IAL UnB - 2024-1 Martino Garonzi

Conteúdo

Capít	tulo 1. Sistemas lineares e matrizes	5
1.	Sistemas lineares	5
2.	O metodo de eliminação	7
3.	Matrizes	8
4.	Operações entre matrizes	13
5.	Matriz inversa	16
6.	Como calcular a matriz inversa	17
7.	Determinante	21
8.	Resolução dos exercícios	26
Capít	tulo 2. Espaços vetoriais	37
1.	Espaços vetoriais	37
2.	Dependência linear	39
3.	Base de um espaço vetorial	41
4.	Base do espaço solução (núcleo).	44
5.	Posto de uma matriz	45
6.	Ortogonalidade	50
7.	Mudança de base	53
8.	Resolução dos exercícios	55
Capít	tulo 3. Operadores lineares	79
1.	Transformações lineares	79
2.	Diagonalização.	84
3.	Potências de matrizes	89
4	Resolução dos exercícios	91

CAPíTULO 1

Sistemas lineares e matrizes

1. Sistemas lineares

Uma equação linear em uma variável x é uma equação do tipo

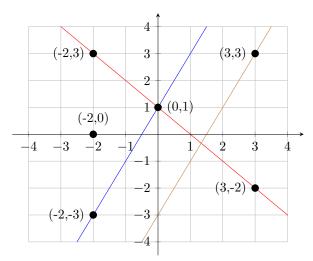
$$ax + b = 0 \tag{*}$$

com $a,b \in \mathbb{R}$. É equivalente a ax = -b. Se $a \neq 0$ podemos dividir ambos os membros por a e obter x = -b/a, a única solução. Se a = 0 então a equação é b = 0, logo temos dois casos: se (a,b) = (0,0) então a equação (\star) tem infinitas soluções (todo $x \in \mathbb{R}$ é solução), se (a,b) = (0,b) com $b \neq 0$ então a equação (\star) não tem nenhuma solução.

Uma equação linear em duas variáveis x, y é uma equação do tipo

$$ax + by + c = 0 \tag{**}$$

com $a,b,c \in \mathbb{R}$. A situação neste caso é muito diferente. As soluções são pares (x_0,y_0) que satisfazem a equação $(\star\star)$, ou seja tais que $ax_0+by_0+c=0$. Tais pares podem ser representados em um plano cartesiano.



A reta que passa pelos pontos (-2,3), (0,1) e (3,-2) tem equação y=-x+1, pois cada um desses pontos é solução da equação y=-x+1. Observe que a equação y=-x+1, que pode também ser escrita x+y-1=0, tem infinitas soluções. As soluções são geometricamente representadas como pontos de uma reta no plano.

A reta que passa pelos pontos (-2, -3) e (0, 1) tem equação y = 2x + 1, pois cada um desses pontos é solução da equação y = 2x + 1. Podemos perguntar se existem pontos (x_0, y_0) que são soluções de ambas essas equações. Isso corresponde a resolver o sistema linear

$$\begin{cases} y = -x + 1 \\ y = 2x + 1 \end{cases}$$

Substituindo y=-x+1 na segunda equação obtemos -x+1=2x+1 e resolvendo obtemos x=0. O correspondente valor de y é calculado por y=-x+1=-0+1=1. Segue que a única solução do sistema é (0,1), e corresponde à interseção entre as duas retas.

A reta que passa pelo ponto (3,3) e paralela à reta de equação y=2x+1 é a reta de equação y=2x-3. Neste caso, não existem pontos de interseção entre essas duas retas. De fato, o sistema linear

$$\begin{cases} y = 2x + 1 \\ y = 2x - 3 \end{cases}$$

não tem nenhuma solução. Isso pode ser visto substituindo y = 2x + 1 na segunda equação, que dá 2x + 1 = 2x - 3 e simplificando 1 = -3, que é sempre falso ("sempre" significa "para todo valor de x").

Pode também acontecer de ter sistemas lineares com infinitas soluções. Por exemplo considere

$$\begin{cases} y = -x + 1 \\ 2y = -2x + 2 \end{cases}$$

Neste caso, é claro que a segunda equação é equivalente à primeira, sendo obtida a partir dela multiplicando todos os termos por 2. Geometricamente, estamos procurando interseções entre duas retas coincidentes. Todos os pontos da reta são então soluções do sistema. Neste caso, é comum introduzir um parâmetro t=x, assim as soluções são todos os pontos do tipo

$$(t, -t+1), \qquad t \in \mathbb{R}$$

O número de parâmetros determina a "dimensão" do objeto geometrico correspondente. Neste caso temos um parâmetro, o que corresponde a um objeto de dimensão 1: uma reta.

Os sistemas considerados acima são chamados sistemas lineares pois as variáveis aparecem com grau 1. Por exemplo, o sistema

$$\begin{cases} y = x^2 \\ x + y = 1 \end{cases}$$

não é linear pois na primeira equação aparece x^2 . Como é possível deduzir da discussão acima, no caso de um sistema linear temos sempre zero, uma ou infinitas soluções. Um sistema é dito compatível, ou consistente, ou possível, se admite pelo menos uma solução. Um sistema é dito incompatível, ou inconsistente, ou impossível, se não admite nenhuma solução.

Para resolver os sistemas lineares, podem ser usadas várias técnicas. Por exemplo considere

$$\begin{cases} 5x + 3y - 1 = 0 \\ x - 2y - 8 = 0 \end{cases}$$

Aqui podemos fazer a primeira equação mais a segunda multiplicada por -5, ou seja I -5II, obtendo a equação

$$(5x + 3y - 1) - 5(x - 2y - 8) = 0$$

que é equivalente a

$$13y + 39 = 0$$

ou seja y=-3. O correspondente valor de x é obtido resolvendo 5x+3y-1=0 com y=-3, ou seja 5x-9-1=0, que dá x=2. Segue que a única solução do sistema é (2,-3).

2. O metodo de eliminação

O metodo de eliminação envolve a transformação de um sistema linear por meio de uma sequência de passos sucessivos. Cada passo consiste em efetuar uma das operações elementares seguintes.

- (1) Multiplicar uma equação por uma constante não nula.
- (2) Permutar duas equações.
- (3) Adicionar uma equação a uma outra equação.

Por exemplo considere o seguinte sistema.

$$\begin{cases} x & +2y & +z & = 4 \\ 3x & +8y & +7z & = 20 \\ 2x & +7y & +9z & = 23 \end{cases} \xrightarrow{\text{II}-3\text{I}} \begin{cases} x & +2y & +z & = 4 \\ 2y & +4z & = 8 \\ 2x & +7y & +9z & = 23 \end{cases}$$

$$\xrightarrow{\text{III}-2\text{I}} \begin{cases} x & +2y & +z & = 4 \\ 2y & +4z & = 8 \\ 3y & +7z & = 15 \end{cases} \xrightarrow{\frac{1}{2}\text{II}} \begin{cases} x & +2y & +z & = 4 \\ y & +2z & = 4 \\ 3y & +7z & = 15 \end{cases}$$

$$\xrightarrow{\text{III}-3\text{II}} \begin{cases} x & +2y & +z & = 4 \\ y & +2z & = 4 \\ z & = 3 \end{cases} \text{ (Forma triangular)}$$

Conseguimos eliminar x e y da terceira equação, podendo assim calcular z=3. Substituindo na segunda equação obtemos $y=4-2z=4-2\cdot 3=-2$, e substituindo na primeira

$$x = 4 - 2y - z = 4 - 2(-2) - 3 = 5.$$

Segue que a única solução do sistema é (x, y, z) = (5, -2, 3). Geometricamente, estamos calculando a interseção de três planos no espaço tridimensional \mathbb{R}^3 . Essa interseção é um único ponto.

Observe que os passos descritos acima são reversíveis. Em outras palavras, depois de aplicar uma operação elementar é possível voltar para a situação original aplicando uma oportuna operação elementar, a operação elementar inversa. Por exemplo, multiplicar uma equação por uma constante não nula c pode ser revertido multiplicando a equação assim obtida por 1/c. Substituir à terceira equação a equação III—I pode ser revertido substituindo à terceira equação assim obtida III+I. Depois de permutar duas linhas, é possível voltar à situação original permutando-as mais uma vez. Isso implica que o primeiro e o último sistema do algoritmo são equivalentes (eles têm o mesmo conjunto-solução).

- 2.1. Exercícios. Use o metodo da eliminação para determinar se o sistema linear dado é compatível ou incompatível. Para cada sistema compatível, encontre a solução, se for única. Caso contrário, descreva o infinito conjunto-solução em termos de um parâmetro arbitrário t.
 - (1) (Livro 1.1 (1)) $\begin{cases} x + 3y = 9 \\ 2x + y = 8 \end{cases}$

Neste caso, faça também um desenho das retas envolvidas.

(2) (Livro 1.1 (8))

$$\begin{cases} 3x - 6y = 12 \\ 2x - 4y = 8 \end{cases}$$

Neste caso, faça também um desenho das retas envolvidas.

(3) (Livro 1.1 (11))

$$\begin{cases} 2x + 7y + 3z = 11 \\ x + 3y + 2z = 2 \\ 3x + 7y + 9z = -12 \end{cases}$$

(4) (Livro 1.1 (17)) $\begin{cases} 2x - y + 4z = 7 \\ 3x + 2y - 2z = 3 \\ 5x + y + 2z = 15 \end{cases}$

3. Matrizes

O metodo de eliminação (eliminação de Gauss) envolve a transformação de um sistema linear por meio de uma sequência de passos sucessivos. Cada passo consiste em efetuar uma das operações elementares seguintes.

- (1) Multiplicar uma equação por uma constante não nula.
- (2) Permutar duas equações.
- (3) Adicionar uma equação a uma outra equação.

Considere o seguinte exemplo

$$\begin{cases} 3x & -8y & +10z & = 22 \\ x & -3y & +2z & = 5 \\ 2x & -9y & -8z & = -11 \end{cases} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{cases} x & -3y & +2z & = 5 \\ 3x & -8y & +10z & = 22 \\ 2x & -9y & -8z & = -11 \end{cases}$$

$$\xrightarrow{\text{II}-3\text{I}, \text{III}-2\text{I}} \begin{cases} x & -3y & +2z & = 5 \\ y & +4z & = 7 \\ -3y & -12z & = -21 \end{cases}$$

$$\xrightarrow{\text{III}+3\text{II}} \begin{cases} x & -3y & +2z & = 5 \\ y & +4z & = 7 \end{cases} \text{ (Forma triangular)}$$

$$0 & = 0$$

A terceira equação é indeterminada. Neste caso, introduzimos o parâmetro z = t e calculamos x e y em função do parâmetro t. Temos y = 7 - 4z = 7 - 4t e x = 3(7 - 4t) - 2t + 5 = 26 - 14t. Segue que o sistema dado tem infinitas soluções,

$$(x, y, z) = (26 - 14t, 7 - 4t, t)$$
 $t \in \mathbb{R}$.

Observe que as soluções podem também ser escritas na seguinte forma.

$$(x, y, z) = (26, 7, 0) + t(-14, -4, 1) = P + tv,$$

sendo P = (26,7,0) e v = (-14,-4,1). Geometricamente, se trata de uma reta no espaço tridimensional \mathbb{R}^3 passando pelo ponto P e de direção v.

Uma **matriz** é uma tabela retangular formada de números, $M = (a_{ij})_{i,j}$, com i = 1, ..., n, j = 1, ..., m. O número a_{ij} está na linha i, coluna j. Assim M tem n linhas e m colunas, ou seja tem formato $n \times m$. Se o número de linhas de M é igual ao número de colunas, M é chamada matriz quadrada (note que o quadrado é um particular retângulo).

