
y'(t) = fly.t), te€lto,to+o\{t1,.-,tm},
ATy(ty) Ii(y(te)), ke{l,...,m},
yto = (rb?

where f : P x [to,tQ—FO’] — R™, P C G([—T’,O],Rn), to <ty < ...<t, <tg+oand I : R" - R"
for every k € {1,...,m}. The solution y is assumed to be differentiable on [to, %o + o]\{t1,...,tm} and

left-continuous at the points ¢q,...,t,,. The integral form of this impulsive problem is
t t m
o) = o)+ [ foeodst S L) = vlto) + [ Fuo)ds+ 3 hlut)Hy (0),
to kito<tn<t to k=1
Yo = ¢5
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where H, denotes the characteristic function of (v, 00), i.e. Hy(t) = 0 for t < v and H,(t) = 1 for t > v.
We claim that this problem is equivalent to

y(t) =zmw+1f@smmw L [tosto + o, (3.10)
Yty —
where g(t) =t + > ;o Hy, (t) and

2o @ty ifte ftoto+ o\t tm ),
fly,t) = {Ik(y(O)) if t = t;, for some k € {1,...,m}

for every t € [to,to + o] and y € P. Indeed, assume that y satisfies (3.10). Then we have

tbmm+1ﬂ%wmww%wlf@,@+z Fyars) dHy, (5) =

=170

y(to) /J%,m+ ST (e A Hay () = yi(to) /f%,®+ S L)

kyto<tp<t by to<tp<t

Note that if f is bounded and Lipschitz-continuous and if the impulse operators I}, are bounded and
Lipschitz-continuous, then f has the same properties.

Thus we see that our measure functional differential equations are general enough to encompass
impulsive behavior and there is no need to consider impulses separately like in [6].

4 Functional dynamic equations on time scales

This section starts with a short overview of some basic concepts in the theory of time scales. Then we
suggest a new approach to functional dynamic equations on time scales and explain their relation to
measure functional differential equations.

Let T be a time scale, i.e. a closed nonempty subset of R. For every t € T, we define the forward
jump operator by o(t) = inf{s € T, s > t} (where we make the convention that inf() = supT) and
the graininess function by u(t) = o(t) —t. If o(t) > t, we say that ¢ is right-scattered; otherwise, t is
right-dense.

A function f : T — R is called rd-continuous if it is regulated on T and continuous at right-dense
points of T.

Given a pair of numbers a, b € T, the symbol [a,b]r will be used to denote a closed interval in T,
ie. [a,bl]r = {t € T; a <t < b}. On the other hand, [a,b] is the usual closed interval on the real line,
ie. [a,b] = {t € R; a <t < b}. This notational convention should help the reader to distinguish between
ordinary and time scale intervals.

In the time scale calculus, the usual derivative f(t) is replaced by the A-derivative f2(¢). Similarly,
the usual integral fab f(t) dt is replaced by the A-integral f; f(t) At, where f : [a, bl — R. The definitions
and properties of the A-derivative and A-integral can be found in [1] and [2].

In the rest of this paper, we use the same notation as in [22]: Given a real number ¢t < sup T, let

=inf{s € T;s > t}.
(Note that t* might be different from o(¢).) Since T is a closed set, we have ¢* € T. Further, let
T* — { (—o0,sup T] if supT < oo,

(=00, 00) otherwise.
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Given a function f: T — R", we consider its extension f*:T* — R" given by

@)= f@t%), teT.

According to the following theorem (which was proved in [22]), the A-integral of a time scale function f
is in fact equivalent to the Kurzweil-Stieltjes integral of the extended function f*.

Theorem 4.1. Let f: T — R™ be a rd-continuous function. Choose an arbitrary a € T and define
t
Fi(t) = / f(s)As, teT,
a

Fy(t) = / f*(s)dgls), te T,

where g(s) = s* for every s € T*. Then Fy = FY; in particular, Fy(t) = F1(t) for every t € T.

However, it is useful to note that the Kurzweil-Stieltjes integral f; f*dg does not change if we replace
f* by a different function which coincides with f on [a,b] N'T. This is the content of the next theorem.

Theorem 4.2. Let T be a time scale, g(s) = s* for every s € T*, [a,b] C T*. Consider a pair of functions
f1, f2 : [a,b] = R™ such that f1(t) = fa(t) for every t € [a,b]NT. If f; f1dg exists, then fab fadg exists
as well and both integrals have the same value.

