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Abstract

The present paper deals with existence and uniqueness of global mild solutions for
a new model of Navier-Stokes equations on R2 subjected to impulse effects at variable
times. By using the framework of impulsive/nonautonomous dynamical systems we are
able to consider impulse effects in the system as well relax conditions on the external
forcing term which is, in our case, non-linear and explicitly time-dependent, extending
previous results on the specialized literature. Moreover, we also introduce sufficient
conditions on the structure of the impulse set which ensure dissipativity for the system,
i.e., uniform boundedness of global solutions starting in bounded sets, which is an
indicative to the existence of objects as attractors.

1 Introduction

The Navier-Stokes equations, NSEs for short, are a system of evolution partial differen-
tial equations derived from Newton’s laws of motion for a continuous distribution of matter
in the fluid state characterized by an inability to support shear stresses [13]. These equations
allow us to determine the velocity field as well the inner pressure of fluids confined on regions
of the Euclidean space. They are used as a model to describe plenty of different physics phe-
nomena as water flow, ocean currents, sound propagation in viscous medium, circulation of
nervous impulses throughout the nervous system, among many others. Currently the NSEs
are of fundamental importance in both: theoretical and applied point of view. They were
the cornerstone of the development of some relevant aspects of mathematical analysis and
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DF, 70910-900, Brazil. E-mail: jgmesquita@unb.br. Supported by FAPESP grant 2012/08473-2.
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nonlinear differential equations, and became crucial in fields as petroleum industry, plasma
physics, meteorology, thermo-hydraulics, among others, see [1,7,13,16–18,22,24,26,27] and
the references therein for a relevant list of applicability. Due to this fact, these equations
have been attracted the attention of several important scientists since the middle of the 19th
century.

On the other hand, it is well known that many relevant phenomena, including some from
fluid dynamics, have their behavior drastically modified somehow after an instantaneous
change on their state, which may introduce in the model several discontinuities. Properties
as velocity, density and viscosity are discontinuous at interfaces between different fluids as
presented in [21]. Despite of the extensive literature on NSEs and the recents progress on the
impulsive dynamical systems, surprisedly models from fluid dynamics incorporating impulse
effects on its structure are somewhat scarce. A model of NSEs incorporating impulses makes
sense physically and allows to describe more precisely some of the phenomena modeled
by these equations, mainly when there is an instantaneous change of conditions caused by
intrinsic inner/outer factors of the system. Motivated by this fact, we investigate the global
well posedness, in the sense of Hadamard, as well the large time behavior of mild solutions
of the nonautonomous 2D Navier-Stokes equations with impulses at variable times:

∂u

∂t
+ q(t)(u · ∇)u− ν∆u+∇p = f(t, u), (t, x) ∈ (0,+∞)× Ω,

div u = 0, (t, x) ∈ (0,+∞)× Ω,

u = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(0, ·) = u0 ∈ V,
I : M ⊂ V→ V,

(1.1)

where Ω is a bounded smooth domain in R2, the vector function u = (u1, u2) =
(u1(t, x), u2(t, x)) denotes the velocity field of a newtonian fluid filling the domain Ω, p =
p(t, x) is its scalar pressure and ν > 0 its viscosity. We shall assume that q = q(t) is a
bounded function, maybe a periodic scalar function, and f = (f1, f2) = (f1(t, u), f2(t, u)) is
the external force applied to the fluid which is a time dependent nonlinear vector function
and is not necessarily continuous (see Section 3). The space V is the closure of the set
{v ∈ (C∞0 (Ω))2 : div v = 0 in Ω} in H1

0(Ω) as we explain in the sequel. The set M , called
the impulsive set, is a non-empty closed subset of V and the function I, called the impulse
function, is supposed be continuous.

The system (1.1) is considered as the usual impulsive systems, that is, we have an im-
pulsive differential system, an impulsive set and an impulse function. The impulse function
is responsible by the discontinuities of the system which occur when the solution of the
differential equation hits the impulsive set. In our case, the impulses represent the abrupt
changes in the velocity field. A theory that we may use to study a system of type (1.1) is
the theory of impulsive dynamical systems which has been increased considerably due to
its applicability on real-world problems in physics, technology and biology. The reader may
consult the works [2–5, 11, 12, 14, 29, 30] as recent trends on this subject. Furthermore, in

2



the context of impulsive dynamical systems, we may mention the work [9] that presents suf-
ficient conditions for impulsive sets and impulse functions in order to the impulsive system
possesses a well behavior in its evolution.

Besides of the impulse actions, we relax the regularity on the nonlinearity f which does
not need to be necessarily continuous since all the fluids in the environment are multi-
phase, that is, property variables are discontinuous at the interfaces between different phases,
see [21]. We also incorporate a nonautonomous weight on the convective acceleration term
in the model (1.1), which from a dynamical system point of view allows to wonder about
the existence of periodic (almost periodic, quasi periodic, recurrent, pseudo recurrent, etc.)
solutions as well averaging principles for this nonautonomous NSE. When the model (1.1) is
written in the abstract form, this nonautonomous convective term gives rise to a nonlinear
nonautonomous operator, which is of a different nature from the forcing term f on the right
hand side, and the deep understanding of this operator is the cern of the existence of the
special solutions mentioned above. This will be the subject of further investigation.

The system (1.1) without impulse conditions was studied in the classical monograph [8],
where f = f(t, x) is continuous in the t variable.

In order to study the existence of solutions as well the topological dynamics of system
(1.1), we study initially the existence of solutions for its associated non-impulsive system

∂u

∂t
+ q(t)(u · ∇)u− ν∆u+∇p = f(t, u), (t, x) ∈ (0,+∞)× Ω,

div u = 0, (t, x) ∈ (0,+∞)× Ω,

u = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(0, ·) = u0 ∈ V.

(1.2)

Once obtained the well posedness of system (1.2), we analyse system (1.1).
In what follows, we describe the organisation of the paper.
In the first part, namely Section 2, we deal with the following abstract nonautonomous

Navier-Stokes equations
du

dt
+ Au+ B(σ(t, ω))(u, u) = F (t, σ(t, ω), u), t ∈ J,

u(0) = u0 ∈ V,
(1.3)

where the operators B and F are non-stationary, driven by a dynamical system in a Hilbert
space V , and J ⊂ R is an interval which contains 0. At first, we establish sufficient conditions
to obtain the existence and uniqueness of mild solutions (Definition 2.1) for the system (1.3),
see Theorem 2.2. In the sequel, we present Theorem 2.4 that exhibits conditions for the mild
solution of (1.3) to be prolonged on R+. In Theorem 2.5, we show that system (1.3) generates
a cocycle and in Theorem 2.7 we prove that system (1.3) is bounded dissipative.