As seguintes matrizes têm formato 2×3 , 1×4 e 3×1 respectivamente.

$$\left(\begin{array}{ccc}
3 & -7 & 0 \\
-2 & 5 & 1
\end{array}\right) \qquad \left(\begin{array}{cccc}
3 & 0 & -1 & 5
\end{array}\right) \qquad \left(\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right)$$

Podemos ver os sistemas lineares como matrizes da seguinte forma.

$$\begin{cases} 3x & -8y & +10z & = 22 \\ x & -3y & +2z & = 5 \\ 2x & -9y & -8z & = -11 \end{cases} \leftrightarrow \begin{pmatrix} 3 & -8 & 10 & 22 \\ 1 & -3 & 2 & 5 \\ 2 & -9 & -8 & -11 \end{pmatrix}$$

A linha vertical entre a terceira e a quarta coluna é usado para separar a coluna dos termos de grau zero. O sistema acima foi resolvido da seguinte forma.

$$\begin{pmatrix}
3 & -8 & 10 & 22 \\
1 & -3 & 2 & 5 \\
2 & -9 & -8 & -11
\end{pmatrix}
\xrightarrow{\text{I} \leftrightarrow \text{II}}
\begin{pmatrix}
1 & -3 & 2 & 5 \\
3 & -8 & 10 & 22 \\
2 & -9 & -8 & -11
\end{pmatrix}$$

$$\longrightarrow_{\text{II}-3\text{I}, \text{ III}-2\text{I}} \begin{pmatrix} 1 & -3 & 2 & 5 \\ 0 & 1 & 4 & 7 \\ 0 & -3 & -12 & -21 \end{pmatrix} \xrightarrow{\text{III}+3\text{II}} \begin{pmatrix} 1 & -3 & 2 & 5 \\ 0 & 1 & 4 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

As matrizes acima têm formato 3×4 .

O sistema linear, formato de m equações nas n incognitas x_1, \ldots, x_n

$$\begin{cases} a_{11}x_1 & +a_{12}x_2 & +a_{13}x_3 & +\dots & +a_{1n}x_n & =b_1 \\ a_{21}x_1 & +a_{22}x_2 & +a_{23}x_3 & +\dots & +a_{2n}x_n & =b_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +a_{m3}x_3 & +\dots & +a_{mn}x_n & =b_m \end{cases}$$

tem matriz associada

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\
a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} & b_m
\end{pmatrix}$$

Esta matriz é também chamada *matriz completa*, ou ampliada, do sistema. A matriz obtida da matriz completa removendo a última coluna

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

é chamada $matriz\ dos\ coeficientes$ do sistema. Por exemplo, a_{23} (o coeficiente que aparece na segunda linha, terceira coluna) é o coeficiente de x_3 na segunda equação.

Os passos descritos no metodo de eliminação são chamados de *operações elementares de linha*, e são os seguintes.

- (1) Multiplicar uma linha por uma constante não nula.
- (2) Permutar duas linhas.
- (3) Adicionar um múltiplo constante de uma linha a uma outra linha.

Definição 1 (Matrizes linha-equivalentes). Duas matrizes são denominadas linha-equivalentes se uma delas pode ser obtida da outra através de uma sequência (finita) de operações elementares de linha.

Como as operações elementares de linha são reversíveis (veja o arquivo da aula 1), é claro que se a matriz A é linha-equivalente à matriz B, então B é linha-equivalente a A.

Por exemplo, vimos nas contas acima que as duas matrizes seguintes são linha-equivalentes.

$$\begin{pmatrix}
3 & -8 & 10 & 22 \\
1 & -3 & 2 & 5 \\
2 & -9 & -8 & -11
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -3 & 2 & 5 \\
0 & 1 & 4 & 7 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

É claro que se as matrizes completas de dois sistemas lineares são linha-equivalentes então os dois sistemas têm o mesmo conjunto-solução.

Observe que a matriz nula

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

é linha-equivalente apenas a si mesma, pois qualquer operação elementar de linha não a altera.

A matriz obtida acima após o processo de eliminação é um exemplo de matriz escalonada.

Definição 2 (Matriz escalonada, elementos líderes). A matriz E é dita escalonada se

- (1) Toda linha de E que for inteiramente formada de zeros (se houver) situase abaixo de toda linha que contenha um elemento diferente de zero.
- (2) Em cada linha de E que contenha um elemento diferente de zero o primeiro elemento diferente de zero situa-se à direita do primeiro elemento não nulo da linha precedente (se houver uma linha precedente).

O primeiro elemento não nulo (a partir da esquerda) em cada uma das linhas não nulas chama-se elemento líder.

As seguintes matrizes são escalonadas e os números em negrito são os elementos líderes da matriz.

$$\left(\begin{array}{ccccccc}
\mathbf{2} & -1 & 0 & 4 & 7 \\
0 & \mathbf{1} & 2 & 0 & -5 \\
0 & 0 & 0 & \mathbf{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \qquad \left(\begin{array}{cccccccc}
\mathbf{1} & -3 & 2 & 5 \\
0 & \mathbf{1} & 4 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)$$

As seguintes matrizes não são escalonadas.

$$\left(\begin{array}{cccc}
1 & 3 & -2 \\
0 & 0 & 0 \\
0 & 1 & 5
\end{array}\right) \qquad \left(\begin{array}{cccc}
0 & 1 & 5 & 0 \\
1 & 3 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \qquad \left(\begin{array}{ccccc}
1 & 1 & 1 & 0 \\
2 & 2 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

3.1. Exercícios.

(1) (Livro 1.2 (8)) Resolva o sistema (já escalonado)

$$\begin{cases} x_1 - 10x_2 + 3x_3 - 13x_4 = 5 \\ x_3 + 3x_4 = 10 \end{cases}$$

[Use parâmetros $x_2 = s$, $x_4 = t$.]

(2) (Livro 1.2 (15)) Considere o sistema linear

$$\begin{cases} 3x_1 + x_2 - 3x_3 = -4 \\ x_1 + x_2 + x_3 = 1 \\ 5x_1 + 6x_2 + 8x_3 = 8 \end{cases}$$

Utilize operações elementares de linha para transformá-la na sua forma escalonada. Em seguida, resolva o sistema.

(3) (Livro 1.2 (20)) Considere o sistema linear

$$\begin{cases} 2x_1 + 4x_2 - x_3 - 2x_4 + 2x_5 = 6\\ x_1 + 3x_2 + 2x_3 - 7x_4 + 3x_5 = 9\\ 5x_1 + 8x_2 - 7x_3 + 6x_4 + x_5 = 4 \end{cases}$$

Utilize operações elementares de linha para transformá-la na sua forma escalonada. Em seguida, resolva o sistema.

[As variáveis a serem escolhidas como parâmetros são aquelas que não correspondem a elementos líderes na matriz escalonada.]

(4) Resolva o sistema

$$\begin{cases} 3x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \\ x_2 + 8x_3 = 0 \end{cases}$$

(5) Mostre que as duas matrizes 2×2

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \qquad \qquad \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

não são linha-equivalentes.

As variáveis que correspondem a colunas que contêm elementos líderes são denominadas *variáveis líderes*, todas as outras variáveis são chamadas *variáveis livres*. As variáveis livres são aquelas que, na resolução do sistema, são usadas como parâmetros.

Se um sistema linear tem matriz completa escalonada, resolver o sistema é muito fácil. Se escolhem as variáveis livres como parâmetros e se calculam as outras variáveis (as variáveis líderes) em função dos parâmetros. Por exemplo considere o sistema escalonado

$$\begin{cases}
1x_1 & -2x_2 & +3x_3 & +2x_4 & +x_5 & = 10 \\
0x_1 & +0x_2 & +1x_3 & +0x_4 & +2x_5 & = -3 \\
0x_1 & +0x_2 & +0x_3 & +1x_4 & -4x_5 & = 7
\end{cases}$$

$$\begin{pmatrix}
1 & -2 & 3 & 2 & 1 & | 10 \\
0 & 0 & 1 & 0 & 2 & | -3 \\
0 & 0 & 0 & 1 & -4 & | 7
\end{pmatrix}$$

As variáveis líderes são x_1 , x_3 e x_4 . As variáveis livres são x_2 e x_5 . Escolhendo os parâmetros $s=x_2$, $t=x_5$, correspondentes às variáveis livres, obtemos que $x_4=4t+7$, $x_3=-3-2t$ e

$$x_1 = 10 + 2x_2 - 3x_3 - 2x_4 - x_5$$

= 10 + 2s - 3(-3 - 2t) - 2(7 + 4t) - t
= 5 + 2s - 3t

Segue que as soluções são

$$(x_1, x_2, x_3, x_4, x_5) = (5 + 2s - 3t, s, -3 - 2t, 4t + 7, t).$$

Isso significa que qualquer valor (real) dado aos dois parâmetros s,t produz uma solução do sistema. A solução pode também ser escrita como $combinação\ linear\ de\ vetores$, da seguinte forma.

$$(x_1, x_2, x_3, x_4, x_5) = (5 + 2s - 3t, s, -3 - 2t, 4t + 7, t)$$

= $(5, 0, -3, 7, 0) + s(2, 1, 0, 0, 0) + t(-3, 0, -2, 4, 1).$

A ideia para resolver um sistema linear é então de levar a sua matriz completa na forma escalonada por meio de operações elementares de linha, e em seguida resolver o sistema escalonado como explicado acima, usando as variáveis livres como parâmetros. O procedimento para levar uma matriz na forma escalonada é chamado eliminação de Gauss.

A eliminação de Gauss é o seguinte procedimento. Seja A a matriz completa de um sistema linear.

- (1) Localize a primeira coluna de A que contém um elemento não nulo.
- (2) Se o primeiro elemento (de cima) nesta coluna for zero, permute a primeira linha de A com uma linha na qual o elemento correspondente seja diferente de zero.
- (3) Agora o primeiro elemento na nossa coluna é não nulo. Substitua por zero os elementos abaixo dele, na mesma coluna, através da adição de múltiplos apropriados da primeira linha às linhas subjacentes.
- (4) Depois de ter efetuado os passos de 1 a 3, a matriz fica semelhante à matriz abaixo, embora possam existir várias colunas iniciais nulas, ou até

mesmo nenhuma. Execute os passos de 1 a 3 na matriz A_1 , na parte direita inferior, conforme indicado.

(5) Repita este cíclo de passos até obter uma matriz escalonada.

$$A = \begin{pmatrix} 0 & * & * & \dots & * \\ \hline 0 & 0 & & & \\ \vdots & \vdots & & A_1 & \\ 0 & 0 & & & \end{pmatrix}$$

Por exemplo, vamos resolver o sistema

$$\begin{cases}
1x_1 & -2x_2 & +3x_3 & +2x_4 & +x_5 & = 10 \\
2x_1 & -4x_2 & +8x_3 & +3x_4 & +10x_5 & = 7 \\
3x_1 & -6x_2 & +10x_3 & +6x_4 & +5x_5 & = 27
\end{cases}$$

$$\leftarrow$$

$$\begin{pmatrix}
1 & -2 & 3 & 2 & 1 & | & 10 \\
2 & -4 & 8 & 3 & 10 & | & 7 \\
3 & -6 & 10 & 6 & 5 & | & 27
\end{pmatrix}$$

Para isso, vamos executar a eliminação de Gauss.