Proof. Denote I = f: fidg. Given an arbitrary € > 0, there is a gauge d; : [a,b] — RT such that

k
> A (g(s) —g(sia) —I|| <e
i=1
for every 4;-fine partition with division points a = sg < s1 < -+ < s, = b and tags 7; € [s;-1, 8],
1=1,..., k. Now, let
5a(t) = 01(¢) ift € [a,b]NT,
T min (61 (8), S inf {|t — s|,s € T}) if ¢ € [a,b]\T.

Note that each ds-fine partition is also d1-fine. Consider an arbitrary do-fine partition with division points
a=389<s3 <---<s,=>band tags 7; € [s;_1,8;], 1 € {1,...,k}. For every ¢ € {1,...,k}, there are two
possibilities: Either [s;_1,s;]NT =@, or 7; € T. In the first case, g(s;_1) = g(s;), and therefore

f2(7i)(g(si) — g(si-1)) = 0= fi(7:)(g(s:) — g(si-1))-

In the second case, f1(7;) = fo(7;) and

f2(7i)(g(s:) — g(si-1)) = f(7i)(9(s:) — g(si-1))-

Thus we have

k k
R (g(si) —g(sic)) = I|| =D Al g(s:) — glsicn) = T|| <e.
i=1 i=1

Since € can be arbitrarily small, we conclude that fab fadg=1. O
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We would like to study dynamic equations on time scales such that the A-derivative of the unknown
function z : T — R™ at ¢t € T depends on the values of x(s), where s € [t — r,¢{] N T. But, unlike the
classical case, there is a difficulty: The function z; is now defined on a subset of [—r, 0], and this subset
can depend on t. We overcome this problem by considering the function x} instead; throughout this and
the following sections, z; stands for (z*),. Clearly, z; contains the same information as z;, but it is
defined on the whole interval [—r,0]. Thus, it seems reasonable to consider functional dynamic equations
of the form

2B (t) = f(],t).
We now show that this equation is equivalent to a certain measure functional differential equation.
The symbol C([a, b]T, R™) will be used to denote the set of all continuous functions f : [a, bl — R™.

Theorem 4.3. Let [ty — r,tg + o] be a time scale interval, to € T, B C R", C = C([to — 1, to + o|r, B),
P = {z};z € Ct € [to,to+ 0}, f: P x[to,to + olr = R™, ¢ € C([to — r,to]r, B). Assume that for
every © € C, the function t — f(x},t) is rd-continuous on [tg,tg + o|r. Define g(s) = s* for every
s € [to,to +0o]. If x: [to — 1, to + o]t — B is a solution of the functional dynamic equation

z2(t) = flzi,t), t€ [to,to+ olr, (4.1)
z(t) = ¢(t), t€[to—rtolr, (4.2)

then a* : [tg — r,to + 0] — B satisfies
t
20 = @)+ [ fls)dgls), te ltoto+ ol
to
i, = ¢
Conversely, if y : [to — 1, to + o] = B is a solution of the measure functional differential equation
t
y(t) = ylto)+ | flys,s7)dg(s), t€ [to,to+ 0],
to
yto = (725*?
then y = x*, where x : [tg — r,to + o]t — B satisfies (4.1) and (4.2).

Proof. Assume that
aA(t) = f(a},t), t € [to,to + ol

Then .
x(t) = z(tg) —|—/ f(zX,s) As, t € [to, to + o]r,
to

and, by Theorem 4.1,
¢
() =2 (to) + [ f(xi.,s")dg(s), t € [to,to+ o]
to
Since f(z%.,s*) = f(x%,s*) for every s € T, we can use Theorem 4.2 to conclude that
¢
() =z (to) + [ flzk,s")dg(s), tE [to,to + Tl
to
Conversely, assume that y satisfies

y(t) = y(to) + t f(ys;s7)dg(s), t € [to,to + o].
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Note that g is constant on every interval («, 8], where 8 € T and o = sup{r € T;7 < }. Thus y has the
same property and it follows that y = z* for some z : [ty — r,to + o]y — B. Using Theorem 2.2, it is easy
to see that z is continuous on [tg — r,to + o]r. By reversing our previous reasoning, we conclude that x
satisfies (4.1) and (4.2). O

Example 4.4. There is a fairly large number of papers devoted to delay dynamic equations of the form
22 (t) = h(t, 2(t), 2(m1 (1)), .., 2(7(1))), (4.3)

where 7, : T — T are functions corresponding to the delays, i.e. 7;(¢t) < t for every t € T and every
i=1,...,k, and where the function t — h(t,z(t), z(11(t)), ..., z(7%(t))) is rd-continuous whenever z is a
continuous function.