Section 3 deals with the existence of mild solution and pressure to the non-impulsive
system (1.2). We show that system (1.2) is a particular case of system (1.3). For that, we use
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the abstract theory of nonautonomous systems presented in [8,25] which is very meaningful
to the study of nonautonomous ordinary and partial equations due its applications. For
instance, to study the dynamics of a nonautonomous ordinary differential equation

x′ = h(t, x), (1.4)

with h : R × Z → Rn (Z ⊂ Rn is an open set), we consider the hull of h defined by
H(h) = {hτ : τ ∈ R} under the compact open topology, where hτ (t, x) = h(t + τ, x) for all
t, τ ∈ R and x ∈ Z. Now, for each g ∈ H(h) we consider the system

x′ = g(t, x) (1.5)

called the H−class along with the equation (1.4). Under additional conditions, system (1.5)
admits a unique solution defined in R, passing through a point (0, x0), for each g ∈ H(h).
Thus H(h)× R 3 (g, t) 7→ gt ∈ H(h) defines a flow on H(h) and

R× Rn ×H(h) 3 (t, x0, g) 7→ x(t, x0, g) ∈ Rn

defines a cocycle (see [8]), where x(t, x0, g) is the solution of (1.5) with initial value x0 at
time t = 0. With the aid of the flow and of the cocycle, we may obtain topological results
for system (1.4), especially when long time behavior of solutions are involved. The reader
may consult [25] for more details.

In what follows, we give the idea to rewrite the model (1.2) as an abstract evolution
equation and for this we introduce some functional spaces as well standard functional analytic
tools which can be found on classical monographs as [6, 23,26,28].

Let L2(Ω) = (L2(Ω))2 and H1
0(Ω) = (H1

0 (Ω))2 be the Lebesgue and Sobolev spaces,
respectively endowed with the inner products

(u, v)L2 =
2∑
j=1

∫
Ω

uj vj dx, u = (u1, u2), v = (v1, v2) ∈ L2(Ω),

and

(u, v)H1
0

=
2∑
j=1

∫
Ω

∇uj · ∇vjdx, u = (u1, u2), v = (v1, v2) ∈ H1
0(Ω),

and norms ‖ · ‖L2 = (·, ·)1/2

L2 and ‖ · ‖H1
0

= (·, ·)1/2

H1
0

.

We define
E =

{
v ∈ (C∞0 (Ω))2 : div v = 0 in Ω

}
,

H = closure of E in L2(Ω) and V = closure of E in H1
0(Ω).

We also consider the Leray’s ortogonal projection Π : L2(Ω) → H. Recall that for each
u ∈ L2(Ω) there is a unique ϕ ∈ H1(Ω) (up to an additive constant for ϕ) such that
Πu = u−∇ϕ, see [15].
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It is well known that
(
H, (·, ·)L2

)
and

(
V, (·, ·)H1

0

)
are Hilbert spaces, and by Poincaré’s

inequality V
d
↪→ H, i.e., V is a dense subspace of H and the inclusion i : V → H is

continuous.
Let H′ and V′ be the topological dual spaces of H and V, respectively. By duality

we have H′
d
↪→ V′ and the inclusion i∗ : H′ → V′ is the adjoint operator of i. By Riesz

Representation Theorem’s we can identify H and H′ in order to write

V
d
↪→ H ≡ H′

d
↪→ V′,

i.e., each space is dense in the following one and the inclusion maps are continuous. As a
consequence of the previous identifications, the scalar product in H, (f, u)L2 , of f ∈ H and
u ∈ V, is the same as the duality product between V′ and V, 〈f, u〉V′,V, i.e.,

(f, u)L2 = 〈f, u〉V′,V, for all f ∈ H and for all u ∈ V.

Moreover, for each u ∈ V the functional

v ∈ V 7→ ν(u, v)H1
0
∈ R

is an element of V′ and by Lax-Milgran’s Theorem there exists an isomorphism A : V→ V′

such that
〈Au, v〉V′,V = ν(u, v)H1

0
, for all u, v ∈ V.

Let A|H : D(A|H) ⊂ H → H be the H-realisation of A, i.e., the linear operator defined as
D(A|H) = {u ∈ V : Au ∈ H} and A|Hu = Au for u ∈ D(A|H).

We define the Stokes operator on Ω as

A = ΠA|H,

that is,
Au = −νΠ∆u for all u ∈ D(A|H).

Assuming regularity of the boundary ∂Ω, it is well known [19,28] that D(A) = {u ∈ H2(Ω)∩
H : u = 0 in ∂Ω}.

Now, for each t ∈ R+, we define b(t) : V ×V ×V→ R by

b(t)(u, v, w) = q(t)
(
Π(u · ∇)v, w

)
L2 = q(t)

(
2∑

i,j=1

∫
Ω

Π
(
ui
∂vj
∂xi

)
wjdx

)
.

Assuming proper conditions on f (see Section 3), the Nemitskii operator is well defined
as a map F (t) : V→ V′, F (t)(u) = Πf(t, u), and we can rewrite model (1.2) as:

d

dt
(u(t), v)L2 + (Au(t), v)L2 + b(t)(u(t), u(t), v) = (F (t)(u(t)), v)L2 , v ∈ V, t > 0,

u(0) = u0 ∈ V.
(1.6)
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System (1.6) is the “weak formulation” of the model (1.2). We also can rewrite this formu-
lation in a more conveniently fashion:

du

dt
+ Au+B(t)(u, u) = F (t)(u), in V′, t > 0,

u(0) = u0 ∈ V,
(1.7)

where B(t) : V ×V→ V′ is the bilinear operator defined by

〈B(t)(u, v), w〉V′,V = b(t)(u, v, w), for all u, v, w ∈ V.

In the next step, we introduce the H−class along with the equation (1.7), represented
byM = H(B,F ) = {(Bτ , Fτ ) : τ ∈ R+}. Consequently, we are able to define the mappings
B :M→ L 2(V,E) and F : R+ ×M×V → E, where E = Xγ for some −1

2
< γ < 0, see

Section 3. These mappings allow us to rewrite system (1.7) into the sytem
du

dt
+ Au+ B(σ(t, ω))(u, u) = F(t, σ(t, ω), u), t > 0,

u(0) = u0 ∈ V,
(1.8)

which is a particular system of type (1.3). Thus, using the results presented in Section 2,
we obtain existence and uniqueness of a global mild solution of system (1.8), see Theorem
3.4. Theorem 3.5 shows that system (1.8) is bounded dissipative and generates a cocycle.
Using the projection of Leray, we obtain the existence of a mild solution and a pressure to
the system (1.2), see Theorem 3.6.

Finally, in Section 4, we deal with the impulsive 2D Navier-Stokes equations (1.1). Using
the previous construction to obtain (1.8), we get the abstract form of (1.1) given by

du

dt
+ Au+ B(σ(t, ω))(u, u) = F(t, σ(t, ω), u), t > 0,

u(0) = u0 ∈ V,
I : M → V,

(1.9)

and we construct an impulsive cocycle for this system using the theory of nonautonomous
impulsive dynamical systems. We also prove that system (1.9) is bounded dissipative and
we present a convergence result for the impulsive cocycle generated from system (1.9), see
Theorem 4.2.

2 The abstract nonautonomous Navier-Stokes equa-

tions

Let (H, (·, ·)H) be a separable real or complex Hilbert space and A : D(A) ⊂ H → H
be a self-adjoint operator such that, for some a > 0, satisfies

Re (Au, u)H > a‖u‖2
H , u ∈ D(A). (2.1)
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It follows by [7, Lemma 6.20] that −A generates an analytic semigroup {e−At}t>0 ⊂ L (H)
satisfying

‖e−At‖L (H) 6 Ke−at, t > 0, (2.2)

where L (H) is the space of bounded operators in H equipped with the usual norm, and
a > 0 is the constant occurring in (2.1).