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 2 & -4 & 8 & 3 & 10 & | & 7 \\ 3 & -6 & 10 & 6 & 5 & | & 27 \end{pmatrix} \xrightarrow{\text{II}-2I} \begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 0 & 0 & 2 & -1 & 8 & | & -13 \\ 3 & -6 & 10 & 6 & 5 & | & 27 \end{pmatrix} \xrightarrow{\text{III}-3I}$$

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 0 & 0 & 2 & -1 & 8 & | & -13 \\ 0 & 0 & 1 & 0 & 2 & | & -3 \end{pmatrix} \xrightarrow{\text{II} \leftrightarrow \text{III}} \begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 0 & 0 & 1 & 0 & 2 & | & -3 \\ 0 & 0 & 2 & -1 & 8 & | & -13 \end{pmatrix} \xrightarrow{\text{III}-2II}$$

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 0 & 0 & 1 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & -1 & 4 & | & -7 \end{pmatrix} \xrightarrow{\text{III}} \begin{pmatrix} 1 & -2 & 3 & 2 & 1 & | & 10 \\ 0 & 0 & 1 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 1 & -4 & | & 7 \end{pmatrix}$$

O sistema escalonado obtido desta forma foi resolvido no exemplo anterior.

4. Operações entre matrizes

Dadas duas matrizes $A=(a_{ij})_{i,j}$ e $B=(b_{ij})_{i,j}$ do mesmo formato $n\times m$, podemos definir a soma de A e B como a matriz que admite $a_{ij}+b_{ij}$ na entrada (i,j). E dado um escalar $c\in\mathbb{R}$, podemos definir cA como sendo a matriz que admite $c\cdot a_{ij}$ na entrada (i,j). Em outras palavras

$$(a_{ij})_{i,j} + (b_{ij})_{i,j} = (a_{ij} + b_{ij})_{i,j}, \qquad c \cdot (a_{ij})_{i,j} = (c \cdot a_{ij})_{i,j}.$$

Assim por exemplo

$$3\begin{pmatrix} 3 & 0 \\ 2 & -7 \end{pmatrix} + \begin{pmatrix} 4 & -3 \\ 9 & 0 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 6 & -21 \end{pmatrix} + \begin{pmatrix} 4 & -3 \\ 9 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 9+4 & 0+(-3) \\ 6+9 & -21+0 \end{pmatrix} = \begin{pmatrix} 13 & -3 \\ 15 & -21 \end{pmatrix}$$

A multiplicação entre matrizes é menos intuitiva que a soma. Vamos primeiro definir o produto entre um vetor linha (uma matriz $n \times 1$) e um vetor coluna (uma matriz $1 \times n$). Isso dá como resultado uma matriz 1×1 , definida como se segue.

$$(a_1 \ a_2 \ \dots \ a_n) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} := (a_1b_1 + a_2b_2 + \dots + a_nb_n)$$

Por exemplo

$$(3\ 0\ 7) \cdot \begin{pmatrix} 5\\2\\-3 \end{pmatrix} := (3 \cdot 5 + 0 \cdot 2 + 7 \cdot (-3)) = (-6)$$

DEFINIÇÃO 3 (Produto entre matrizes). Sejam $A=(a_{ij})_{i,j}$ uma matriz $m\times p$, $B=(b_{ij})_{i,j}$ uma matriz $p\times n$. O produto AB é a matriz $m\times n$ cujo elemento na entrada (i,j) é

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ip}b_{pj}$$
.

Ou seja é o produto entre a i-esima linha de A e a j-esima coluna de B.

Por exemplo

$$\begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 4 & 1 & 4 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} = \begin{pmatrix} a + 4c + 2e & b + 4d + 2f \\ c + 2e & d + 2f \end{pmatrix}.$$

Observe que quando A e B são matrizes quadradas do mesmo formato, os produtos AB e BA fazem sentido mas em geral são diferentes. Por exemplo

$$\begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 \\ 3 & 7 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 5 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 5 \\ 3 & 7 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} -18 & 14 \\ -22 & 18 \end{pmatrix}.$$

Com essa definição, podemos escrever um sistema linear

$$\begin{cases} 1x_1 & -2x_2 & +3x_3 & +2x_4 & +x_5 & = 10\\ 2x_1 & -4x_2 & +8x_3 & +3x_4 & +10x_5 & = 7\\ 3x_1 & -6x_2 & +10x_3 & +6x_4 & +5x_5 & = 27 \end{cases}$$

como uma equação matricial Ax=b, da seguinte forma.

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 \\ 2 & -4 & 8 & 3 & 10 \\ 3 & -6 & 10 & 6 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 10 \\ 7 \\ 27 \end{pmatrix}. \qquad A \cdot x = b.$$

$$A = \begin{pmatrix} 1 & -2 & 3 & 2 & 1 \\ 2 & -4 & 8 & 3 & 10 \\ 3 & -6 & 10 & 6 & 5 \end{pmatrix}, \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}, \qquad b = \begin{pmatrix} 10 \\ 7 \\ 27 \end{pmatrix}.$$

A estrutura geral de um sistema linear é então Ax = b, da seguinte forma.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}. \qquad A \cdot x = b.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}, \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Seguem algumas propriedades das operações entre matrizes. Obviamente, se aparece uma soma, resp. um produto, entre matrizes, está se supondo que tais matrizes são somáveis, resp. multiplicáveis.

- (1) A + B = B + A. [Comutatividade da soma]
- (2) A + (B + C) = (A + B) + C. [Associatividade da soma]
- (3) $A \cdot BC = AB \cdot C$. [Associatividade do produto]
- (4) $A \cdot (B + C) = AB + AC$. [Distributividade, parte 1]
- (5) $(A+B) \cdot C = AC + BC$. [Distributividade, parte 2]

Essas propriedades podem ser demonstradas usando a fórmula

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

Por exemplo

$$(A(BC))_{ij} = \sum_{k} A_{ik} (BC)_{kj} = \sum_{k} A_{ik} \sum_{h} B_{kh} C_{hj} = \sum_{k,h} A_{ik} B_{kh} C_{hj},$$

$$((AB)C)_{ij} = \sum_{k} (AB)_{ik} C_{kj} = \sum_{k} C_{kj} \sum_{h} A_{ih} B_{hk} = \sum_{k,h} A_{ih} B_{hk} C_{kj}$$

são iguais.

A matriz cujas entradas são todas nulas é chamada matriz nula e indicada com 0. Cuidado: pode acontecer que AB=0 e $A\neq 0$, $B\neq 0$. Por exemplo

$$\left(\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & 2 \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

A matriz identidade $n \times n$ é a seguinte matriz $n \times n$, definida pelo fato de ser $(\mathbb{1}_n)_{ij} = 0$ se $i \neq j$ e $(\mathbb{1}_n)_{ij} = 1$ se i = j.

$$\mathbb{1}_n := \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Por exemplo

$$\mathbb{1}_1 = \begin{pmatrix} 1 \end{pmatrix}, \qquad \mathbb{1}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbb{1}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

É claro que se A é uma matriz $n \times m$ então $\mathbb{1}_n \cdot A = A = A \cdot \mathbb{1}_m$. De fato

$$(\mathbb{1}_n \cdot A)_{ij} = \sum_k (\mathbb{1}_n)_{ik} A_{kj} = A_{ij},$$
$$(A \cdot \mathbb{1}_m)_{ij} = \sum_k A_{ik} (\mathbb{1}_m)_{kj} = A_{ij}.$$

Lembre-se que uma matriz A é dita quadrada se tem formato $n \times n$, ou seja se o número de linhas de A é igual ao número de colunas de A.

5. Matriz inversa

Observe que dado o sistema linear Ax = b, se existe uma "inversa" A^{-1} da matriz A, podemos esperar que multiplicando a esquerda os dois membros de Ax = b por A^{-1} obteriamos $x = A^{-1}Ax = A^{-1}b$, a solução do sistema. Obviamente, essa ideia precisa ser formalizada com precisão.

DEFINIÇÃO 4 (Matriz inversível). A matriz quadrada A, de formato $n \times n$, é dita inversível se existe uma matriz quadrada B, do mesmo formato de A, tal que $AB = \mathbb{1}_n$ e $BA = \mathbb{1}_n$.

Observe que se A é inversível então existe uma única matriz quadrada B, do mesmo formato de A, tal que $AB = \mathbb{1}_n$ e $BA = \mathbb{1}_n$. De fato a existência de B segue pela definição, e a unicidade segue do seguinte raciocínio: se B' é uma outra matriz com essas propriedades, então

$$B' = B' \cdot \mathbb{1}_n = B' \cdot AB = B'A \cdot B = \mathbb{1}_n \cdot B = B.$$

Essa única matriz B é chamada matriz inversa de A e denotada por A^{-1} .

Por exemplo

$$\begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 4 & -3 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$\implies \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & -3 \\ -1 & 1 \end{pmatrix}.$$

Segue que para resolver o sistema linear

$$\left(\begin{array}{cc} 1 & 3 \\ 1 & 4 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right)$$

é suficiente multiplicar ambos os membros a esquerda por $\left(\begin{array}{cc} 4 & -3 \\ -1 & 1 \end{array}\right)$, obtendo

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} 4 & -3 \\ -1 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 3 \\ 1 & 4 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} 4 & -3 \\ -1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \end{array}\right) = \left(\begin{array}{cc} -2 \\ 1 \end{array}\right).$$

Ou seja a única solução é (x,y)=(-2,1).

5.1. Exercícios.

(1) (Livro 1.4 (2)) Calcule

$$5\left(\begin{array}{ccc} 2 & 0 & -3 \\ -1 & 5 & 6 \end{array}\right) - 3\left(\begin{array}{ccc} -2 & 3 & 1 \\ 7 & 1 & 5 \end{array}\right).$$

(2) (Livro 1.4 (8)) Sejam

$$A := \begin{pmatrix} 1 & 0 & 3 \\ 2 & -5 & 4 \end{pmatrix}, \qquad B := \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 6 & 5 \end{pmatrix}.$$

Determine se o produto AB existe e neste caso o calcule. Faça a mesma coisa com BA.

(3) (Livro 1.4 (20)) Escreva o seguinte sistema na forma matricial Ax = b. Em seguida, encontre a solução em forma vetorial.

$$\begin{cases} x_1 - 3x_2 + 7x_5 = 0 \\ x_3 - 2x_5 = 0 \\ x_4 - 10x_5 = 0 \end{cases}$$

- (4) (Livro 1.4 (23)) Considere $A = \begin{pmatrix} 2 & 1 \ 3 & 2 \end{pmatrix}$. Encontre a inversa de A seguindo o seguinte procedimento. Seja $B = \begin{pmatrix} x & y \ z & w \end{pmatrix}$ e seja $\mathbb{1}_2 = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$. Iguale os elementos correspondentes dos dois membros da equação $AB = \mathbb{1}_2$. Daí, resolva as quatro equações resultantes para x, y, z, w. Finalmente, verifique que $BA = \mathbb{1}_2$.
- (5) Sejam A e B duas matrizes 2×2 e suponha A inversível. Suponha que AB = 0, a matriz nula. Mostre que B = 0.

6. Como calcular a matriz inversa

Seja A uma matriz quadrada de formato $n \times n$. Seja $\mathbb{1}_n$ a matriz identidade $n \times n$. Uma matriz B é dita inversa de A se $AB = \mathbb{1}_n$ e $BA = \mathbb{1}_n$. Se B existir, é única, pois se C é uma matriz com as mesmas propriedades de B, então

$$C = C \cdot \mathbb{1}_n = C \cdot AB = CA \cdot B = \mathbb{1}_n \cdot B = B.$$

A inversa de A, se existir, é indicada com A^{-1} . Neste caso, A é dita inversível.

