Segunda prova ÁLGEBRA 3 Resolução Aqui n é um inteiro tal que $2 < n \equiv 2 \mod 4$.

1. (4 pontos) Determine as correspondências de Galois para M/\mathbb{Q} onde M é corpo de decomposição de f(X) sobre \mathbb{Q} nos seguintes casos.

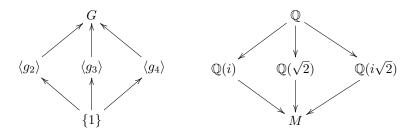
(a) (1 ponto)
$$f(X) = X^3 + X^2 - n^2X - n^2$$
. [Redutível]

Temos

$$f(X) = X^{2}(X+1) - n^{2}(X+1) = (X^{2} - n^{2})(X+1)$$
$$= (X-n)(X+n)(X+1)$$

tem grupo de Galois trivial $\{1\}$ e o seu corpo de decomposição é \mathbb{Q} .

- (b) (1.5 ponto) $f(X) = X^4 nX^2$. [Redutível] $f(X) = X^2(X^2 n)$. O seu corpo de decomposição é $M = \mathbb{Q}(\sqrt{n})$, que tem grau 2 sobre \mathbb{Q} . Segue que o grupo de Galois G tem ordem 2, logo os seus subgrupos são $\{1\}$ e G, que correspondem aos subcorpos M e \mathbb{Q} respectivamente.
- (c) (1.5 ponto) $f(X) = (X n)(X^5 4X)$. $f(X) = (X n)X(X^2 2)(X^2 + 2)$ tem corpo de decomposição $M = \mathbb{Q}(i,\sqrt{2}),\log |G| = |M:\mathbb{Q}| = 4$ e $G = \{g_1,g_2,g_3,g_4\}$. Temos $g_j(i) = \pm i$ e $g_j(\sqrt{2}) = \pm \sqrt{2}$, isso determina no máximo 4 possibilidades para cada g_j , por outro lado |G| = 4 logo cada possibilidade ocorre. Os elementos são determinados por $g_1(i) = i, g_1(\sqrt{2}) = \sqrt{2}, g_2(i) = i, g_2(\sqrt{2}) = -\sqrt{2}, g_3(i) = -i, g_3(\sqrt{2}) = \sqrt{2}, g_4(i) = -i, g_4(\sqrt{2}) = -\sqrt{2}$ e a situação é então a seguinte.



- 2. (3 pontos) Seja $\alpha \in \mathbb{C}$ uma raiz de $f(X) = X^3 7X + 7$.
 - (a) (1 ponto) Mostre que $\mathbb{Q}(\alpha)/\mathbb{Q}$ é uma extensão de Galois. O discriminante é $-4(-7)^3 - 27 \cdot 7^2 = 7^2 \cdot (4 \cdot 7 - 27) = 7^2$, é um quadrado em \mathbb{Q} , logo o grupo de Galois de f(X) é isomorfo a A_3 logo o corpo de decomposição de f(X) sobre \mathbb{Q} tem grau 3. Mas contém $\mathbb{Q}(\alpha)$, que tem grau 3, logo é igual a $\mathbb{Q}(\alpha)$, ou seja $\mathbb{Q}(\alpha)/\mathbb{Q}$ é extensão de Galois.

(b) (1 ponto) Seja $G = \mathcal{G}(\mathbb{Q}(\alpha)/\mathbb{Q}) = \{g_1, g_2, g_3\}$. Calcule

$$N(\alpha) = g_1(\alpha) \cdot g_2(\alpha) \cdot g_3(\alpha).$$

[Dica: avalie $(X - g_1(\alpha)) \cdot (X - g_2(\alpha)) \cdot (X - g_3(\alpha))$ em X = 0.] Temos $f(X) = X^3 - 7X + 7 = (X - g_1(\alpha))(X - g_2(\alpha))(X - g_3(\alpha))$ logo $N(\alpha) = -f(0) = -7$.

(c) (1 ponto) Calcule $T(\alpha) = g_1(\alpha) + g_2(\alpha) + g_3(\alpha)$. Sejam $\alpha_i := g_i(\alpha), i = 1, 2, 3$. Temos

$$X^{3} - 7X + 7 = f(X) = (X - \alpha_{1}) \cdot (X - \alpha_{2}) \cdot (X - \alpha_{3})$$
$$= X^{3} - (\alpha_{1} + \alpha_{2} + \alpha_{3})X^{2} + (\alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3} + \alpha_{2}\alpha_{3})X - \alpha_{1}\alpha_{2}\alpha_{3},$$

e igualando os coeficientes obtemos $T(\alpha) = 0$.