Assuming that 0 ∈ ρ(A), we consider the scale of Hilbert spaces Xα = D(Aα) of fractional
powers of the operator A endowed with the norm ‖ · ‖Xα = ‖Aα · ‖H (X0 = H). If β > α, it

is well known that Xβ d
↪→ Xα and

‖e−At‖L (Xα,Xβ) 6 c tα−β,

for t > 0 and some constant c = c(α, β).
We will also assume that there exist separable Hilbert spaces (V, (·, ·)V ) and (E, (·, ·)E)

such that V
d
↪→ H

d
↪→ E and

i) e−At ∈ L (E, V ), t > 0;

ii) There exist constants 0 < α1 < 1 and K1, K2 > 0 such that

‖e−At‖L (E,V ) 6 K1t
−α1e−at and ‖e−At‖L (V,V ) 6 K2e

−at t > 0. (2.3)

In the concrete case V = X
1
2 and E = Xγ, for some −1

2
< γ < 0, see Section 3.

We also denote by L 2(V,E) the space of all continuous bilinear operators B : V ×V → E
equipped with the norm

‖B‖L 2(V,E) = sup{‖B(u, v)‖E : ‖u‖V , ‖v‖V 6 1}.

We consider now a metric space (M, d) and a dynamical system (M,R, σ) onM, i.e., a
continuous map σ : R×M→M which satisfies:

i) σ(0, ω) = ω, ω ∈M;

ii) σ(t+ s, ω) = σ(s, σ(t, ω)), t, s ∈ R, ω ∈M.

Let B :M→ L 2(V,E) be a continuous map such that

‖B‖∞ = sup
ω∈M
‖B(ω)‖L 2(V,E) <∞.

In the particular case when M is compact, ‖ · ‖∞ defines a norm on C(M,L 2(V,E)) (the
space of all continuous maps H : M → L 2(V,E)) and

(
C(M,L 2(V,E)), ‖ · ‖∞

)
is a

Banach space.
Also, let us assume that for all u, v ∈ V and ω ∈M,

‖B(ω)(u, u)−B(ω)(v, v)‖E 6 ‖B‖∞(‖u‖V + ‖v‖V )‖u− v‖V , (2.4)
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and
‖B(ω)(u, v)‖E 6 ‖B‖∞‖u‖V ‖v‖V . (2.5)

Additionally we assume that

Re (B(ω)(u, v), w)E = −Re (B(ω)(u,w), v)E, u, v, w ∈ V, ω ∈M, (2.6)

which implies the orthogonality condition

Re (B(ω)(u, v), v)E = 0, u, v ∈ V, ω ∈M. (2.7)

Let X be a Banach space and J ⊂ R be an interval. A function g : J → X is called
regulated in X if g has only discontinuities of the first kind, i.e., if the lateral limits

g(t−) = lim
s→t−

g(s) and g(t+) = lim
s→t+

g(s)

exist for all t ∈ J , where they make sense. The set of all regulated functions g : J → X
will be denoted by G (J,X). The space G (J,X) equipped with the usual supremum norm
‖g‖G = sup

t∈J
‖g(t)‖X is a Banach space when J is a bounded interval. If J is unbounded, we

consider in G (J,X) the topology of the locally uniform convergence, see [20, Theorem 3.6]
for more details. We notice that g ∈ G (J,X) iff g is the uniform limit of step functions.

Now, let F : J ×M× V → E be a function satisfying the following conditions:

(C1) For each fixed t ∈ J , F (t, ·, ·) is continuous on M× V .

(C2) For each ω ∈M and u ∈ V , we have F (·, ω, u) ∈ G(J,E).

(C3) There is a bounded function M : R → R+, such that for any interval [a, b] ⊂ J , we
have ∫ b

a

|φ(s)|‖F (s, ω, u)‖Eds 6
∫ b

a

M(s)|φ(s)|ds

for all φ ∈ L1[a, b], ω ∈M and u ∈ V .

(C4) There is a bounded function L : R→ R+, such that for any interval [a, b] ⊂ J , we have∫ b

a

|φ(s)|‖F (s, ω1, u1)−F (s, ω2, u2)‖E ds 6
∫ b

a

L(s)|φ(s)|(d(ω1, ω2) + ‖u1 − u2‖V )ds

for all φ ∈ L1[a, b], ω1, ω2 ∈M and u1, u2 ∈ V .

(C5) ‖F‖1 = sup{‖F (t, ω, u)‖E : t ∈ J, ω ∈M, u ∈ V } <∞.
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Given J ⊂ R+ an interval containing 0, ω ∈ M and assuming all the conditions above,
we consider the following abstract nonautonomous Navier-Stokes system (without impulses)
in the state space V :

du

dt
+ Au+ B(σ(t, ω))(u, u) = F (t, σ(t, ω), u), t ∈ J,

u(0) = u0 ∈ V.
(2.8)

Definition 2.1. We say that a continuous function u : J → V is a mild solution of (2.8) if
u satisfies the following integral equation:

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)F (s, σ(s, ω), u(s))ds−
∫ t

0

e−A(t−s)B(σ(s, ω))(u(s), u(s))ds,

for all t ∈ J .

In the next result, we present sufficient conditions to obtain the existence and uniqueness
of a mild solution to the system (2.8).

Theorem 2.2. Let u0 ∈ V and r > 0. Then there exist positive numbers δ = δ(u0, r) > 0,
T = T (u0, r) > 0 and a function ϕ : [0, T ] × B(u0, δ) ×M → V (B(u0, δ) = {u ∈ V :
‖u− u0‖V 6 δ}) satisfying the following conditions:

i) ϕ(0, u0, ω) = u0, for all ω ∈M;

ii) ‖ϕ(t, u, ω)− u0‖V 6 r for all (t, u, ω) ∈ [0, T ]×B(u0, δ)×M;

iii) ϕ ∈ C([0, T ]×B(u0, δ)×M, B(u0, r)).

Moreover, the function u : [0, T ]→ V defined by u(t) = ϕ(t, u0, ω) is the unique mild solution
of the system (2.8).

Proof. Let δ > 0 and T > 0 be such that [0, T ] ⊂ J . Given ϕ ∈ C([0, T ]×B(u0, δ)×M, V ),
we define

Sϕ(t, u, ω) = e−Atu+

∫ t

0

e−A(t−s)g(s, ω, ϕ(s))ds,

where ϕ(s) = ϕ(s, u, ω) and g(s, ω, ϕ(s)) = −B(σ(s, ω))(ϕ(s), ϕ(s))+F (s, σ(s, ω), ϕ(s)), for
all s ∈ [0, T ], u ∈ B(u0, δ) and ω ∈M. Since functions in C([0, T ]×B(u0, δ)×M, B(u0, r))
are bounded, we can consider the distance

d∞(ϕ1, ϕ2) = sup{‖ϕ1(t, u, ω)− ϕ2(t, u, ω)‖V : 0 6 t 6 T, u ∈ B(u0, δ), ω ∈M},

for ϕ1, ϕ2 ∈ C([0, T ]×B(u0, δ)×M, B(u0, r)). Note that (C([0, T ]×B(u0, δ)×M, B(u0, r)), d∞)
is a complete metric space. For convenience, let us denote Γ(δ, T, r) = C([0, T ]×B(u0, δ)×
M, B(u0, r)) and Γ(δ, T ) = C([0, T ]×B(u0, δ)×M, V ).
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Assertion 1: S ∈ C(Γ(δ, T, r),Γ(δ, T )).