Observe que dado o sistema linear Ax = b, se existe a inversa A^{-1} da matriz A, multiplicando a esquerda os dois membros de Ax = b por A^{-1} obtemos $x = A^{-1}Ax = A^{-1}b$, ou seja a solução do sistema é $A^{-1}b$.

Seguem algumas propriedades básicas.

(1) Um produto de duas matrizes inversíveis é uma matriz inversível, pois se $A,\ B$ são $n\times n$ e inversíveis, com inversas A^{-1} e B^{-1} respectivamente, então

$$AB \cdot B^{-1}A^{-1} = \mathbb{1}_n = B^{-1}A^{-1} \cdot AB,$$

ou seja

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Observe que em geral $(AB)^{-1}$ não é igual a $A^{-1}B^{-1}$ (!).

(2) Um produto de um número finito qualquer de matrizes inversíveis $n \times n$ é uma matriz inversível. Especificamente,

$$(A_1 \cdot \ldots \cdot A_n)^{-1} = A_n^{-1} \cdot \ldots \cdot A_1^{-1},$$

sendo $(A_1 \cdot \ldots \cdot A_n) \cdot (A_n^{-1} \cdot \ldots \cdot A_1^{-1}) = \mathbb{1}_n$ e $(A_n^{-1} \cdot \ldots \cdot A_1^{-1}) \cdot (A_1 \cdot \ldots \cdot A_n) = \mathbb{1}_n$.

- (3) Se A, B, U são matrizes $n \times n$ tais que U é inversível e B = AU então A é inversível se e somente se B é inversível. De fato, se A é inversível então $B^{-1} = (AU)^{-1} = U^{-1}A^{-1}$ e se B é inversível então $A = BU^{-1}$ logo $A^{-1} = UB^{-1}$.
- (4) Se uma matriz A de formato $n \times n$ admite uma linha nula então não é inversível. De fato, Se a k-esima linha de A é nula, ou seja $a_{kj} = 0$ para todo j, então seja B a matriz $(b_{ij})_{i,j}$ tal que $b_{ik} = 1$ para todo i e $b_{ij} = 0$ se $j \neq k$ e i qualquer. Ou seja B é a matriz cuja k-esima coluna é $(1,1,\ldots,1)$ e as outras colunas são nulas. Se $l,h \in \{1,\ldots,n\}$,

$$(BA)_{lh} = \sum_{t} b_{lt} a_{th} = b_{lk} a_{kh} = 1 \cdot 0 = 0,$$

ou seja BA é a matriz nula: BA = 0. Isso implica que A não é inversível pois se fosse inversível teriamos $0 = 0A^{-1} = (BA)A^{-1} = B(AA^{-1}) = B\mathbb{1}_n = B$, ou seja B = 0, que é falso.

Seja E_{ij} a matriz $n \times n$ que tem 1 na posição (i,j) e 0 nas outras posições. Seja λ um escalar e sejam

$$S_{ij}(\lambda) := \mathbb{1}_n + \lambda E_{ij} \quad \text{se } i \neq j,$$

$$S_{ii}(\lambda) := \mathbb{1}_n + (\lambda - 1)E_{ii},$$

$$T_{ij} := \mathbb{1}_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}.$$

Se A é uma matriz $n \times m$ e $i \neq j$, então $S_{ij}(\lambda) \cdot A$ é igual à matriz obtida de A substituindo a i-esima linha L_i de A com $L_i + \lambda L_j$, sendo L_j a j-esima linha de A. Analogamente, $T_{ij} \cdot A$ é a matriz obtida de A trocando a i-esima linha com a j-esima. O produto $S_{ii}(\lambda) \cdot A$ é igual à matriz obtida de A multiplicando a i-esima linha por λ . Por exemplo, se A é uma matriz 3×2 ,

$$S_{12}(\lambda) \cdot A = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + \lambda a_{21} & a_{12} + \lambda a_{22} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}.$$

$$T_{12} \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix}.$$

Observe que se $i \neq j$ então $S_{ij}(\lambda)$ e T_{ij} são inversíveis, de fato, lembrando que $E_{ij}E_{st}$ é a matriz nula exceto no caso j=s, e $E_{ij}E_{jt}=E_{it}$, obtemos

$$\begin{split} S_{ij}(\lambda) \cdot S_{ji}(-\lambda) &= (\mathbb{1}_n + \lambda E_{ij}) \cdot (\mathbb{1}_n - \lambda E_{ij}) = \mathbb{1}_n - \lambda E_{ji} + \lambda E_{ij} = \mathbb{1}_n. \\ S_{ji}(-\lambda) \cdot S_{ij}(\lambda) &= (\mathbb{1}_n - \lambda E_{ij}) \cdot (\mathbb{1}_n + \lambda E_{ij}) = \mathbb{1}_n + \lambda E_{ji} - \lambda E_{ij} = \mathbb{1}_n. \\ T_{ij} \cdot T_{ij} &= (\mathbb{1}_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}) \cdot (\mathbb{1}_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}) \\ &= \mathbb{1}_n - E_{ii} - E_{jj} + E_{ij} + E_{ji} - E_{ii} + E_{ii} - E_{ij} - E_{jj} + E_{jj} \\ &- E_{ji} + E_{ij} - E_{ij} + E_{ii} + E_{ji} - E_{ji} + E_{jj} = \mathbb{1}_n. \end{split}$$

Além disso se $\lambda \neq 0$ então $S_{ii}(\lambda) \cdot S_{ii}(\lambda^{-1}) = \mathbb{1}_n$ e $S_{ii}(\lambda^{-1}) \cdot S_{ii}(\lambda) = \mathbb{1}_n$, ou seja $S_{ij}(\lambda)$ é inversível no caso i = j quando $\lambda \neq 0$. Além disso, $S_{ii}(0)$ não é inversível pois a sua i-esima linha é nula.

Seja A uma matriz $n \times n$. Se existir uma eliminação de Gauss que leva A para $\mathbb{1}_n$ então existem matrizes B_1, \ldots, B_k , de tipo $S_{ij}(\lambda)$ ou T_{ij} cada, tais que

$$B_k \cdot B_{k-1} \cdot \ldots \cdot B_1 \cdot A = \mathbb{1}_n$$

logo, multiplicando a esquerda pelas inversas de B_k, \ldots, B_1 ,

$$A = B_1^{-1} \cdot B_2^{-1} \cdot \ldots \cdot B_k^{-1}$$

é inversível, sendo um produto de matrizes inversíveis.

Reciprocamente, seja A uma matriz $n \times n$ inversível. No processo de escalonamento de A (eliminação de Gauss) não pode nunca aparecer uma linha nula, pois toda matriz obtida a partir de A por meio da eliminação de Gauss é inversível, sendo um produto de A com matrizes inversíveis (correspondentes às operações elementares). Segue que a forma escalonada de A é do tipo seguinte, com todos os elementos diagonais a_{ii} não nulos, pois se um deles fosse nulo então a última linha seria nula, por definição de matriz escalonada.

$$\begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix} \xrightarrow{a_{ii}^{-1}L_{i}} \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

É claro que, por meio de operações elementares de linha, é possível levar esta matriz à matriz identidade $\mathbb{1}_n$. Isso mostra que

Teorema 1. Uma matriz $n \times n$ é inversível se e somente se é linha-equivalente à matriz identidade $n \times n$.

Um algoritmo prático para calcular a inversa de uma matriz e que segue diretamente da discussão acima é o seguinte: dada a matriz A, de formato $n \times n$, proceder com a eliminação de Gauss com a matriz $(A|\mathbb{1}_n)$ até chegar, se possível, em uma matriz da forma $(\mathbb{1}_n|B)$. A matriz B assim obtida é exatamente a inversa de A.

Por exemplo,

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{II}-2\text{II}+2\text{III}} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{\text{I}+\text{II}-\text{III}} \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & -1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{-II}} \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 1 & 0 & 2 & -1 & -2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

logo

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -1 & 1 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{array}\right)$$

Se não for possível chegar em uma matriz que tenha a identidade do lado esquerdo, então a matriz considerada não é inversível. Por exemplo a matriz $\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ não é inversível pois

$$\left(\begin{array}{cc|c}2&2&1&0\\1&1&0&1\end{array}\right) \xrightarrow[\text{I-II}]{} \left(\begin{array}{cc|c}1&1&1&-1\\1&1&0&1\end{array}\right) \xrightarrow[\text{II-I}]{} \left(\begin{array}{cc|c}1&1&1&-1\\0&0&-1&2\end{array}\right)$$

e não é possível continuar a eliminação para obter a matriz identidade do lado esquerdo.

No caso de uma matriz 2×2 , $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, observe que

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \left(\begin{array}{cc} ad-bc & 0 \\ 0 & ad-bc \end{array}\right).$$

Isso implica que A é inversível se e somente se $ad-bc\neq 0$, e neste caso

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{pmatrix}.$$

O número ad - bc é chamado determinante da matriz A, det(A) = ad - bc.

Por exemplo $\begin{pmatrix} 3 & 1 \\ 7 & 3 \end{pmatrix}$ é inversível pois o seu determinante é $3\cdot 3 - 1\cdot 7 = 2$, e a sua inversa é

$$\frac{1}{2} \cdot \left(\begin{array}{cc} 3 & -1 \\ -7 & 3 \end{array} \right) = \left(\begin{array}{cc} 3/2 & -1/2 \\ -7/2 & 3/2 \end{array} \right).$$

Se $ad - bc \neq 0$ então é possível resolver o sistema linear

$$\begin{cases} ax + by = r \\ cx + dy = s \end{cases} \longleftrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \\ s \end{pmatrix}$$

multiplicando à esquerda pela inversa da matriz dos coeficientes, obtendo

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \cdot \begin{pmatrix} r \\ s \end{pmatrix},$$

ou seja (veja também a "regra de Cramer")

$$x = \frac{dr - bs}{ad - bc},$$
 $y = \frac{as - cr}{ad - bc}.$

a única solução do sistema.

6.1. Exercícios.

(1) Resolva o sistema linear Ax = b multiplicando à esquerda por A^{-1} nos seguintes casos.

(a) (Livro 1.5 (5))
$$A = \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$$
, $b = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.

(b) (Livro 1.5 (8))
$$A = \begin{pmatrix} 8 & 15 \\ 5 & 10 \end{pmatrix}$$
, $b = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$.

(2) (Livro 1.5 (15,17,21)) Calcule a inversa de cada uma das seguintes matrizes.

$$\left(\begin{array}{ccc} 1 & 1 & 5 \\ 1 & 4 & 13 \\ 3 & 2 & 12 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & -3 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{array}\right), \quad \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 0 & 0 & 1 \end{array}\right).$$

- (3) (Livro 1.5 (24)) Sejam $A=\begin{pmatrix}7&6\\8&7\end{pmatrix},\ B=\begin{pmatrix}2&0&4\\0&5&-3\end{pmatrix}$. Encontre uma matriz C tal que AC=B.
- (4) Mostre que as seguintes matrizes não são inversíveis.

$$\left(\begin{array}{ccccc} 5 & 5 & 5 \\ 4 & 4 & 3 \\ 1 & 1 & 2 \end{array}\right), \quad \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 0 \\ 0 & 4 & 4 & 3 \end{array}\right), \quad \left(\begin{array}{ccccccc} 1 & 2 & 3 & 0 & 4 \\ 5 & 6 & 7 & 0 & 8 \\ 9 & 10 & 11 & 0 & 12 \\ 13 & 14 & 15 & 0 & 16 \end{array}\right)$$

(5) Mostre que se uma matriz quadrada tem duas linhas iguais então não é inversível.