Suppose that the delays are bounded, i.e. there exists a constant r > 0 such that t —r < 7;(¢) <t, or
equivalently —r < 7;(t) — ¢ < 0. Then it is possible to write (4.3) in the form

2B (t) = f(af,t)
by taking
f(y,t) = h(t,y(0),y(m () —1),...,y(7(t) — 1))

for every y : [-r,0] — R™. Also, if x is continuous on [ty — 7, to + o], then the function ¢ — f(z},t) is
rd-continuous on [tg, to + o]T.
An important special case is represented by linear delay dynamic equations of the form

k
22(t) =Y pi(t)x(ni(t)) + a(t),
i=1
where ¢, p1,...,p and 71, ..., 7 are rd-continuous functions on [tg, to+o]r. The corresponding functional

dynamic equation is
2B (t) = f(at,t),

where i
fy,t) = Zpi(t)y(n(t) —t)+q(t)
i=1
for every y : [—r,0] — R™. Again, we see that ¢ — f(x},t) is rd-continuous on [tg, o + o]r whenever z is
continuous on [ty — r,tg + o]r. Moreover, for each pair of functions y, z : [—r,0] — R™, we have
k k
1 yst) = F (201 < D a0 (y(malt) — 1) = 2(7i(t) = )| < <Z Ipi(t)||> 1y = 2lloc < Llly — 2lloo

i=1 i=1

with

k
L= swp > lni(0)l,

t€lto,totolr ;1

i.e. f is Lipschitz-continuous in the first variable.
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5 Existence-uniqueness theorems

The following existence-uniqueness theorem for generalized ordinary differential equations was proved
in [6], Theorem 2.15.

Theorem 5.1. Assume that X is a Banach space, O C X an open set, and F : O X [to,tg + 0] = X
belongs to the class F(O x [to,to + o], h), where h : [to,to + o] — R is a left-continuous nondecreasing
function. If xg € O is such that xo+ F(xo,to+) — F(xo,t0) € O, then there exists a § > 0 and a function
x : [to, to + 6] = X which is a unique solution of the generalized ordinary differential equation
j—i = DF(z,t), x(ty) = xo.

Remark 5.2. An estimate for the value § which corresponds to the length of interval where the solution
exists can be obtained by inspection of the proof of Theorem 2.15 in [6]. Let B(wzo,r) denote the
closed ball {x € X, ||z — zo| < r}. Then we find that 6 € (0,0] can be any number such that
B(zo,h(to + ) — h(to+)) C O and h(tg + ) — h(to+) < 1. (Note that the proof in [6] assumes that
h(to + d) — h(to+) < 1/2, but a careful examination reveals that h(tg + 0) — h(to+) < 1 is sufficient).

We now use the previous result to obtain an existence-uniqueness theorem for measure functional
differential equations.

Theorem 5.3. Assume that X is a closed subspace of G([tog — r,to + o],R™), O is an open subset
of X with the prolongation property, P = {xy; © € O, t € [to,to + o]}, g : [to,to + 0] = R is a
left-continuous nondecreasing function, f : P X [to,to + o] — R™ satisfies conditions (A), (B), (C). Let
F : O x [to,to + 0] = G([to — r,to + o], R™) be given by (3.3) and assume that F(z,t) € X for every
x €0, t € [ty,to + 0]. If § € P is such that the function

o(t) = B(t —to), t € [to —r,tol,
¢(0) + f(,t0)ATg(to), t € (to,to+ o]

belongs to O, then there exists a 6 > 0 and a function y : [to — r,to + d] — R™ which is a unique solution
of the measure functional differential equation

v = slio) + [ ) dols)

Yty = - 0

Proof. According to Lemma 3.6, the function F' belongs to the class F(O x [a, b], h), where
h(t) = (M + L)(g(t) — g(to))-

Further, let

¢(0)7 v e [to,to-‘r(f].

It is clear that o € O. We also claim that o+ F'(xg, to+) — F(xo,t0) € O. First, note that F(xg,t9) = 0.
The limit F(zo,to+) is taken with respect to the supremum norm and we know it must exist since F'
is regulated with respect to the second variable (this follows from the fact that F € F(O x [a,b], h)).
Thus it is sufficient to calculate the pointwise limit F(zg,to+)() for every ¢ € [tg — r,to + o]. Using
Theorem 2.2, we obtain