In fact, at first note that Sϕ ∈ Γ(δ, T ) for all ϕ ∈ Γ(δ, T, r). Now, let ϕ1, ϕ2 ∈ Γ(δ, T, r)
and (t, u, ω) ∈ [0, T ] × B(u0, δ) × M. By Condition (C4) there is a bounded function
L : R→ R+ such that∫ t

0

e−a(t−s)(t− s)−α1‖F (s, σ(s, ω), ϕ1(s))−F (s, σ(s, ω), ϕ2(s))‖E ds 6

6
∫ t

0

L(s)(t− s)−α1‖ϕ1(s)− ϕ2(s)‖V ds 6 Nd∞(ϕ1, ϕ2)
T 1−α1

1− α1

, (2.9)

where N = sup
s∈[0,T ]

|L(s)|.

Then, using (2.3), (2.4) and (2.9), we have

‖Sϕ1(t, u, ω)− Sϕ2(t, u, ω)‖V 6

6
∫ t

0

∥∥e−A(t−s) [B(σ(s, ω))(ϕ1(s), ϕ1(s))−B(σ(s, ω))(ϕ2(s), ϕ2(s))]
∥∥
V
ds+

+

∫ t

0

∥∥e−A(t−s) [F (s, σ(s, ω), ϕ1(s))−F (s, σ(s, ω), ϕ2(s))]
∥∥
V
ds 6

6 2‖B‖∞K1(r + ‖u0‖V )d∞(ϕ1, ϕ2)

∫ t

0

(t− s)−α1e−a(t−s)ds+K1N
T 1−α1

1− α1

d∞(ϕ1, ϕ2) 6

6

(
2‖B‖∞K1(r + ‖u0‖V )

T 1−α1

1− α1

+K1N
T 1−α1

1− α1

)
d∞(ϕ1, ϕ2). (2.10)

Hence, S ∈ C(Γ(δ, T, r),Γ(δ, T )).

Assertion 2: There are δ1 = δ1(u0, r) ∈ (0, δ) and T1 = T1(u0, r) ∈ (0, T ) such that
S : Γ(δ1, T1, r)→ Γ(δ1, T1, r).

In fact, let ϕ ∈ Γ(δ, T, r) and (t, u, ω) ∈ [0, T ] × B(u0, δ) ×M. By (2.3) and Condition
(C4), one can obtain a bounded function L : R→ R+ such that∥∥∥∥∫ t

0

e−A(t−s) [F (s, σ(s, ω), ϕ(s))−F (s, σ(s, ω), 0)] ds

∥∥∥∥
V

6

6
∫ t

0

K1(t− s)−α1e−a(t−s)‖F (s, σ(s, ω), ϕ(s))−F (s, σ(s, ω), 0)‖Eds 6

6 K1

∫ t

0

L(s)(t− s)−α1‖ϕ(s)‖V ds 6 K1N(‖u0‖V + r)
T 1−α1

1− α1

, (2.11)

where N = sup
s∈[0,T ]

|L(s)|.
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Let m(δ, T ) = sup
{
‖e−Atu− u0‖V : t ∈ [0, T ], u ∈ B(u0, δ)

}
and M = sup

s∈[0,T ]

|M(s)|,

where M is the function given by Condition (C3). Then, using (2.3), (2.5), (2.11) and
Condition (C3), we obtain

‖Sϕ(t, u, ω)− u0‖V 6
∥∥e−Atu− u0

∥∥
V

+

∥∥∥∥∫ t

0

e−A(t−s)B(σ(s, ω))(ϕ(s), ϕ(s))ds

∥∥∥∥
V

+

+

∥∥∥∥∫ t

0

e−A(t−s)F (s, σ(s, ω), ϕ(s))ds

∥∥∥∥
V

6 m(δ, T )+

∫ t

0

K1e
−a(t−s)(t−s)−α1‖B‖∞‖ϕ(s)‖2

V ds+

+

∥∥∥∥∫ t

0

e−A(t−s) [F (s, σ(s, ω), ϕ(s))−F (s, σ(s, ω), 0)] ds

∥∥∥∥
V

+

∥∥∥∥∫ t

0

e−A(t−s)F (s, σ(s, ω), 0)ds

∥∥∥∥
V

6

6 m(δ, T ) +K1‖B‖∞(‖u0‖V + r)2 T
1−α1

1− α1

+K1N
T 1−α1

1− α1

(‖u0‖V + r)+

+

∫ t

0

K1(t− s)−α1e−a(t−s)M(s)ds 6 m(δ, T ) +K1‖B‖∞(‖u0‖V + r)2 T
1−α1

1− α1

+

K1N(‖u0‖V + r)
T 1−α1

1− α1

+K1M
T 1−α1

1− α1

:= d1(u0, r, δ, T ).

Now, we note that d1(u0, r, δ, T ) → 0 as δ → 0 and T → 0. Therefore, there are
δ1 = δ1(u0, r) > 0, δ1 < δ, and T1 = T1(u0, r) > 0, T1 < T , such that d1(u0, r, δ

′, T ′) 6 r for
all δ′ ∈ (0, δ1] and T ′ ∈ (0, T1].

Assertion 3: There exist T0 = T0(u0, r) > 0 and δ0 = δ0(u0, r) > 0 such that
S : Γ(δ0, T0, r)→ Γ(δ0, T0, r) is a contraction.

Indeed, we may obtain T2 > 0 such that

2‖B‖∞K1(r + ‖u0‖V )
T 1−α1

2

1− α1

+K1N
T 1−α1

2

1− α1

< 1.

It is enough to take δ0 = δ1, T0 = min{T1, T2} and use (2.10) to conclude Assertion 3.
In conclusion, by Banach Fixed Point Theorem, there exists a unique function

ϕ ∈ Γ(δ0, T0, r) satisfying the system (2.8) on the interval [0, T0] and the result follows.

Since the assumptions (2.3), (2.4), (2.6) and conditions (C1)–(C5) hold, we have the next
result on the boundedness of the solution of system (2.8).

Lemma 2.3. The inequality

‖ϕ(t, u0, ω)‖V 6 max

{
‖u0‖V ,

‖F‖1

a

}
holds for all t ∈ [0, α(u0,ω)), ω ∈ M and u0 ∈ V , where a is given by (2.1) and [0, α(u0,ω))
denotes the maximal interval of existence of the solution ϕ(t, u0, ω) of (2.8).
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Proof. Let u0 ∈ V and ω ∈M. Using the proof of [8, Example 11.1], we may conclude that

‖ϕ(t, u0, ω)‖V 6

(
‖u0‖V −

‖F‖1

a

)
e−at +

‖F‖1

a
, t ∈ [0, α(u0,ω)). (2.12)

Hence, we obtain the desired result.

The next theorem shows that the mild solution of system (2.8) may be prolongated on
R+.

Theorem 2.4. Assume that J = R+. Then the mild solution of system (2.8) may be
prolonged on R+.

Proof. By Theorem 2.2, there is a unique mild solution ϕ(t, u0, ω) of system (2.8) passing
through the point u0 ∈ V at time t = 0. This solution is defined on some maximal interval
[0, α(u0,ω)). Suppose that α(u0,ω) <∞. Since ϕ(t, u0, ω) is bounded (Lemma 2.3), we define

ϕ(α(u0,ω), u0, ω) = lim
t→α(u0,ω)

−
ϕ(t, u0, ω).