3. (2 pontos) Seja m um inteiro positivo impar e sejam

$$f(X) = X^4 + mX + m,$$
 $R(X) = X^3 - 4mX - m^2.$

O polinômio f(X) é irredutível em $\mathbb{Q}[X]$ (sendo a sua redução módulo 2 irredutível em $\mathbb{F}_2[X]$) e R(X) é a sua resolvente cúbica. Seja $\alpha \in \mathbb{C}$ uma raiz de f(X). Seja M um corpo de decomposição de f(X) sobre \mathbb{Q} e seja $G := \mathscr{G}(M/\mathbb{Q})$ o grupo de Galois de M/\mathbb{Q} .

(a) (1 ponto) Mostre que se m=5 a extensão $\mathbb{Q}(\alpha)/\mathbb{Q}$ é de Galois. [Procure uma fatoração $f(X)=(X^2+\sqrt{5}X+r)(X^2-\sqrt{5}X+s).$] Temos R(5)=0 e $R(X)=(X-5)(X^2+5X+5).$ As raízes de R(X) são $5, (-5\pm\sqrt{5})/2.$ Segue que $\mathbb{Q}(\sqrt{5})$ é um corpo de decomposição de R(X) sobre \mathbb{Q} . Seguindo a dica, temos as condições $s-5+r=0, \sqrt{5}(s-r)=5, rs=5.$ Segue que r(5-r)=5 ou seja $r^2-5r+5=0$ e resolvendo $r=(5\pm\sqrt{5})/2.$ Obtemos a solução $r=(5-\sqrt{5})/2, s=(5+\sqrt{5})/2$ e

$$f(X) = (X^2 + \sqrt{5}X + (5 - \sqrt{5})/2) \cdot (X^2 - \sqrt{5}X + (5 + \sqrt{5})/2).$$

Logo $G \cong C_4$. Segue que $|G| = 4 = |\mathbb{Q}(\alpha) : \mathbb{Q}|$, logo $\mathbb{Q}(\alpha)$ é corpo de decomposição de f(X) sobre \mathbb{Q} e $\mathbb{Q}(\alpha)/\mathbb{Q}$ é Galois.

(b) (1 ponto) Se $m=7,\ R(X)$ é irredutível em $\mathbb{Q}[X]$. Neste caso, a extensão $\mathbb{Q}(\alpha)/\mathbb{Q}$ é de Galois?

O polinômio $R(X)=X^3-28X-49$ é irredutível em $\mathbb{Q}[X]$, logo o grupo de Galois de f(X) é A_4 ou S_4 . Segue que $|M:\mathbb{Q}|=|G|\in\{|A_4|,|S_4|\}=\{12,24\}$ logo $|M:\mathbb{Q}|\neq 4=|\mathbb{Q}(\alpha):\mathbb{Q}|$. Segue que $\mathbb{Q}(\alpha)$ não é corpo de decomposição sobre \mathbb{Q} do polinômio minimal de α , logo $\mathbb{Q}(\alpha)/\mathbb{Q}$ não é extensão de Galois.

4. (1 ponto) Seja M um corpo de decomposição sobre \mathbb{Q} do polinômio $f(X) \in \mathbb{Q}[X]$, irredutível em $\mathbb{Q}[X]$. Seja n o grau de f(X) e sejam $\alpha_1, \ldots, \alpha_n$ as raízes de f(X) em M. Diga se a seguinte frase é sempre verdadeira: "se $\mathbb{Q}(\alpha_1), \ldots, \mathbb{Q}(\alpha_n)$ são dois a dois distintos então $|M:\mathbb{Q}| = n!$ ".

[Dica: considere os subgrupos correspondentes $\mathbb{Q}(\alpha_i)'$.]

Aplicando as correspondências, a pergunta é se o fato que os estabilizadores das n raízes em $G=\mathcal{G}(M/\mathbb{Q})$ (que é isomorfo a um subgrupo de S_n) são dois a dois distintos implica que |G|=n!, ou seja $G\cong S_n$. A resposta é não, por exemplo vimos que existem polinômios irredutíveis de grau 4 com grupo de Galois isomorfo a A_4 . Os estabilizadores dos 4 pontos em A_4 são $\operatorname{Stab}_{A_4}(1)=\langle (234)\rangle, \operatorname{Stab}_{A_4}(2)=\langle (134)\rangle, \operatorname{Stab}_{A_4}(3)=\langle (124)\rangle, \operatorname{Stab}_{A_4}(4)=\langle (123)\rangle,$ dois a dois distintos, mas $|A_4|=12\neq 4!=24$.