2ol0) = {(;5(19 —ty), V€ [to —1,to),

0, tE[to—’l‘,to],

F(zo,to+) (V) = {f(fb, to)ATg(ty), te (to,to+ o
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It follows that zg + F(xg,to+) — F(zo,t0) = z € O.
Since all the assumptions of Theorem 5.1 are satisfied, there exists a § > 0 and a unique solution
x : [to,to + 0] = X of the generalized ordinary differential equation

dx

& = DF(@.1), x(t) = zo. (5.1)

According to Theorem 3.9, the function y : [tg — r,tg + J] given by

_ Ja(to)(®), to—r <9 <to,
v = {x(ﬂ)(ﬁ), to <V <ty+4

is a solution of the measure functional differential equation

y(t) = y(to) + \ f(ysas) dg(S),
Yty = &

This solution must be unique; otherwise, Theorem 3.8 would imply that x is not the only solution of the
generalized ordinary differential equation (5.1). O

Remark 5.4. Since the assumptions of Theorem 5.3 might look complicated, we mention two typical
choices for the sets X, O and P:

e g(t) =t for every t € [to,t0 + o], X = C([to — r,to + o],R™), B C R™ is an open set, O =
C([to = ryto + o], B), P = C(|-r,0], B). Both conditions F(z,t) € X and z € O from Theorem 5.3
are always satisfied (by Theorem 2.2, F(x,t) is a continuous function and therefore F(xz,t) € X).

e X =G([to—r,to+0],R™), B C R" is an open set, O = G([to —r,to+0], B), P = G([-r,0], B). The
condition F(z,t) € X from Theorem 5.3 is always satisfied (by Theorem 2.2, F'(x,t) is a regulated
function and therefore F(z,t) € X). The condition z € O reduces to ¢(0) + f(¢,t0)ATg(ty) € B.
Note that if

y(t) = ylto) + / £ (s 5) dg(s),

then y(to+) = ¢(0) + f(¢,to)ATg(to). In other words, the condition ensures that the solution does
not leave the set B immediately after time %g.

In both cases, we can use Remark 5.2 to obtain an estimate for the value § which corresponds to the
length of interval where the solution exists. Assume there exists a p > 0 such that ||y — ¢(t)|| < p implies
y € B for every t € [—r,0] (in other words, a p-neighborhood of ¢ is contained in B). Since we have

h(t) = (M + L)(g(t) — g(to)),
we see that § € (0,0] can be any number such that

min(1, p)

glto +8) — glto) < S0,

We now prove an existence-uniqueness theorem for functional dynamic equations (cf. [14], [16]).
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Theorem 5.5. Let [to—r,to+0]r be a time scale interval, tg € T, B C R™ open, C = C([to—r, to+o]r, B),
P ={yf;y € Ct € [to,to + 0]}, f: P X [to,to + olr = R™ a bounded function, which is Lipschitz-
continuous in the first argument and such that t — f(y;,t) is rd-continuous on [tg,to + olr for every
yeC. If ¢ : [to — r,tolr — B is a continuous function such that (to) + f(o7,,to)p(to) € B, then there
exists a 6 > 0 such that & > p(tg) andto+6 € T, and a function y : [to—r,to+0]r — B which is a unique
solution of the functional dynamic equation

y2(t) = fyi.t), tE [t to+7],
y(t) = o(t), te€lfto—rtolr.

Proof. Let X = {y*; y € C([to—7,to+o]r,R™)}, O = {y*; y € C}, and g(t) = t* for every ¢ € [to, to+0].
Note that C([to—r, to+0o]r,R™) is a closed (Banach) space and the operator T' : C([to—r, to+o]1, R") = X
given by T'(y) = y* is an isometric isomorphism; it follows that X is a closed subspace of G([to — 7, to +
o],R™). The function F : O X [tg,to + o] = G([to — r,to + 0], R™) given by (3.3) satisfies F(x,t) € X
for every xz € O, t € [to,to + o]. Indeed, by definition (3.3), we see that F(z,t) is constant on [tg — 7, to]
and on every interval (o, 3) C [to,to + 7] which contains no time scale points (because g is constant
on such intervals). The function g is left-continuous, and it follows from Theorem 2.2 that F(z,t) is
left-continuous on [tg, to + o] and right-continuous at all points of [tg, to + o] where g is right-continuous,
i.e. at all right-dense points of [tg,tg + r]r. Thus F(z,t) must have the form y* for some rd-continuous
function y : [tg — r,to + o]r — R™ and F(x,t) € X. It is also clear that O is an open subset of X and
has the prolongation property.