Then ϕ(t, u0, ω) may be extended on the interval [0, α(u0,ω)] which is a contradiction. Hence,
α(u0,ω) = +∞.

Another property that we may establish for the system (2.8) is that the set {ϕ(t, u0, ω) :
t ∈ R+, u0 ∈ V, ω ∈ M} defines a cocycle (see [8] for more details), where ϕ(t, u0, ω) (for
each fixed u0 ∈ V and ω ∈ M) is the unique solution of (2.8) defined on R+ with initial
condition ϕ(0, u0, ω) = u0. In other words, the mapping ϕ satisfies the properties:

(i) ϕ(0, u0, ω) = u0 for all u0 ∈ V and ω ∈M,

(ii) ϕ(t+ s, u0, ω) = ϕ(t, ϕ(s, u0, ω), σ(s, ω)) for all t, s ∈ R+ and ω ∈M,

(iii) the map R+ × V ×M 3 (t, u0, ω) 7→ ϕ(t, u0, ω) ∈ V is continuous.

From the proof of [8, Lemma 11.3], we have the following result.

Theorem 2.5. Let J = R+. Then the abstract nonautonomous Navier-Stokes equation (2.8)
generates a cocycle ϕ.

Definition 2.6. We say that system (2.8) is bounded dissipative on V if there is a nonempty
bounded set B0 ⊂ V such that for each bounded set B ⊂ V there exists T = T (B) > 0 such
that ϕ(t, u0, ω) ∈ B0 for all t > T , u0 ∈ B and ω ∈ M. In this case, B0 is called a bounded
attractor for the system (2.8).
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Let J = R+. By (2.12), we have

lim
t→+∞

sup
‖u0‖V 6r, ω∈M

‖ϕ(t, u0, ω)‖V 6
‖F‖1

a
,

for all r > 0. Thus, the set B0 =

{
u ∈ V : ‖u‖V 6

‖F‖1

a

}
is a bounded attractor for the

system (2.8) and we have the next result.

Theorem 2.7. The system (2.8) is bounded dissipative.

3 The 2D Navier-Stokes equations

In this section we translate the abstract nonautonomous formulation of Section 2 to
obtain existence and uniqueness of global mild solutions for the following 2D NSE’s without
impulses 

∂u

∂t
+ q(t)(u · ∇)u− ν∆u+∇p = f(t, u), (t, x) ∈ (0,+∞)× Ω,

div u = 0, (t, x) ∈ (0,+∞)× Ω,

u = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(0, ·) = u0(·), x ∈ Ω,

(3.1)

where Ω is a bounded domain in R2 with ∂Ω ∈ C2.
As presented in the Introduction, we assume that the weight q(t) is a bounded function.

With respect to the external forcing term f we shall assume the following hypotheses:

(H1) f : R+ × R2 → R2 is a bounded function such that for each fixed t ∈ R+, f(t, ·) is
continuous on R2.

(H2) For each x ∈ R2, f(·, x) ∈ G(R+,R2).

(H3) There is C > 0 such that |f(s, x) − f(s, y)| 6 C|x − y| for all s ∈ R+ and for all
x, y ∈ R2.

Using the notations exhibited in the Introduction, we can rewrite system (3.1) as the
abstract evolution equation

du

dt
+ Au+B(t)(u, u) = F (t)(u), in V′, t > 0,

u(0) = u0 ∈ V,
(3.2)

where Au = −νΠ∆u, F (t)(u) = Πf(t, u) and B(t)(u, u) = q(t)Π
(
(u · ∇)u).
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It is well known [28] that the Stokes operator A is a positive self-adjoint operator with
domain D(A) dense in H, 0 ∈ ρ(A) and its inverse A−1 is compact. In particular, A satisfies
(2.1), that is, there exists α > 0 such that

〈Au, u〉V′,V > α‖u‖2
H, (3.3)

for all u ∈ D(A), and −A is the generator of an analytic semigroup {e−At}t>0 on H. More-
over,

V = X
1
2 and ‖u‖V = ‖u‖H1

0
.

Setting E = Xγ for some −1
2
< γ < 0, {e−At}t>0 satisfies (2.3) with α1 = 1

2
+ γ < 1. Note

that B ∈ G(R+,L 2(V,E)) ⊂ G(R+,L 2(V,V′)) and by integration by parts, we also have
the orthogonality property of the convective term

(B(t)(u, v), v)E = 0, (3.4)

for all u, v ∈ V and for all t ∈ R+, which expresses the conservation of energy of the inertial
forces acting on the fluid, see [23].

Since we will use the results from Section 2 to obtain the existence and uniqueness of
mild solutions to the system (3.1), we show in the next lines how to transform system (3.2)
into a nonautonomous system of form (2.8).

Note that F ∈ G(R+, C(V,E)). Let us denote Y = G(R+,L 2(V,E))×G(R+, C(V,E))
and let (Y,R+, σ) be the semidynamical system of translations, that is, σ(τ, g) = gτ = g(τ+·)
for all g ∈ Y and t > 0. Now, set

M = H(B,F ) = {(Bτ , Fτ ) : τ ∈ R+} ⊂ Y,

where Bτ (t) = B(t+ τ) for all t ∈ R+ and Fτ (t)(u) = F (t+ τ)(u) for all t ∈ R+ and u ∈ V
and by bar we denote the closure in the compact-open topology. We set (M,R+, σ|M) the
semidynamical system of translations onM, where σ|M(τ, (B,F)) = σ(τ, (B,F)) = (Bτ ,Fτ ),
for (B,F) ∈M.

According to [8], the equation

du

dt
+ Au+ B(t)(u, u) = F(t)(u), (3.5)

where (B,F) ∈M, is called the H−class along with the equation (3.2).
Now, we define the mappings B :M→ L 2(V,E) by

B(σ(t, ω)) = B(Bt,Ft) := Bt(0), for all ω = (B,F) ∈M and t > 0,

and F : R+ ×M×V→ E by

F(t, σ(s, ω), u) = F(t, (Bs,Fs), u) := Fs(0)(u), for all u ∈ V, ω = (B,F) ∈M and t, s > 0.
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Then equation (3.5) can be rewritten in the form

du

dt
+ Au+ B(σ(t, ω))(u, u) = F(t, σ(t, ω), u).

Therefore, associated with system (3.1), we have the following abstract system
du

dt
+ Au+ B(σ(t, ω))(u, u) = F(t, σ(t, ω), u), t > 0,

u(0) = u0 ∈ V.
(3.6)

In the sequel, we show that F and B satisfy the conditions presented in Section 2.

Since L2(Ω)
d
↪→ Xγ = E (γ < 0), there is a constant c̄ > 0 such that

‖Πf(t, u)‖E 6 c̄‖Πf(t, u)‖L2 6 c̄‖f(t, u)‖L2 ,

for all u ∈ V and t > 0. Using condition (H1), there is η > 0 such that

sup
u ∈ V
t > 0

‖Πf(t, u)‖E 6 η. (3.7)

On the other hand, by the boundedness of q(t), there is ` > 0 such that

sup
‖u‖V61,‖v‖V61

‖B(t)(u, v)‖E = sup
‖u‖V61,‖v‖V61

‖q(t)Π((u · ∇)v)‖E 6 `. (3.8)

In this way, for (B,F) ∈M, we may consider the norms

‖F‖G = sup
u ∈ V
t > 0

‖F(t)(u)‖E and ‖B‖∗ = sup
t>0
‖B(t)‖L 2(V,E),

which are well defined since ‖F‖G 6 ‖F‖G < ∞ by (3.7) and ‖B‖∗ 6 ‖B‖∗ < ∞ by (3.8).
Moreover,

‖B(t)(u, v)‖E 6 ‖B‖∗‖u‖V ‖v‖V for all u, v ∈ V.