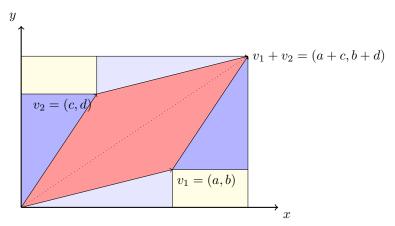
7. Determinante

Já definimos o determinante de uma matriz 2×2 como sendo

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = ad - bc.$$

Já observamos que a matriz A de formato 2×2 é inversível se e somente se $\det(A) \neq 0$. Queremos definir o determinante de uma qualquer matriz $n \times n$, com n qualquer, de forma que seja verdade que A é inversível se e somente se $\det(A) \neq 0$.

Segue uma útil interpretação geométrica. O determinante de uma matriz que contém os vetores v_1, \ldots, v_n como colunas é igual (em valor absoluto) ao volume (n-dimensional) da figura determinada por eles. Isso é fácil para entender geometricamente no caso 2×2 . A área da figura determinada pelos vetores linha (a,b), (c,d) da matriz acima é ad-bc, como mostrado pelo seguinte argumento.



A área vermelha do paralelogramo determinado pelos dois vetores $v_1=(a,b)$ e $v_2=(c,d)$ pode ser calculada como a área do retângulo grande cuja base é a+c e cuja altura é b+d menos a soma das áreas dos dois retângulos pequenos e dos quatro triângulos na figura. Segue que a área do paralelogramo é

$$(a+c)(b+d) - 2 \cdot bc - 2 \cdot cd/2 - 2 \cdot ab/2 = ad - bc.$$

Se trocarmos as duas linhas, o determinante troca de sinal, pois

$$\det\left(\begin{array}{cc} c & d \\ a & b \end{array}\right) = bc - ad = -(ad - bc).$$

Isso mostra que o determinante de uma matriz 2×2 é uma área orientada, ou seja, é um número positivo se os vetores são tomados no sentido horário, negativo se os vetores são tomados no sentido anti-horário (o sentido é determinado pelo ângulo menor que 180 graus entre os dois vetores). Além disso, perceba que se multiplicarmos uma das linhas por um escalar λ , o determinante da matriz resultante fica multiplicado por λ também. Essas propriedades vão valer também no caso $n\times n$ geral.

Perceba que se dois vetores são múltiplos um do outro, então a área determinada por eles é nula. De fato, o determinante da correspondente matriz é nulo também.

É possível mostrar que se A,B são matrizes $n \times n$ tais que $AB = \mathbb{1}_n$ então $BA = \mathbb{1}_n$. A ideia é mostrar que se $AB = \mathbb{1}_n$ então existe uma matriz C tal que $BC = \mathbb{1}_n$, assim

$$A = A\mathbb{1}_n = A(BC) = (AB)C = \mathbb{1}_n C = C,$$

logo $BA = \mathbb{1}_n$.

Seja E_{ij} a matriz $n \times n$ que tem 1 na posição (i,j) e 0 nas outras posições. Seja λ um escalar e sejam

$$S_{ij}(\lambda) := \mathbb{1}_n + \lambda E_{ij} \quad \text{se } i \neq j,$$

$$S_{ii}(\lambda) := \mathbb{1}_n + (\lambda - 1)E_{ii},$$

$$T_{ij} := \mathbb{1}_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}.$$

Se A é uma matriz $n \times m$ e $i \neq j$, então $S_{ij}(\lambda) \cdot A$ é igual à matriz obtida de A substituindo a i-esima linha L_i de A com $L_i + \lambda L_j$, sendo L_j a j-esima linha de A. Analogamente, $T_{ij} \cdot A$ é a matriz obtida de A trocando a i-esima linha com a j-esima. O produto $S_{ii}(\lambda) \cdot A$ é igual à matriz obtida a partir de A multiplicando a sua i-esima linha por λ .

TEOREMA 2. Existe uma única função $\det: M_n(\mathbb{R}) \to \mathbb{R}$ tal que

- (1) $\det(\mathbb{1}_n) = 1$.
- (2) $\det(T_{ij}A) = -\det(A)$ para todo $i \neq j$ em $\{1, \ldots, n\}$, $A \in M_n(\mathbb{R})$.
- (3) $\det(S_{ii}(\lambda)A) = \lambda \det(A)$ para todo $\lambda \in \mathbb{R}$, $A \in M_n(\mathbb{R})$, i = 1, ..., n.
- (4) $\det(S_{ij}(\lambda)A) = \det(A)$ para todo $\lambda \in \mathbb{R}$, $A \in M_n(\mathbb{R})$, $i \neq j$ em $\{1, \ldots, n\}$.

DEMONSTRAÇÃO. A unicidade é mais fácil: as propriedades listadas implicam que o valor de $\det(A)$ é determinado pelo valor de $\det(E)$ onde E é a matriz escalonada de A, além disso $\det(A) = c \cdot \det(E)$ onde $c \in \mathbb{R}$ é não nulo. Temos dois casos: E pode ter ou não ter linhas nulas. Se a i-esima linha de E é nula então $E = S_{ii}(0)E$ logo $\det(E) = 0$ pelas propriedades listadas, segue que $\det(A) = 0$. Se E

não tem linhas nulas então E é uma matriz triangular superior, e o seu determinante é o produto dos elementos diagonais, $e_{11} \cdot \ldots \cdot e_{nn}$. Segue que $\det(A) = c \cdot e_{11} \cdot \ldots \cdot e_{nn}$.

Existência. Fixe um índice i. Indicaremos com a_{ij} o elemento de A na posição (i,j). É possível mostrar que

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(C_{ij}),$$

onde C_{ij} é a matriz obtida de A eliminando a i-esima linha e a j-esima coluna, satisfaz as condições listadas.

TEOREMA 3. Uma matriz A de formato $n \times n$ é inversível se e somente se $det(A) \neq 0$.

Demonstração. Observe que A é inversível se e somente se é linha-equivalente a $\mathbb{1}_n$. Por outro lado, o teorema anterior implica que se A e B são linha equivalentes então $\det(A) \neq 0$ se e somente se $\det(B) \neq 0$, logo se A é inversível então $\det(A) \neq 0$ sendo $\det(\mathbb{1}_n) = 1 \neq 0$. Reciprocamente, se A não é inversível e B é a forma escalonada de A, então B contém uma linha nula, seja ela a i-esima linha, L_i . Segue que $B = S_{ii}(0)B$ logo $\det(B) = \det(S_{ii}(0)B) = 0 \cdot \det(B) = 0$ e isso implica que $\det(A) = 0$ pois A e B são linha-equivalentes.

Algoritmo de Laplace. Dada uma matriz A de formato $n \times n$, para todo $i, j \in \{1, \ldots, n\}$ seja C_{ij} a matriz obtida a partir de A eliminando a sua i-esima linha e a sua j-esima coluna (o seu determinante é chamado "cofator"). Seja a_{ij} o elemento de A na posição (i, j). É possível mostrar que, para todo $r, s \in \{1, \ldots, n\}$, temos

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+s} a_{is} \det(C_{is}) = \sum_{j=1}^{n} (-1)^{r+j} a_{rj} \det(C_{rj}).$$

Observe que os sinais se distribuem como em um tabuleiro de xadrez,

$$\begin{pmatrix}
+ & - & + & - & + \\
- & + & - & + & - \\
+ & - & + & - & + \\
- & + & - & + & - \\
+ & - & + & - & +
\end{pmatrix}$$

O sinal na posição (i, j) é dado por $(-1)^{i+j}$.

No caso 3×3 , temos a "regra de Sarrus":

$$\det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{11} \det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \det\begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det\begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

A fórmula acima é fácil de lembrar: o determinante de uma matriz 3×3 é a soma dos produtos "diagonais" menos a soma dos produtos "antidiagonais".

Se A é uma matriz $n\times n$ inversível, o seu escalonamento corresponde a um produto

$$B_k \cdot B_{k-1} \cdot \ldots \cdot B_1 \cdot A = \mathbb{1}_n,$$

onde cada B_i é uma matriz elementar, ou seja uma matriz do tipo $S_{ij}(\lambda)$ ou T_{ij} , com $i \neq j$, ou $S_{ii}(\lambda)$ com $\lambda \neq 0$. Já vimos que as matrizes elementares são inversíveis, e as suas inversas são matrizes elementares, pois $S_{ij}(\lambda)^{-1} = S_{ij}(-\lambda)$ se $i \neq j$, $S_{ii}(\lambda)^{-1} = S_{ii}(\lambda^{-1})$ e $T_{ij}^{-1} = T_{ij}$. Segue da fórmula acima que

$$A = B_1^{-1} \cdot B_2^{-1} \cdot \ldots \cdot B_k^{-1},$$

ou seja A é um produto de matrizes elementares.

TEOREMA 4 (Binet). Sejam A, B duas matrizes $n \times n$. Então $\det(AB) = \det(A)\det(B)$.

DEMONSTRAÇÃO. Se A não é inversível então AB não é inversível, pois se fosse $ABC = \mathbb{1}_n$ então BC seria a inversa de A. Se B não é inversível então AB não é inversível, pois se fosse $CAB = \mathbb{1}_n$ então CA seria a inversa de B. Isso implica que se $\det(A) = 0$ ou $\det(B) = 0$ então $\det(AB) = 0$. Por outro lado, se $\det(AB) = 0$, então AB não é inversível, e como um produto de matrizes inversíveis é inversível, segue que pelo menos uma entre A e B não é inversível, ou seja $\det(A) = 0$ ou $\det(B) = 0$. Em todos estes casos $\det(AB) = \det(A) \det(B)$.

Agora suponha A, B inversíveis, assim AB também é inversível. Como A e B são produtos de matrizes elementares, é suficiente mostrar o resultado quando A é uma matriz elementar, mas isso foi já observado.

Uma consequência do teorema de Binet é que operações elementares nas colunas de uma matriz quadradas alteram o determinante exatamente como as operações elementares de linha. Isso é porque fazer uma operação elementar nas colunas é equivalente a multiplicar à direita por uma matriz elementar, e se $i \neq j$

$$\det(A \cdot T_{ij}) = \det(A) \cdot \det(T_{ij}) = -\det(A),$$

$$\det(A \cdot S_{ij}(\lambda)) = \det(A) \cdot \det(S_{ij}(\lambda)) = \det(A),$$

$$\det(A \cdot S_{ii}(\lambda)) = \det(A) \cdot \det(S_{ii}(\lambda)) = \lambda \det(A).$$

O determinante de uma matriz pode ser calculado também escalonando-a, lembrando que uma operação do tipo λL_i multiplica o determinante por λ , uma troca de duas linhas troca o sinal do determinante, e uma operação do tipo $L_i + \lambda L_j$ não altera o determinante. Por exemplo, para calcular o determinante da seguinte matriz podemos escaloná-la.

$$\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 3 & 0 & 2 \end{pmatrix} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 0 & 2 \end{pmatrix} \xrightarrow{\text{III}-2\text{I}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -6 & -7 \end{pmatrix} \xrightarrow{\text{III}-6\text{II}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

Segue que o determinante de A é igual a -(-5)=5 (lembre-se da troca de duas linhas que foi feita no começo). O determinante de uma matriz quadrada escalonada (ou seja, uma matriz na forma triangular) é igual ao produto dos elementos diagonais.