Let f*(y,t) = f(y,t*) for every y € P and t € [tg,t9 + o]. Consider an arbitrary y € O. Since
t — f(y,t) is rd-continuous on [tg, to + olr, the integral f:oﬁg f(ys, t) At exists. Using Theorem 4.1 and
Theorem 4.2, we have

to+o to+o to+o to+o
ty A - t* * d - ty * d = * Ty d 9
/to [y, t)At /to f(ye, ") dg(t) /to [y, t7) dg(t) /to f*(ye, 1) dg(t)

i.e. the last integral exists. Since A*g(to) = u(to) and ¢(to) + f(¢},,to)u(to) € B, it follows that the
function

Z(t) — ¢;€k0(t - to), te [to -, to],
61, (0) + f(#7,,t0) At g(to), t € (to,to + 0]

belongs to O. Therefore the functions f*, g and ¢; satisfy all assumptions of Theorem 5.3, and there
exists a 0 > 0 and a function w : [ty — r,ty + 0] — B which is the unique solution of

t
() = ulto) + / £ (e, 5)dg(s),1 € [tor to + 0]
to
Ut, = ¢2<0'
By Theorem 4.3, u = y*, where y : [to — 7, to + d]r — B is a solution of

yA(t) = f(y:’t)’ ﬁE[to,to-i-é}
y(t) = o(t), te [to—rtolr.

Without loss of generality, we can assume that 0 > u(to); otherwise, let y(o(to)) = é(to) + f(o7,, to)u(to)
to obtain a solution defined on [ty — r,tg + u(to)]r- Again by Theorem 4.3, it follows that the solution y
is unique. O

Remark 5.6. Similarly to the previous existence-uniqueness results, we can estimate the value of §
which corresponds to length of interval where the solution exists. Assume there exists a p > 0 such that
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lly —o(t)|| < p implies y € B for every t € [to — r, to]r (in other words, a p-neighborhood of ¢ is contained
in B). By Remark 5.4, we know that ¢ € (0,0] can be any number such that

min(1, p)

g(to + ) —g(to+) < ML

where M is the bound and L is the Lipschitz constant for the function f on P X [to,to + o). In our
particular case, we have g(t) = t* for every ¢ € [to,to + o]. Since g(to +0) = to + 0 and g(to+) = o(to),

we obtain

min(1, p)
5 t —_——
< plto) + o7

6 Continuous dependence results

In this section, we use an existing continuous dependence theorem for generalized ordinary differential
equations to derive continuous dependence theorems for measure functional differential equations and for
functional dynamic equations on time scales.

We need the following proposition from [8], Theorem 2.18.

Theorem 6.1. The following conditions are equivalent:
1. A set A C G([a, B],R™) is relatively compact.

2. The set {z(a);x € A} is bounded and there is an increasing continuous function 1 : [0, 00) — [0, 00),
1(0) = 0 and an increasing function K : [a, f] = R such that

lz(t2) — z(t)ll < n(K(t2) — K(t1))
foreveryx € A, a <t; <ty <p.

The following continuous dependence result for generalized ordinary differential equations is a Banach
space version of Theorem 2.4 from [7]; the proof for the case X = R™ from [7] is still valid in this more
general setting.

Theorem 6.2. Let X be a Banach space, O C X an open set, and hy, : [a,b] — R, k € Ny, a sequence
of nondecreasing left-continuous functions such that hy(b) — hi(a) < ¢ for some ¢ > 0 and every k € Ny.
Assume that for every k € Ny, Fy, : O x [a,b] = X belongs to the class F(O X [a,b], hy,), and that

lim Fy(x,t) = Fo(z,t), €0, t€]lab]

k—oc0
klim Fy(x,t+) = Fo(z,t+) x €O, t € [a,b).
—00
For every k € N, let xy, : [a,b] — O be a solution of the generalized ordinary differential equation

di = DFk(J}, t).
dr

If there exists a function xq : [a,b] = O such that limy_, oo 2 (t) = xo(t) uniformly for t € [a,b], then xg

s a solution of
d
ﬁ = DFy(x,t), t€ |a,b].
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It should be remarked that Theorem 2.4 in [7] assumes that the functions F}, are defined on Ox (=T, T),
where [a,b] C (—T,T), and similarly the functions hy are defined in the open interval (—7T,T'). However,
it is easy to extend the functions defined on [a, b] to (=T, T) by letting Fj(x,t) = F(x,a) for t € (=T, a),
Fy(z,t) = Fg(z,b) for t € (b,T), and similarly for hjy. Note that the extended functions Fj, now belong
to the class F(O x (=T,T), ht), as assumed in [7].

We are now ready to prove a continuous dependence theorem for measure functional differential
equations.