Now, using the identity B(t)(u, u)− B(t)(v, v) = B(t)(u− v, v)− B(t)(u, v − u), we obtain

‖B(t)(u, u)− B(t)(v, v)‖E 6 ‖B‖∗(‖u‖V + ‖v‖V)‖u− v‖V, (3.9)

for all u, v ∈ V.

Lemma 3.1. ‖B‖∞ = sup
ω∈M
‖B(ω)‖L 2(V,E) = ‖B‖∗.

Proof. Note that

sup
ω∈M
‖B(ω)‖L 2(V,E) = sup

ω∈{(Bτ ,Fτ ): τ∈R+}
‖B(ω)‖L 2(V,E) = sup

τ>0
‖B(τ)‖L 2(V,E) = ‖B‖∗.
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Let us consider in M the metric dM given by

dM(ω1, ω2) = dM((B1,F1), (B2,F2)) = ‖B1 − B2‖∗ + ‖F1 −F2‖G,

for all ω1, ω2 ∈M. Using the metric dM, (3.4), (3.9) and Lemma 3.1, we have the following
immediate result.

Lemma 3.2. The mapping B :M→ L 2(V,E) is continuous and satisfies conditions (2.4)
and (2.6).

Next, we show that F satisfies the conditions (C1)–(C4) presented in Section 2. This will
help us to show that system (3.6) admits a unique global mild solution, see Theorem 3.4 in
the sequel.

Lemma 3.3. The mapping F : R+ ×M×V→ E satisfies the conditions (C1)–(C5).

Proof. First, let us show that F satisfies condition (C1). Let t ∈ R+ be fixed. Take a
sequence (ωn, un), (ω0, u0) ∈M×V, n = 1, 2, . . ., such that

dM(ωn, ω0)→ 0 and ‖un − u0‖V → 0,

as n→ +∞. Note that ω0 = (B,F) and ωn = (Bn,Fn), n = 1, 2, 3, . . .. Moreover,

‖Fn −F‖G → 0 as n→ +∞.

Since (Bn,Fn), (B,F) ∈ M, n = 1, 2, 3, . . ., there exist sequences {τnk }k∈N and {sk}k∈N in
R+ such that

Fn(r)(u) = lim
k→+∞

Fτnk (r)(u) and F(r)(u) = lim
k→+∞

Fsk(r)(u)

for each (r, u) ∈ R+ ×V and n ∈ N.

By the inclusions V
d
↪→ H

d
↪→ E, there are c1, c2 > 0 such that

‖Πf(t, v1)− Πf(t, v2)‖E 6 c1‖Πf(t, v1)− Πf(t, v2)‖H 6

6 c1C‖v1 − v2‖H 6 c1c2C‖v1 − v2‖V,

for all v1, v2 ∈ V and t > 0, where C comes from condition (H3). Then,

‖F(t, ωn, un)−F(t, ω0, u0)‖E = ‖Fn(0)(un)−F(0)(u0)‖E = lim
k→+∞

‖F (τnk )(un)−F (sk)(u0)‖E

6 lim
k→+∞

‖F (τnk )(un)− F (τnk )(u0)‖E + lim
k→+∞

‖F (τnk )(u0)− F (sk)(u0)‖E

= lim
k→+∞

‖Πf(τnk , un)− Πf(τnk , u0)‖E + ‖Fn(0)(u0)−F(0)(u0)‖E
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6 c1c2C‖un − u0‖V + ‖Fn −F‖G.

Therefore, we may conclude that ‖F(t, ωn, un)− F(t, ω0, u0)‖E → 0 as n→ +∞.
Condition (C2) is an immediate consequence of the definition of F.
In order to show that Condition (C3) holds, we define the function M : R → R+ by

M(t) = η for all t ∈ R, where η comes from (3.7). Given ω = (B,F) ∈ M, there is a
sequence {rn}n∈N in R+ such that

F(t, ω, u) = F(0)(u) = lim
n→+∞

Frn(0)(u) = lim
n→+∞

Πf(rn, u),

for all t > 0 and u ∈ V. Then, for [a, b] ⊂ R+ and using (3.7), we have∫ b

a

|φ(s)|‖F(s, ω, u)‖Eds 6
∫ b

a

|φ(s)|ηds =

∫ b

a

M(s)|φ(s)|ds,

for all φ ∈ L1[a, b], ω ∈M and u ∈ V.
Now, let us verify the Condition (C4) holds. Define L : R → R+ by L(t) = c1c2C + 1,

t ∈ R. Then, given [a, b] ⊂ R+, we have∫ b

a

|φ(s)|‖F(s, ω1, u1)− F(s, ω2, u2)‖Eds =

∫ b

a

|φ(s)|‖F1(0)(u1)−F2(0)(u2)‖Eds 6

6
∫ b

a

|φ(s)| (‖F1(0)(u1)−F1(0)(u2)‖E + ‖F1(0)(u2)−F2(0)(u2)‖E) ds 6

6
∫ b

a

|φ(s)| (c1c2C‖u1 − u2‖V + ‖F1 −F2‖G) ds 6

6
∫ b

a

L(s)|φ(s)|(dM(ω1, ω2) + ‖u1 − u2‖V)ds,

for all φ ∈ L1[a, b], ω1 = (F1,B1), ω2 = (F2,B2) ∈M and u1, u2 ∈ V.
Finally, using (3.7), we conclude that

‖F‖1 = sup{‖F(t, ω, u)‖E : t > 0, ω ∈M, u ∈ V} 6 η

and condition (C5) holds.

In summary, the conditions (2.3), (2.4), (2.6), (C1), (C2), (C3), (C4) and (C5) hold, and
‖B‖∞ < ∞ by Lemma 3.1. Consequently, Theorem 2.2 implies in Theorem 3.4 below and
Lemma 2.3, Theorem 2.5 and Theorem 2.7 imply in Theorem 3.5.

Theorem 3.4. Under conditions (H1)–(H3), the system (3.6) admits a unique mild solution
ϕ(·, u0, ω) : R+ → V satisfying ϕ(0, u0, ω) = u0.

17



Theorem 3.5. The mild solution ϕ(t, u0, ω) of (3.6) satisfies the boundedness

‖ϕ(t, u0, ω)‖V 6 max

{
‖u0‖V,

‖F‖1

α

}
,

for all t > 0, ω ∈ M and u0 ∈ V, where α is given by (3.3). Moreover, system (3.6) is
bounded dissipative and generates a cocycle.

For ω = (B,F ) we have ϕ(t, u0, ω) is solution of system (3.2). Using the projection of
Leray, we obtain the existence of a mild solution and a pressure to the system (3.1).

Theorem 3.6. Assume that conditions (H1)–(H3) hold. Then there exist functions p =
p(t, x) and u = u(t, x) on [0,+∞) × Ω, satisfying system (3.1). Moreover, [0,+∞) 3 t →
p(t, ·) ∈ H1(Ω) and [0,+∞) 3 t→ u(t, ·) ∈ H1

0(Ω) are continuous functions and

‖u(t, ·)‖2
H1

0(Ω) 6 max

{
‖u(0, ·)‖2

H1
0(Ω),

( η
α

)2
}

for all t > 0,

where α is given by (3.3) and η in (3.7).