Se A é uma matriz quadrada $n \times n$, cujo determinante $\det(A)$ é diferente de zero, existe uma matriz B, chamada de matriz dos cofatores, tal que $A \cdot B = \det(A) \cdot \mathbbm{1}_n$. A componente (i,j) de B é dada por $(-1)^{i+j}$ multiplicado pelo determinante da matriz obtida a partir de A eliminando a sua j-esima linha e a sua i-esima coluna (NB. i e j são trocados!). Segue que para calcular a inversa de uma matriz é suficiente dividir a matriz dos cofatores pelo determinante.

Por exemplo

$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}^{-1} = \frac{1}{-10} \begin{pmatrix} -1 & -4 & 3 \\ -2 & 2 & -4 \\ 5 & 0 & -5 \end{pmatrix} = \begin{pmatrix} 1/10 & 2/5 & -3/10 \\ 1/5 & -1/5 & 2/5 \\ -1/2 & 0 & 1/2 \end{pmatrix}.$$

7.1. Exercícios.

(1) Calcule o determinante das seguintes matrizes. Se o determinante for diferente de zero, calcule a matriz inversa.

$$\begin{pmatrix} -8 & 7 \\ 2 & -2 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & -2 \\ 9 & 9 & 8 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 10 & 11 & 24 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 7 \\ 1 & 2 & 1 \\ 5 & 5 & 5 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 & 2 & 1 \\ 1 & -1 & 0 & -2 \\ -2 & 0 & 1 & 8 \\ 2 & 3 & 4 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 18 \\ 1 & 1 & 41 \\ 1 & 1 & 240 \end{pmatrix},$$

$$\begin{pmatrix} 4 & 11 & 25 & 798 \\ 0 & 10 & 6 & 24 \\ 0 & 0 & -1 & 81 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 2 & 2 \\ 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 0 & 2 & 4 & 4 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 9 & 2 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 100 & 101 & 102 & 103 \\ -20 & -20 & -20 & -19 \\ 1 & 2 & 3 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

(2) Mostre que o seguinte sistema linear admite uma única solução (atenção: não precisa encontrar a solução).

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 0 \\ x_2 + x_4 = 28 \\ 4x_1 + 3x_2 - x_3 + x_4 = 2 \\ -x_1 + x_2 - x_3 + x_4 + 4x_5 = -1 \end{cases}$$

26

8. Resolução dos exercícios

A1 - 7 de junho de 2022

Use o metodo da eliminação para determinar se o sistema linear dado é compatível ou incompatível. Para cada sistema compatível, encontre a solução, se for única. Caso contrário, descreva o infinito conjunto-solução em termos de um parâmetro arbitrário t.

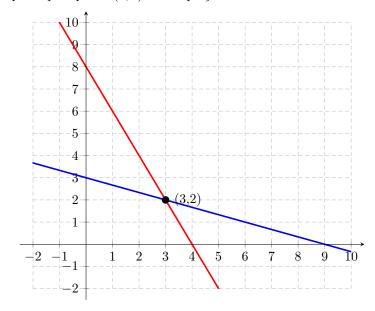
(1) (Livro 1.1 (1))

$$\begin{cases} x + 3y = 9 \\ 2x + y = 8 \end{cases}$$

Neste caso, faça também um desenho das retas envolvidas.

Temos y=8-2x, e substituindo na primeira equação x+3(8-2x)=9, ou seja -5x=-15. Resolvendo obtemos x=3. Substituindo, y=8-2x=8-6=2. Segue que a única solução do sistema é (x,y)=(3,2).

A equação x + 3y = 9 é equivalente a y = -x/3 + 3, tem coeficiente angular -1/3 e passa pelo ponto (0,3). É a equação da reta azul. A equação 2x + y = 8 é equivalente a y = -2x + 8, tem coeficiente angular -2 e passa pelo ponto (0,8). É a equação da reta vermelha.



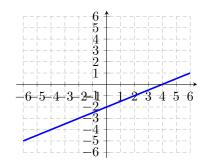
(2) (Livro 1.1 (8))

$$\begin{cases} 3x - 6y = 12 \\ 2x - 4y = 8 \end{cases}$$

Neste caso, faça também um desenho das retas envolvidas.

Dividindo a primeira equação por 3 e a segunda por 2 obtemos x-2y=4 nos dois casos, logo as duas equações são equivalentes a y=x/2-2. Segue que as soluções do sistema são todos os pontos da forma (x,x/2-2).

27



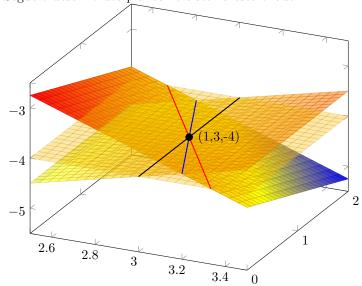
(3) (Livro 1.1 (11))

$$\left\{ \begin{array}{l} 2x + 7y + 3z = 11 \\ x + 3y + 2z = 2 \\ 3x + 7y + 9z = -12 \end{array} \right.$$

$$\left\{ \begin{array}{llll} 2x & +7y & +3z & =11 \\ x & +3y & +2z & =2 \\ 3x & +7y & +9z & =-12 \end{array} \right. \xrightarrow{\mathrm{I}\leftrightarrow \mathrm{II}} \left\{ \begin{array}{llll} x & +3y & +2z & =2 \\ 2x & +7y & +3z & =11 \\ 3x & +7y & +9z & =-12 \end{array} \right.$$

Obtemos $z=-4,\,y=z+7=-4+7=3,\,x=-3y-2z+2=-9+8+2=1.$ A única solução é (x,y,z)=(1,3,-4).

Segue o desenho dos planos no sistema escalonado.



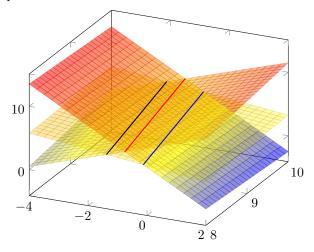
(4) (Livro 1.1 (17))

$$\begin{cases} 2x - y + 4z = 7 \\ 3x + 2y - 2z = 3 \\ 5x + y + 2z = 15 \end{cases}$$

$$\begin{cases} 2x & -y & +4z & = 7 \\ 3x & +2y & -2z & = 3 & \xrightarrow{\text{II}-\text{I}} \\ 5x & +y & +2z & = 15 \end{cases} \xrightarrow{\text{II}-\text{II}} \begin{cases} x & +3y & -6z & = -4 \\ 2x & -y & +4z & = 7 \\ 5x & +y & +2z & = 15 \end{cases}$$

$$\xrightarrow{\text{III}-5\text{I}} \begin{cases} x & +3y & -6z & = -4 \\ -7y & +16z & = 15 \\ -14y & +32z & = 35 \end{cases} \xrightarrow{\text{III}-2\text{II}} \begin{cases} x & +3y & -6z & = -4 \\ -7y & +16z & = 15 \\ 0 & = 5 \end{cases}$$

O sistema não tem solução. Geometricamente, as três retas obtidas interceptando os planos dois a dois têm a mesma direção (são paralelas). Segue desenho dos planos no sistema não escalonado.



A2 - 9 de junho

(1) (Livro 1.2 (8)) Resolva o sistema (já escalonado)

$$\begin{cases} x_1 - 10x_2 + 3x_3 - 13x_4 = 5 \\ x_3 + 3x_4 = 10 \end{cases}$$

[Use parâmetros $x_2 = s$, $x_4 = t$.]

Com a escolha sugerida dos parâmetros, podemos calcular x_1 e x_3 em função de s e t. Temos $x_3=10-3x_4=10-3t$ e

$$x_1 = 10x_2 - 3x_3 + 13x_4 + 5 = 10s - 3(10 - 3t) + 13t + 5 = 22t + 10s - 25.$$

Segue que as soluções são

$$(x_1, x_2, x_3, x_4) = (22t + 10s - 25, s, 10 - 3t, t)$$

= $(-25, 0, 10, 0) + s(10, 1, 0, 0) + t(0, 0, -3, 1).$

Se trata das equações paramétricas de um plano que passa pelo ponto (-25,0,10,0) e o seu "plano direção" é gerado pelos vetores (10,1,0,0), (0,0,-3,1).

(2) (Livro 1.2 (15)) Considere o sistema linear

$$\begin{cases} 3x_1 + x_2 - 3x_3 = -4 \\ x_1 + x_2 + x_3 = 1 \\ 5x_1 + 6x_2 + 8x_3 = 8 \end{cases}$$

Utilize operações elementares de linha para transformá-la na sua forma escalonada. Em seguida, resolva o sistema.

$$\begin{pmatrix} 3 & 1 & -3 & | & -4 \\ 1 & 1 & 1 & | & 1 \\ 5 & 6 & 8 & | & 8 \end{pmatrix} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 3 & 1 & -3 & | & -4 \\ 5 & 6 & 8 & | & 8 \end{pmatrix}$$

$$\stackrel{\text{III}-5\text{I}}{\underset{\text{II}-3\text{I}}{\longrightarrow}} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -2 & -6 & | & -7 \\ 0 & 1 & 3 & | & 3 \end{pmatrix} \xrightarrow{\text{II} \leftrightarrow \text{III}} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 3 & | & 3 \\ 0 & 0 & 0 & | & -1 \end{pmatrix}$$

A última equação é 0 = -1, logo o sistema é impossível: não tem solução.

(3) (Livro 1.2 (20)) Considere o sistema linear

$$\begin{cases} 2x_1 + 4x_2 - x_3 - 2x_4 + 2x_5 = 6\\ x_1 + 3x_2 + 2x_3 - 7x_4 + 3x_5 = 9\\ 5x_1 + 8x_2 - 7x_3 + 6x_4 + x_5 = 4 \end{cases}$$

Utilize operações elementares de linha para transformá-la na sua forma escalonada. Em seguida, resolva o sistema.

[As variáveis a serem escolhidas como parâmetros são aquelas que não correspondem a elementos líderes na matriz escalonada.]

$$\begin{pmatrix} 2 & 4 & -1 & -2 & 2 & | & 6 \\ 1 & 3 & 2 & -7 & 3 & | & 9 \\ 5 & 8 & -7 & 6 & 1 & | & 4 \end{pmatrix} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{pmatrix} 1 & 3 & 2 & -7 & 3 & | & 9 \\ 2 & 4 & -1 & -2 & 2 & | & 6 \\ 5 & 8 & -7 & 6 & 1 & | & 4 \end{pmatrix} \xrightarrow{\text{III}-5I} \xrightarrow{\text{II}-2I}$$

$$\begin{pmatrix} 1 & 3 & 2 & -7 & 3 & | & 9 \\ 0 & -2 & -5 & 12 & -4 & | & -12 \\ 0 & -7 & -17 & 41 & -14 & | & -41 \end{pmatrix} \xrightarrow{\text{III}-4II} \begin{pmatrix} 1 & 3 & 2 & -7 & 3 & | & 9 \\ 0 & -2 & -5 & 12 & -4 & | & -12 \\ 0 & 1 & 3 & -7 & 2 & | & 7 \end{pmatrix}$$

$$\xrightarrow{\text{II}+2III} \begin{pmatrix} 1 & 3 & 2 & -7 & 3 & | & 9 \\ 0 & 1 & 3 & -7 & 2 & | & 7 \\ 0 & 0 & 1 & -2 & 0 & | & 2 \end{pmatrix}$$

Escolhemos então $x_4 = s$, $x_5 = t$, segue que $x_3 = 2 + 2s$,

$$x_2 = 7 + 7s - 2t - 3x_3 = 7 + 7s - 2t - 3(2 + 2s) = 1 + s - 2t,$$

$$x_1 = 9 + 7s - 3t - 3x_2 - 2x_3 = 9 + 7s - 3t - 3(1 + s - 2t) - 2(2 + 2s) = 2 + 3t$$

A solução é

$$(x_1, x_2, x_3, x_4, x_5) = (2 + 3t, 1 + s - 2t, 2 + 2s, s, t)$$

= $(2, 1, 2, 0, 0) + s(0, 1, 2, 1, 0) + t(3, -2, 0, 0, 1).$

Se trata do plano que passa por (9,1,2,0,0) e cujo plano direção é gerado por (0,1,2,1,0) e (3,-2,0,0,1).