Theorem 6.3. Assume that X is a closed subspace of G([to — r,to + o], R™), O is an open subset of X
with the prolongation property, P = {ys; y € O, t € [to,to + 0]}, g : [to,to + 0] = R is a nondecreasing

left-continuous function, and fy : P X [tg,to + o] = R™, k € Ny, is a sequence of functions which satisfy
the following conditions:

1. The integral f;ﬁa fe(ye, ) dg(t) exists for every k € Ny, y € O.

2. There exists a constant M > 0 such that

[fe(y, )l < M
for every k € N, y € P and t € [tg, to + o).

3. There exists a constant L > 0 such that

ey, t) = fr(z, D)l < Llly — 2lloo
for every k €N, y,z € P and t € [ty,to + o).

4. For every y € O,

lim ‘/t fk(ys75) dg(S) fO(y578> dg(8>

t
ko0 - to
uniformly with respect to t € [to,to + o].
5. For every k e N, x € O, t € [to,to + o], the function Fy(z,t) : [to — r,to + o] = R™ given by
0, to —r < 9 <o,
F(z,t)(¥) = fti fe(xs,8)dg(s), to<I<t<ty+o,
fti fe(zs,8)dg(s), t<I<tyg+o.

is an element of X.

Consider a sequence of functions ¢ € P, k € Ny, such that img_,o0 ¢ = ¢o uniformly on [—r,0]. Let
yr € O, k € N, be solutions of

u(t) = wr(to) + | fe((yx)s,s)dg(s), t€ [to,to+ 0],

to
WUr)te = Ok

If there exists a function yo € O such that limg_,00 Y = Yo on [to,to + o], then yo is a solution of

vo(t) = wolto) + [ fol(yo)s,s)dg(s), t€ [to,to+ 0],

to
(Yo)te, = o
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Proof. The assumptions imply that for every x € O, limy_, o0 Fi(z,t) = Fo(x,t) uniformly with respect
to t € [to,to+ o). By the Moore-Osgood theorem, we have limy_,o Fy(z,t+) = Fy(z,t+) for every z € O
and t € [tg,to + o). Also, since X is a closed subspace, we have Fy(z,t) € X.

It follows from Lemma 3.6 that Fj, € F(O x [to,to + 0], h) for every k € N, where

h(t) = (L + M)(g(t) — g(to)), ¢ € [to,to + o].

Since limy o0 Fi(z,t) = Fo(z,t), we have Fy € F(O X [to,to + o], h).
For every k € Ny, t € [tg,to + o], let

ye(9), O € [to — r,t],
z(t) () =
yi(t), U € [t,to +ol.
According to Theorem 3.8, the function xy, where k € N, is a solution of the generalized ordinary

differential equation
dz

dr
When k£ € N and tg < t1 <ty <ty+ o, we have

= DFk(Z‘, t).

to

Fr((yr)s, 5)dg(s)|| < M(g(t2) — g(t1)) < n(K(t2) — K(t1)),

nmm—mmm{

t1

where 7(t) = Mt for every t € [0,00) and K(t) = g(t) + t for every ¢ € [to,to + o]; note that K is
an increasing function. Moreover, the sequence {yi (o)}, is bounded. Thus we see that condition 2
from Theorem 6.1 is satisfied and it follows that {y}72, contains a subsequence which is uniformly
convergent in [tg,to + o]. Without loss of generality, we can denote this subsequence again by {yx}72 ;.
Since (yx), = ¢k, we see that {yx}7, is in fact uniformly convergent in [to — 7, to + o).
By the definition of xzj, we have
lim xg(t) = zo(t)
k—oo

uniformly with respect to ¢ € [to, to + o]. It follows from Theorem 6.2 that x is a solution of

d
L~ DFy(a,t)
dr

on [tg,tg + o]. The proof is finished by applying Theorem 3.9, which guarantees that yo satisfies

yolt) —yww+Zﬁﬂm%@®@7tﬂm%+%
(Yo)i, = ¢o-
O

Remark 6.4. We remind the reader that although assumption 5 in the previous theorem looks compli-
cated, it is automatically satisfied if either g(t) = ¢ for every t € [tg, to+0] and X = C([to—r,to+0],R™),
or if X = G([tg — r,to + o], R™); see Remark 5.4.

Using the previous result, we prove a continuous dependence theorem for functional dynamic equations
on time scales.

Theorem 6.5. Let [to—r,to+0]r be a time scale interval, tg € T, B C R™ open, C = C([to—r, to+o]r, B),
P ={y;;y e Ct € to,to+ a]}. Consider a sequence of functions fr : P X [to,to + ol — R", k € Ny,
such that the following conditions are satisfied:
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1. For every y € C and k € Ny, the function t — fi(y;,t) is rd-continuous on [to,to + o]r.