4 The 2D Navier-Stokes equations with impulses at

variable times

In this last section, we consider the following 2D Navier-Stokes equations with impulses

∂u

∂t
+ q(t)(u · ∇)u− ν∆u+∇p = f(t, u), (t, x) ∈ (0,+∞)× Ω,

div u = 0, (t, x) ∈ (0,+∞)× Ω,

u = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(0, ·) = u0 ∈ V, x ∈ Ω,

I : M ⊂ V→ V,

(4.1)

where Ω, ν > 0, p, f(t, u) and q(t) satisfy the conditions presented in Section 3.
Moreover, in Section 3, we constructed the abstract system associated to (3.1). Using

this construction we have the following abstract system associated to (4.1)
du

dt
+ Au+ B(σ(t, ω))(u, u) = F(t, σ(t, ω), u), t > 0,

u(0) = u0 ∈ V,

I : M ⊂ V→ V.

(4.2)

As presented in Section 3, the conditions (2.3), (2.4), (2.6), (C1), (C2), (C3), (C4) and
(C5) hold.
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In order for the solution of system (4.2) to have a good behavior, we need to impose
some conditions on the structure of impulses. We shall use the theory presented in [5] to
construct an impulsive cocycle associated to the system (4.2).

For each D ⊆ V, J ⊆ R+ and ω ∈M we define

Fϕ(D, J, ω) = {u0 ∈ V : ϕ(t, u0, ω) ∈ D, for some t ∈ J},

where ϕ(t, u0, ω) is solution of system (3.6) (solution of system (4.2) without impulses).
We assume that the impulsive set is a nonempty closed subset M ⊂ V satisfying the

property: for each u0 ∈M and each ω ∈M there exists ε = εω,u0 > 0 with⋃
t∈(0,ε)

Fϕ(u0, t, σ−tω) ∩M = ∅ and {ϕ(s, u0, ω) : s ∈ (0, ε)} ∩M = ∅. (4.3)

We use the notation σsω = σ(s, ω). Condition (4.3) means that the solution ϕ is, in some
sense, transversal to M .

We also assume that the impulse function I : M → V is a continuous map such that
I(M) ∩M = ∅.

Theorem 3.5 shows that system (4.2), without the condition of impulses, generates a
cocycle. Using this fact, we construct in the next lines an impulsive cocycle for the impulsive
system (4.2), that is, a mapping ψ : R+ ×V ×M→ V satisfying the conditions:

(i) ψ(0, u0, ω) = u0 for all u0 ∈ V and ω ∈M,

(ii) ψ(t+ s, u0, ω) = ψ(t, ψ(s, u0, ω), σsω) for all t, s ∈ R+, u0 ∈ V and ω ∈M.

For each (u0, ω) ∈ V ×M, define the set

M+
ϕ (u0, ω) = {ϕ(τ, u0, ω) : τ > 0} ∩M.

If M+
ϕ (u0, ω) 6= ∅, then there exists t = t(u0, ω) > 0 such that ϕ(t, u0, ω) ∈ M and

ϕ(τ, u0, ω) /∈ M for 0 < τ < t, see [5, Proposition 2.3]. Thus, we are able to define a
function Φ(·, ω) : V→ (0,+∞] by

Φ(u0, ω) =

{
s, if ϕ(s, u0, ω) ∈M and ϕ(t, u0, ω) /∈M for 0 < t < s,

+∞, if ϕ(t, u0, ω) /∈M for all t > 0.
(4.4)

Now, we can construct an impulsive cocycle associated to the system (4.2) which we shall
denote by ϕ̃. Given u0 ∈ V and ω ∈ M, let ϕ(t, u0, ω) be the solution of (3.6) defined on
R+. We know that

ϕ(t+ s, u0, ω) = ϕ(t, ϕ(s, u0, ω), σsω) for all t, s ∈ R+,

as ϕ is a cocylce of system (3.6).

19



If M+
ϕ (u0, ω) = ∅, then we define ϕ̃(·, u0, ω) as

ϕ̃(t, u0, ω) = ϕ(t, u0, ω)

for all t ∈ [0,+∞) and in this case Φ(u0, ω) = +∞.
However, if M+

ϕ (u0, ω) 6= ∅ then we denote u0 = u+
0 and we define ϕ̃(·, u0, ω) on

[0,Φ(u+
0 , ω)] by

ϕ̃(t, u0, ω) =

{
ϕ(t, u+

0 , ω), if 0 6 t < Φ(u+
0 , ω),

I(ϕ(Φ(u+
0 , ω), u+

0 , ω)), if t = Φ(u+
0 , ω).

Note that ϕ(t, u+
0 , ω) /∈M for 0 < t < Φ(u+

0 , ω) and ϕ(Φ(u+
0 , ω), u+

0 , ω) ∈M .
Now let s0 = Φ(u+

0 , ω), u1 = ϕ(s0, u
+
0 , ω) and u+

1 = I(ϕ(s0, u
+
0 , ω)). In this case, since

s0 < +∞ the process can go on, but now starting at u+
1 . Assume that ϕ̃(·, u0, ω) is defined

on the interval [tn−1, tn] and that ϕ̃(tn, u
+
0 , ω) = u+

n , where t0 = 0 and tn = tn(u0, ω) =
n−1∑
i=0

si for n = 1, 2, 3, . . ., (s0 = Φ(u+
0 , ω), s1 = Φ(u+

1 , σt1ω), . . . , sn−1 = Φ(u+
n−1, σtn−1ω)). If

M+
ϕ (u+

n , σtnω) = ∅, then
ϕ̃(t, u0, ω) = ϕ(t− tn, u+

n , σtnω)

for tn 6 t < +∞ and Φ(u+
n , σtnω) = +∞. However, if M+

ϕ (u+
n , σtnω) 6= ∅, then we define

ϕ̃(·, u0, ω) on [tn, tn+1] by

ϕ̃(t, u0, ω) =

{
ϕ(t− tn, u+

n , σtnω), if tn 6 t < tn+1,

I(ϕ(Φ(u+
n , σtnω), u+

n , σtnω)), if t = tn+1.

Now let sn = Φ(u+
n , σtnω), un+1 = ϕ(sn, u

+
n , σtnω) and u+

n+1 = I(ϕ(sn, u
+
n , σtnω)). This

process ends after a finite number of steps if M+
ϕ (u+

n , σtnω) = ∅ for some integer n ∈
{0, 1, 2, . . .}, and here ϕ̃(·, u0, ω) is defined on [0,+∞). However, it may proceed indefinitely,
if M+

ϕ (u+
n , σtnω) 6= ∅ for all integer n ∈ {0, 1, 2, . . .} and in this case ϕ̃(·, u0, ω) is defined in

the interval [0, T (u0, ω)), where T (u0, ω) =
+∞∑
i=0

si.

We will assume that T (u0, ω) = +∞ for all u0 ∈ V and ω ∈ M. For instance, this
condition holds, if for each ω ∈ M there is µ = µ(ω) > 0 such that Φ(u, ω̄) > µ for all
u ∈ I(M) and ω̄ ∈ {σtω : t ∈ R+}.