(4) Resolva o sistema

$$\begin{cases} 3x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \\ x_2 + 8x_3 = 0 \end{cases}$$

$$\left(\begin{array}{ccc|c} 3 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 8 & 0 \end{array}\right) \ \stackrel{\text{I}-3\text{II}}{\underset{\text{I}\leftrightarrow\text{II}}{\longrightarrow}} \ \left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & -5 & -2 & 0 \\ 0 & 1 & 8 & 0 \end{array}\right) \stackrel{\text{II}+5\text{III}}{\underset{\text{II}\leftrightarrow\text{III}}{\longrightarrow}} \ \left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 38 & 0 \end{array}\right)$$

A terceira equação $38x_3 = 0$ dá $x_3 = 0$, substituindo na segunda $x_2 + 8x_3 = 0$ obtemos $x_2 = 0$ e substituindo na primeira $x_1 + 2x_2 + x_3 = 0$ obtemos $x_1 = 0$. Segue que a única solução do sistema é $(x_1, x_2, x_3) = (0, 0, 0)$.

(5) Mostre que as duas matrizes 2×2

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \qquad \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

não são linha-equivalentes.

As matrizes linha-equivalentes a $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ são do tipo $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ com a e b não ambos nulos. As matrizes linha-equivalentes a $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ são do tipo $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$ com a e b não ambos nulos. Não existe nenhuma matriz que seja de ambos esses tipos.

A4 - 21 de junho de 2022

(1) (Livro 1.4 (2)) Calcule

$$5\begin{pmatrix} 2 & 0 & -3 \\ -1 & 5 & 6 \end{pmatrix} - 3\begin{pmatrix} -2 & 3 & 1 \\ 7 & 1 & 5 \end{pmatrix}.$$

O resultado é

$$\left(\begin{array}{cccc} 5 \cdot 2 - 3 \cdot (-2) & 5 \cdot 0 - 3 \cdot 3 & 5 \cdot (-3) - 3 \cdot 1 \\ 5 \cdot (-1) - 3 \cdot 7 & 5 \cdot 5 - 3 \cdot 1 & 5 \cdot 6 - 3 \cdot 5 \end{array}\right) = \left(\begin{array}{ccc} 16 & -9 & -18 \\ -26 & 22 & 15 \end{array}\right).$$

(2) (Livro 1.4 (8)) Sejam

$$A := \begin{pmatrix} 1 & 0 & 3 \\ 2 & -5 & 4 \end{pmatrix}, \qquad B := \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 6 & 5 \end{pmatrix}.$$

Determine se o produto AB existe e neste caso o calcule. Faça a mesma coisa com BA.

$$AB = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -5 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 6 & 5 \end{pmatrix} = \begin{pmatrix} 21 & 15 \\ 35 & 0 \end{pmatrix},$$

$$BA = \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 6 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 3 \\ 2 & -5 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 9 \\ 7 & -20 & 13 \\ 16 & -25 & 38 \end{pmatrix}.$$

(3) (Livro 1.4 (20)) Escreva o seguinte sistema na forma matricial Ax = b. Em seguida, encontre a solução em forma vetorial.

$$\begin{cases} x_1 - 3x_2 + 7x_5 = 0 \\ x_3 - 2x_5 = 0 \\ x_4 - 10x_5 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & -3 & 0 & 0 & 7 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & -10 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

O sistema está já escalonado, a sua matriz completa é

$$\left(\begin{array}{cccc|cccc}
\mathbf{1} & -3 & 0 & 0 & 7 & 0 \\
0 & 0 & \mathbf{1} & 0 & -2 & 0 \\
0 & 0 & 0 & \mathbf{1} & -10 & 0
\end{array}\right)$$

As variáveis líderes são x_1, x_3, x_4 , as variáveis livres são x_2, x_5 . Fazendo $x_2 = s$, $x_5 = t$ obtemos $x_4 = 10t$, $x_3 = 2t$ e $x_1 = 3s - 7t$, logo as soluções são

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3s - 7t \\ s \\ 2t \\ 10t \\ t \end{pmatrix} = s \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -7 \\ 0 \\ 2 \\ 10 \\ 1 \end{pmatrix}$$

onde s, t são parámetros (números reais quaisquer).

(4) (Livro 1.4 (23)) Considere $A=\begin{pmatrix}2&1\\3&2\end{pmatrix}$. Encontre a inversa de A seguindo o seguinte procedimento. Seja $B=\begin{pmatrix}x&y\\z&w\end{pmatrix}$ e seja $\mathbbm{1}_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$. Iguale os elementos correspondentes dos dois membros da equação $AB=\mathbbm{1}_2$. Daí, resolva as quatro equações resultantes para x,y,z,w. Finalmente, verifique que $BA=\mathbbm{1}_2$.

$$\left(\begin{array}{cc} 2x+z & 2y+w \\ 3x+2z & 3y+2w \end{array}\right) = \left(\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array}\right) \cdot \left(\begin{array}{cc} x & y \\ z & w \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

em outras palavras

Impondo $AB = \mathbb{1}_2$ obtemos

$$\begin{cases} 2x + z = 1 \\ 2y + w = 0 \\ 3x + 2z = 0 \\ 3y + 2w = 1 \end{cases}$$

Se trata de um sistema linear, a sua matriz completa é

$$\left(\begin{array}{ccc|ccc|c} 2 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 0 & 2 & 0 & 0 \\ 0 & 3 & 0 & 2 & 1 \end{array} \right) \xrightarrow{\text{IV-II}} \left(\begin{array}{cccc|ccc|c} 2 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1 \end{array} \right)$$

$$\underset{\text{II} \leftrightarrow \text{IV}}{\overset{\text{I} \leftrightarrow \text{III}}{\longrightarrow}} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 \end{array} \right) \ \underset{\text{IV}-2\text{II}}{\overset{\text{III}-2\text{I}}{\longrightarrow}} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 & 3 \\ 0 & 0 & 0 & -1 & -2 \end{array} \right)$$

Segue que w=2, z=-3, y=1-w=1-2=-1, x=-1-z=-1+3=2. Logo a matriz inversa de A é

$$A^{-1} = \left(\begin{array}{cc} 2 & -1 \\ -3 & 2 \end{array} \right),$$

de fato

$$\left(\begin{array}{cc}2&1\\3&2\end{array}\right)\cdot\left(\begin{array}{cc}2&-1\\-3&2\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\quad \left(\begin{array}{cc}2&-1\\-3&2\end{array}\right)\cdot\left(\begin{array}{cc}2&1\\3&2\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right).$$

(5) Sejam A e B duas matrizes 2×2 e suponha A inversível. Suponha que AB = 0, a matriz nula. Mostre que B = 0.

Multiplicando os dois membros de AB=0 à esquerda por A^{-1} obtemos $A^{-1}AB=A^{-1}0$. Como $A^{-1}A=\mathbb{1}_2$ e $A^{-1}0=0$, deduzimos que $B=\mathbb{1}_2B=(A^{-1}A)B=A^{-1}(AB)=A^{-1}0=0$, ou seja B=0.

A5 - 23 de junho de 2022

(1) Resolva o sistema linear Ax = b multiplicando à esquerda por A^{-1} nos seguintes casos.

(a) (Livro 1.5 (5))
$$A = \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$$
, $b = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.

(b) (Livro 1.5 (8))
$$A = \begin{pmatrix} 8 & 15 \\ 5 & 10 \end{pmatrix}$$
, $b = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$.

Nos dois casos, a solução è $b = A^{-1}x$, obtida multiplicando os dois membros de Ax = b à esquerda por A^{-1} . Aqui $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Sabemos que a inversa de uma matriz 2×2 é dada por

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

e deduzimos as soluções dos dois sistemas: no primeiro caso

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \frac{1}{2} \left(\begin{array}{cc} 4 & -2 \\ -5 & 3 \end{array}\right) \left(\begin{array}{c} 5 \\ 6 \end{array}\right) = \frac{1}{2} \left(\begin{array}{c} 8 \\ -7 \end{array}\right) = \left(\begin{array}{c} 4 \\ -7/2 \end{array}\right),$$

no segundo caso

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \frac{1}{5} \left(\begin{array}{cc} 10 & -15 \\ -5 & 8 \end{array}\right) \left(\begin{array}{c} 7 \\ 3 \end{array}\right) = \frac{1}{5} \left(\begin{array}{c} 25 \\ -11 \end{array}\right) = \left(\begin{array}{c} 5 \\ -11/5 \end{array}\right).$$

(2) (Livro 1.5~(15,17,21)) Calcule a inversa de cada uma das seguintes matrizes.

$$\left(\begin{array}{ccc} 1 & 1 & 5 \\ 1 & 4 & 13 \\ 3 & 2 & 12 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & -3 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{array}\right), \quad \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 0 & 0 & 1 \end{array}\right).$$

Primeira matriz.

$$\begin{pmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 1 & 4 & 13 & 0 & 1 & 0 \\ 3 & 2 & 12 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III-I}} \begin{pmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 0 & 3 & 8 & -1 & 1 & 0 \\ 0 & -1 & -3 & -3 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III+3III}}$$

$$\begin{pmatrix}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 0 & -1 & -10 & 1 & 3 \\
0 & -1 & -3 & -3 & 0 & 1
\end{pmatrix}
\xrightarrow{\text{II, -III}}
\begin{pmatrix}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 1 & 3 & 3 & 0 & -1 \\
0 & 0 & 1 & 10 & -1 & -3
\end{pmatrix}
\xrightarrow{\text{II-III}}$$

$$\begin{pmatrix}
1 & 0 & 2 & -2 & 0 & 1 \\
0 & 1 & 0 & -27 & 3 & 8 \\
0 & 0 & 1 & 10 & -1 & -3
\end{pmatrix}
\xrightarrow{\text{II-2III}}
\begin{pmatrix}
1 & 0 & 0 & -22 & 2 & 7 \\
0 & 1 & 0 & -27 & 3 & 8 \\
0 & 0 & 1 & 10 & -1 & -3
\end{pmatrix}$$

Segunda matriz

$$\begin{pmatrix} 1 & -3 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -2 & 2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{II}+I} \begin{pmatrix} 1 & -3 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 \\ 0 & -2 & 2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III}-2\text{II}}$$

$$\left(\begin{array}{ccc|c} 1 & -3 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 & 0 \\ 0 & 0 & 4 & -2 & -2 & 1 \end{array} \right) \xrightarrow[\text{III}]{\text{III}/4} \left(\begin{array}{ccc|c} 1 & 0 & 3 & -2 & -3 & 0 \\ 0 & 1 & 1 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 & 1/4 \end{array} \right) \xrightarrow[\text{IIIII}]{\text{IIIII}}$$

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & -1/2 & -3/2 & -3/4 \\
0 & 1 & 0 & -1/2 & -1/2 & -1/4 \\
0 & 0 & 1 & -1/2 & -1/2 & 1/4
\end{array}\right)$$

Terceira matriz

$$\left(\begin{array}{ccc|ccc|c} 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \xrightarrow{\text{IV}-3\text{II}} \left(\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -3 & 0 & 1 \end{array} \right) \xrightarrow{\text{III}-2\text{II}}$$

(3) (Livro 1.5 (24)) Sejam
$$A = \begin{pmatrix} 7 & 6 \\ 8 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 5 & -3 \end{pmatrix}$. Encontrolluma matriz C tal que $AC = B$.