2. There exists a constant M > 0 such that

1fx(y, ) < M
for every k € Ng, y € P and t € [to — r,to + o]r.

3. There exists a constant L > 0 such that

I fi(y,t) = fr(z: )l < Ly — 2]l
for every k € No, y,z € P and t € [tg — r,tg + o]T.

4. For every y € C,

k—o0

¢ t
lim fe(ys,s)As = / folys, s)As
to to
uniformly with respect to t € [to,to + o]r.

Assume that ¢, € C([to — r,tolT, B), k € No, is a sequence of functions such that limg_o ¢ = ¢o
uniformly on [to — 7, to]r. Let yi, € C, k € N be solutions of

v () = fe((Wi)et), t€ [t to+olr,
yk(t) = (Z)k(t), tE[to—T,to]T.

If there ezists a function yo € C such that limg_, o yx = yo on [to, to + o1, then yo is a solution of

yo (1) = fo((We)s,s), tE [to,to+ alr,
yo(t) = ¢0(t), te[to—r,to]'ﬂ*.

Proof. Let X = {y*; y € C([to—r,to+o]r,R™)}, O = {y*; y € C}, and g(t) = t* for every ¢ € [to,to+0].
Note that O is an open subset of X and has the prolongation property. Further, let fi(y,t) = fi(y,t*)
for every k € Ny, y € P and t € [tg, to + 0. Consider an arbitrary y € O and k € Ny. Since ¢t — fi(y;,1t)
is rd-continuous on [to, %o + o]r, the integral |, ttoﬁg fr(ys, t)At exists. Using Theorem 4.1 and Theorem
4.2, we have

toto tot+o tot+o tot+o
/ Felyn ) At = / Fi(yee 47 dgt) = / Fulye, ) dg(t) = / F7 (e ) dg (1),

to to to to
i.e. the last integral exists. Using Theorem 4.1 again, we obtain

lim [ fi(ys,s)dg(s) =

k—o0 to

* t* t

i [ il 9ds = [ olues)ds = [ lus) dg(s

k—o0 to to to

uniformly with respect to t € [to,to + o]. Further, it is clear that limy_. y; = yg§ on [to,to + o], and

limy, o ¢} = ¢ uniformly on [tg — r,¢]. By Theorem 4.3, we have

t

yr(to) + t fu((Wi) s> 87) dg(s), ¢ € [to, to + o],

yr(t)

Wiy = Ok
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for every k € Ny. The functions f;, y; and ¢}, k € Ny, satisfy the assumptions of Theorem 6.3, and we
conclude that

t
W' ® = () + [ Do((00),:5) dglo). ¢ st -+,
to
(yg)to = ¢
By Theorem 4.3, it follows that yq : [to — 7, o + o]t — R™ satisfies

ye ) = fo((g)s,s), tE€ lto,to+ ol
yo(t) = ¢o(t), te[to—rtolr.

O

Remark 6.6. An inspection of the proof of Theorem 6.3 reveals that the hypothesis limy_, o yx = yo is not
necessary to conclude that {y;}3° , has a uniformly convergent subsequence. However, we need a condition
guaranteeing that the limit function belongs to O. Thus, instead of requiring that limy .. yx = yo € O,
it is possible to assume the existence of a closed set O’ C O such that y, € O’ for every k € N. Then it
follows that {yx}72, has a subsequence which is uniformly convergent to a function yo € O such that

vo(t) = wolto) + [ fol(yo)s,s)dg(s), tE€ [to,to+ o],

to
(Yo)te, = o

Similarly, in Theorem 6.5, we may assume the existence of a closed set B’ C B such that y;, takes values
in B’ for every k € N, and omit the condition limg_, s yx = %o-

7 Periodic averaging theorems

Averaging theorems provide a useful tool for approximating solutions of a non-autonomous equation by
solutions of an autonomous equation whose right-hand side is obtained by averaging the original right-
hand side with respect to ¢ (see e.g. [20]). The approximation is especially good in the case when the
original right-hand side is periodic with respect to ¢.

In this section, we use the following periodic averaging theorem for measure functional differential
equations from [17] to obtain a new theorem on periodic averaging for functional dynamic equations.