By the construction we have

ϕ̃(t+ s, u0, ω) = ϕ̃(t, ϕ̃(s, u0, ω), σsω),

for all u0 ∈ V, ω ∈M and t, s ∈ R+, see [5] for more details.
For each fixed u0 ∈ V and ω ∈M, the map ϕ̃(·, u0, ω) is solution of the impulsive system

(4.2).
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The function Φ presented in (4.4) is not continuous in general. In [5] and [9], the authors
studied the continuity of this function for dynamical systems in the autonomous and nonau-
tonomous cases, respectively. It is presented some conditions that assure the continuity of
Φ for points outside from the impulsive set. This is important since we may obtain results
on convergence for the solutions of an impulsive system. In this way, we shall assume that

Φ : V ×M→ (0,+∞] is continuous at every point (u0, ω) ∈ (V \M)×M.

In the next results, we assume all the conditions mentioned in this section and we use
the notations presented above.

Theorem 4.1. Assume that there is K > 0 such that ‖I(u)‖V 6 K for all u ∈ M . Then

‖ϕ̃(t, u0, ω)‖V 6 max
{
‖u0‖V,K, ‖F‖1α

}
, for all t > 0, ω ∈ M and u0 ∈ V, where α is given

by (3.3). Moreover, system (4.2) is bounded dissipative.

Proof. Let u0 ∈ V, ω ∈ M and ϕ(t, u0, ω) be the solution of (3.6) defined on R+. By
Theorem 3.5, we have

‖ϕ(t, u0, ω)‖V 6 max

{
‖u0‖V,

‖F‖1

α

}
, for all t > 0. (4.5)

Then

‖ϕ̃(t, u0, ω)‖V = ‖ϕ(t, u0, ω)‖V 6 max

{
‖u0‖V,

‖F‖1

α

}
for all 0 6 t < Φ(u+

0 , ω).

Using the same ideas to obtain (4.5), we get

‖ϕ(t− tn, u+
n , σtnω)‖V 6 max

{
‖u+

n ‖V,
‖F‖1

α

}
6 max

{
K, ‖F‖1

α

}
(4.6)

for all tn 6 t < tn+1, n = 0, 1, 2, . . .. Therefore,

‖ϕ̃(t, u0, ω)‖V 6 max

{
‖u0‖V,K,

‖F‖1

α

}
,

for all t > 0, ω ∈M and u0 ∈ V.
At last, let B ⊂ V be a bounded set. Then there is ηB > 0 such that ‖u‖V 6 ηB for all

u ∈ B. Set TB = max
{

0,− 1
α

ln
(
K
ηB

)}
and let u0 ∈ B and ω ∈M.

If Φ(u0, ω) 6 TB then by (4.6) we have

‖ϕ̃(t, u0, ω)‖V 6 max

{
K, ‖F‖1

α

}
6 K +

‖F‖1

α
for all t > TB.
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If Φ(u0, ω) > TB then we can use (2.12) to obtain

‖ϕ(t, u0, ω)‖V 6 ‖u0‖Ve−αt +
‖F‖1

α
6 K +

‖F‖1

α
for all TB 6 t < Φ(u0, ω),

which implies by (4.6) that

‖ϕ̃(t, u0, ω)‖V 6 K +
‖F‖1

α
for all t > TB.

In conclusion, for all t > TB, u0 ∈ B and ω ∈M, we get

‖ϕ̃(t, u0, ω)‖V 6 K +
‖F‖1

α

which shows that system (4.2) is bounded dissipative.

Next, we present a convergence result for the impulsive cocycle ϕ̃. Since the moments of
impulses depend on the state, we need some correction on time to establish the result.

Theorem 4.2. Let u0 ∈ V \ M , ω ∈ M and {vn}n∈N ⊂ V be a sequence such that
‖vn − u0‖V

n→∞−→ 0. Given t > 0, there exists a sequence {ηn}n∈N in R such that ηn
n→∞−→ 0

and
‖ϕ̃(t+ ηn, vn, ω)− ϕ̃(t, u0, ω)‖V

n→∞−→ 0.

Proof. Let k ∈ {0, 1, 2, . . .} be such that tk 6 t < tk+1 (tk = tk(u0, ω) and tk+1 = tk+1(u0, ω)).
Then

ϕ̃(t, u0, ω) = ϕ(t− tk, u+
k , σtkω).

Recall that t0 = 0, u+
0 = u0, s0 = Φ(u+

0 , ω), u1 = ϕ(s0, u
+
0 , ω), u+

1 = I(u1) and for j = 1, 2, . . .,

we obtain tj =

j−1∑
i=0

si, sj = Φ(u+
j , σtjω), uj+1 = ϕ(sj, u

+
j , σtjω) and u+

j+1 = I(uj+1).

Now, for each n, define rn0 = 0, (vn)+
0 = vn, sn0 = Φ((vn)+

0 , ω), (vn)1 = ϕ(sn0 , (vn)+
0 , ω) and

(vn)+
1 = I((vn)1). Inductively, we obtain

rnj =

j−1∑
i=0

sni , snj = Φ((vn)+
j , σrnj ω), (vn)j+1 = ϕ(snj , (vn)+

j , σrnj ω)

and
(vn)+

j+1 = I((vn)j+1)

for all j = 1, 2, . . ..
By the continuity of the maps Φ, I and ϕ in their corresponding spaces, we have

sn0
n→∞−→ s0,
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which implies
(vn)1

n→∞−→ u1 and (vn)+
1
n→∞−→ u+

1 .

We continue in this fashion obtaining

snj
n→∞−→ sj, (vn)j

n→∞−→ uj and (vn)+
j
n→∞−→ u+

j ,

for all j = 0, 1, 2, . . .. Then,

rnk =
k−1∑
i=0

sni
n→∞−→

k−1∑
i=0

si = tk.

Now, let us define the sequence {ηn}n∈N by

ηn = rnk − t+
snk
sk

(t− tk), n = 1, 2, . . . .

Note that ηn
n→∞−→ 0. Since t− tk < sk we get

snk
sk

(t− tk) < snk and

rnk 6 rnk +
snk
sk

(t− tk) < rnk+1.

In this way we may write

ϕ̃(t+ ηn, vn, ω) = ϕ̃

(
rnk +

snk
sk

(t− tk), vn, ω
)

= ϕ

(
snk
sk

(t− tk), (vn)+
k , σrnkω

)
, n = 1, 2, . . . .

Hence, using the continuity of ϕ we obtain

ϕ̃(t+ ηn, vn, ω)
n→∞−→ ϕ̃(t, u0, ω)

and we conclude the result.

Remark 4.3. For ω = (B,F ) we conclude that ϕ̃(t, u0, ω) is solution of
du

dt
+ Au+B(t)(u, u) = F (t)(u), in V′, t > 0,

u(0) = u0 ∈ V,
I : M ⊂ V→ V.

Thus for each fixed k ∈ {0, 1, 2, . . .}, we may use the projection of Leray in the solu-
tion restricted to the interval [tk(u0, ω), tk+1(u0, ω)), and we obtain a continuous pressure
pk(·, x) : [tk(u0, ω), tk+1(u0, ω)) → H1(Ω). Thus, there exist piecewise continuous func-
tions ũ(t, x) and p̃(t, x) on [0,+∞) × Ω satisfying system (4.1), where p̃(·, x) = pk(·, x) for
t ∈ [tk(u0, ω), tk+1(u0, ω)).
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