Theorem 7.1. Let ey >0, L >0, T >0, B C R", X = G([-r,0],B). Consider a pair of bounded
functions f : X x[0,00) = R™, g: X x[0,00) X (0,e9] = R™ and a nondecreasing left-continuous function
h:[0,00) — R such that the following conditions are satisfied:

1. The integral fé) fys,t) dh(t) exists for every b >0 and y € G([—r,b], B).
2. f is Lipschitz-continuous in the first variable.

3. f is T-periodic in the second variable.

4. There is a constant oo > 0 such that h(t +T) — h(t) = « for every t > 0.
5. The integral

folx) = %/0 f(z,s)dh(s)

exists for every x € X.
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Let ¢ € X. Suppose that for every € € (0,eq], the initial-value problems

8
—~

~
=

x(O)—i—e/O F@e,5) dh(s)+52/0 (s, 5,) dh(s), T0 = 0,

t
y(0) +6/0 Jo(ys)ds, yo=¢

<

—~
~

N

have solutions x., y. : [—r,L/e] — B. Then there exists a constant J > 0 such that
lze(t) —ye ()] < Je
for every € € (0,e0] and t € [0, L/e].

To be able to speak about periodic functions on time scales, we need the following concept of a periodic
time scale.

Definition 7.2. Let T' > 0 be a real number. A time scale T is called T-periodic if ¢ € T implies t+71 € T
and p(t) = pt+T).

We now proceed to the periodic averaging theorem for functional dynamic equations on time scales.

Theorem 7.3. Assume that T > 0, T is a T-periodic time scale, to € T, eg > 0, L > 0, B C R".
Consider a pair of bounded functions f : G([—r,0], B) X [tg,00)r — R", g : G([-r,0], B) X [tog,00)T X
(0,e0] = R™ such that the following conditions are satisfied:

1. For every b >ty and y € G([to — r,b], B), the function t — f(y:,t) is requlated on [to, b]T.
2. For every b >ty and y € C([to — r,b]r, B), the function t — f(y;,t) is rd-continuous on [to, b]r.
8. f is Lipschitz-continuous in the first variable.

4. f is T-periodic and rd-continuous in the second variable.

Denote
1 to+T
fal) =7 [ Swods yeGl-n0.5)
to
Let ¢ € C([to — r,to]T, B). Suppose that for every e € (0,e¢], the functional dynamic equation
22(t) = ef(@).t) +e%g(ay te),
LL‘(t) = ¢(t)7 te [to -, to]jr

has a solution x. : [to — r,to + L/e|lr — R™, and that the functional differential equation

t
W) = i) += [ o) s
0
Yoo = ¢
has a solution y. : [to — r,to + L/e] — R™. Then there exists a constant J > 0 such that
lze(t) =y (Bl < Je,

for every e € (0,e0] and t € [to,to + L/e]r.
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Proof. Without loss of generality, we can assume that to = 0; otherwise, consider a shifted problem with

the time scale T = {t — to;¢ € T} and the right-hand side f(x,t) = f(z,t + o).
For every t € [0,00), y € G([—7,0], B) and ¢ € (0,&¢], let

[y, t) = f(y,t") and g*(y,t,e) = g(y,t",€).

Also, let h(t) = t* for every t € [0,00). It follows directly from the definition of h and the fact that T is
T-periodic that
ht+T)—h(t)=T, t>0.

By Theorem 4.3, x satisfies

xi(t) = xZ(O)—i—E/ f*((x:)s,s)dh(s)—kez/ 9 ((z2)s,s,e)dh(s), te€0,L/e]
0 0
(x2)o = ¢~

for every € € (0,&p]. From Theorem 4.1, we have

T T
fol) =7 [ 1wds= 7 [ @), yec(-ro.5).

For every b € [0,00)r and y € G([—r,b], B), the function u(t) = f(y,t) is regulated on [0,d]r.
Consequently, there is a sequence of continuous functions u,, : [0,b]r — R™, n € N, which is uniformly
convergent to u. It follows that {u)}%2 ; is uniformly convergent to u* on [0,b]. Using Theorem 4.1 and
uniform convergence theorems for the Kurzweil-Stieltjes and A-integrals, we obtain

b b b b b
/0 u®At = lim | un(OAt= lim | w’(t)dh(t) = / w*(t) dh(t) = /0 Flyee, t*) dh(t).

Theorem 4.2 implies the existence of fob F*(ys, t) dh(t).
Since f* and g* satisfy all assumptions of Theorem 7.1, there exists a constant J > 0 such that

[22(t) —ye(@)[| < Je,
for every € € (0,&0] and ¢ € [0,L/e]. The proof is finished by observing that z(t) = z.(¢t) for t €
[0, L/E]'[. O
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