Observe que A é inversível pois o seu determinante é $7 \cdot 7 - 8 \cdot 6 = 1 \neq 0$, logo a partir de AC = B podemos calcular C simplesmente multiplicando à esquerda por A^{-1} , ou seja $C = A^{-1}B$. Segue que

$$C = A^{-1}B = \begin{pmatrix} 7 & -6 \\ -8 & 7 \end{pmatrix} \begin{pmatrix} 2 & 0 & 4 \\ 0 & 5 & -3 \end{pmatrix} = \begin{pmatrix} 14 & -30 & 46 \\ -16 & 35 & -53 \end{pmatrix}.$$

(4) Mostre que as seguintes matrizes não são inversíveis.

$$\left(\begin{array}{ccccc} 5 & 5 & 5 \\ 4 & 4 & 3 \\ 1 & 1 & 2 \end{array}\right), \quad \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 0 \\ 0 & 4 & 4 & 3 \end{array}\right), \quad \left(\begin{array}{cccccccc} 1 & 2 & 3 & 0 & 4 \\ 5 & 6 & 7 & 0 & 8 \\ 9 & 10 & 11 & 0 & 12 \\ 13 & 14 & 15 & 0 & 16 \\ 1 & 1 & 1 & 0 & 1 \end{array}\right)$$

Lembrando que uma matriz linha-equivalente a uma matriz inversível é também inversível e que uma matriz com uma linha nula não é inversível,

é suficiente mostrar que as matrizes dadas são linha-equivalentes a uma matriz com uma linha nula. Faremos isso com as primeiras duas matrizes.

$$\begin{pmatrix} 5 & 5 & 5 \\ 4 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{\text{I-II}} \begin{pmatrix} 1 & 1 & 2 \\ 4 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{\text{I-III}} \begin{pmatrix} 0 & 0 & 0 \\ 4 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 0 \\ 0 & 4 & 4 & 3 \end{pmatrix} \xrightarrow{\text{I+III}} \begin{pmatrix} 0 & 5 & 5 & 4 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 0 \\ 0 & 5 & 5 & 4 \end{pmatrix} \xrightarrow{\text{IV-I}} \begin{pmatrix} 0 & 5 & 5 & 4 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

No caso da terceira matriz (seja ela A), é mais rápido observar que

logo A não é inversível pois existe uma matriz não nula B tal que AB=0. Se A fosse inversível, multiplicando AB=0 à esquerda por A^{-1} obteriamos B=0.

 $\left(5\right)$ Mostre que se uma matriz quadrada tem duas linhas iguais então não é inversível.

Se a *i*-esima linha L_i é igual à *j*-esima linha L_j , então a operação elementar $L_j - L_i$, de substituição de L_j com $L_j - L_i$, leva a matriz considerada para uma matriz com uma linha nula, que então não é inversível.

A6 - 28 de junho de 2022

(1) Calcule o determinante das seguintes matrizes. Se o determinante for diferente de zero, calcule a matriz inversa.

$$\begin{pmatrix} -8 & 7 \\ 2 & -2 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & -2 \\ 9 & 9 & 8 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 10 & 11 & 24 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 7 \\ 1 & 2 & 1 \\ 5 & 5 & 5 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 & 2 & 1 \\ 1 & -1 & 0 & -2 \\ -2 & 0 & 1 & 8 \\ 2 & 3 & 4 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 18 \\ 1 & 1 & 41 \\ 1 & 1 & 240 \end{pmatrix},$$

$$\begin{pmatrix} 4 & 11 & 25 & 798 \\ 0 & 10 & 6 & 24 \\ 0 & 0 & -1 & 81 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 2 & 2 \\ 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 0 & 2 & 4 & 4 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 9 & 2 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 100 & 101 & 102 & 103 \\ -20 & -20 & -20 & -19 \\ 1 & 2 & 3 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

Os determinantes são

$$2, 45, 0, 2, -30, -49, 0, 80, 0, 9, 24, 0, 0.$$

As inversas das matrizes nas posições 1, 2, 4, 5, 6, 8, 10, 11 são

$$\begin{pmatrix} -1 & -7/2 \\ -1 & -4 \end{pmatrix}, \quad \frac{1}{45} \begin{pmatrix} 18 & 9 & 0 \\ -26 & 7 & 5 \\ 9 & -18 & 0 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 3/2 & 0 & -1 \end{pmatrix},$$

$$\frac{1}{30} \begin{pmatrix} -5 & -35 & 14 \\ 0 & 30 & -6 \\ 5 & 5 & -2 \end{pmatrix}, \quad \frac{1}{49} \begin{pmatrix} -33 & -9 & -10 & 19 \\ -7 & -42 & -14 & 7 \\ 38 & 46 & 13 & -10 \\ -13 & -8 & 2 & 6 \end{pmatrix},$$

$$\frac{1}{40} \begin{pmatrix} 10 & -11 & 184 & 11310 \\ 0 & 4 & 24 & 1020 \\ 0 & 0 & -40 & -1620 \\ 0 & 0 & 0 & -20 \end{pmatrix}, \quad \frac{1}{9} \begin{pmatrix} 9 & 16 & -1 & -7 & -24 \\ 0 & 0 & 0 & 0 & 9 \\ 0 & 2 & 1 & -2 & -3 \\ -9 & -9 & 0 & 9 & 18 \\ 9 & 0 & 0 & 0 & -9 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 1/3 & 0 \\ 0 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

(2) Mostre que o seguinte sistema linear admite uma única solução (atenção: não precisa encontrar a solução).

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 0 \\ x_2 + x_4 = 28 \\ 4x_1 + 3x_2 - x_3 + x_4 = 2 \\ -x_1 + x_2 - x_3 + x_4 + 4x_5 = -1 \end{cases}$$

A forma matricial é Ax = b onde

$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 1 & 0 \\ 4 & 3 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 & 4 \end{array}\right).$$

Como $\det(A) = -30 \neq 0$, a matriz A é inversível, logo o sistema Ax = b admite a única solução $x = A^{-1}b$.

CAPíTULO 2

Espaços vetoriais

1. Espaços vetoriais

Um espaço vetorial (sobre $\mathbb R)$ é um conjunto V que tem duas operações: soma e produto por escalar,

$$\begin{split} V \times V \to V, & (v, w) \mapsto v + w, \\ \mathbb{R} \times V \to V, & (\lambda, v) \mapsto \lambda v, \end{split}$$

tais que

(1) Elemento neutro da soma. Existe $0 \in V$ tal que

$$0 + v = v + 0 = v$$

para todo $v \in V$.

(2) Oposto. Para todo $v \in V$ existe $w \in V$ tal que

$$v + w = 0.$$

O vetor w é chamado de oposto de v e indicado com -v.

(3) Neutralidade do escalar 1.

$$1v = v$$

para todo $v \in V$.

(4) Associatividade da soma.

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

para todo $v_1, v_2, v_3 \in V$.

(5) Comutatividade da soma.

$$v_1 + v_2 = v_2 + v_1$$

para todo $v_1, v_2 \in V$.

(6) Associatividade do produto por escalar.

$$\alpha(\beta v) = (\alpha \beta)v$$

para todo $\alpha, \beta \in \mathbb{R}, v \in V$.

(7) Distributividade, parte 1.

$$(\alpha + \beta)v = \alpha v + \beta v$$

para todo $\alpha, \beta \in \mathbb{R}, v \in V$.

(8) Distributividade, parte 2.

$$\alpha(v+w) = \alpha v + \alpha w$$

para todo $\alpha \in \mathbb{R}, v, w \in V$.

O exemplo mais importante é \mathbb{R}^n , o conjunto das n-uplas de números reais.

$$\mathbb{R}^n = \left\{ \left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right) : a_1, \dots, a_n \in \mathbb{R} \right\}.$$

Por exemplo \mathbb{R}^2 é o bem conhecido plano cartesiano. Soma e produto por escalar são definidos por componentes. Analogamente,

$$\mathbb{R}^3 = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} : a_1, a_2, a_3 \in \mathbb{R} \right\}$$

é o espaço 3-dimensional.

Mas existem outros tipos de espaços vetoriais, como por exemplo o conjunto de todas as matrizes 2×3 .

$$\mathbf{M}_{2,3}(\mathbb{R}) = \left\{ \left(\begin{array}{ccc} a & b & c \\ d & e & f \end{array} \right) \ : \ a,b,c,d,e,f \in \mathbb{R} \right\}.$$

Analogamente, $M_{n,m}(\mathbb{R})$ é um espaço vetorial. Aqui também soma e produto por escalar são por componentes.

Quando escrevemos a solução de um sistema linear em forma vetorial estamos trabalhando em \mathbb{R}^n , onde n é o número de variáveis. Por exemplo o conjunto das soluções de x+y+z=0 em \mathbb{R}^3 é, escolhendo parámetros $y=s,\,z=t,$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Se V é um espaço vetorial, um subconjunto W de V é dito subespaço se é não vazio, contém 0, e é um espaço vetorial com as mesmas operações de V. O exemplo fundamental é o seguinte: se x é um vetor com n variáveis x_1,\ldots,x_n e A é uma matriz com n colunas, as soluções do sistema linear Ax=0 formam um subespaço vetorial de \mathbb{R}^n , chamado de "espaço solução". De fato, se v,w são soluções e λ é um escalar então A(v+w)=Av+Aw=0+0=0 e $A(\lambda v)=\lambda Av=\lambda 0=0$, ou seja v+w e λv são soluções. Perceba que se $b\in\mathbb{R}^n$ então o espaço solução de Ax=b é um subespaço vetorial se e somente se b=0, pois o fato que 0 pertence a todo subespaço vetorial implica que A0=b, ou seja b=0. Um sistema linear do tipo Ax=0 é chamado de sistema linear homogêneo.

Temos um simples critério para determinar se um subconjunto W de um espaço vetorial V é um subespaço vetorial. W é subespaço vetorial de V se e somente se $u+v\in W$ para todo $u,v\in W$ e $\lambda v\in W$ para todo $\lambda\in\mathbb{R},\ v\in W$.

A ideia é que um subespaço é alguma coisa definida por equações lineares homogêneas. Então por exemplo $y=x^2$ não define um subespaço pois é uma equação de grau 2 e x+y=1 não define um subespaço pois é uma equação linear mas não homogênea.

Vimos nas soluções dos sistemas lineares que frequentemente elas são do tipo P+W onde P é um ponto e W é um subespaço vetorial de \mathbb{R}^n onde n é o número

de variáveis. Por exemplo x + y + z = 1 tem solução dada por

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1-s-t \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = P + sv + tw.$$

Neste caso, $W=[v,w]:=\{sv+tw: s,t\in\mathbb{R}\}$, se trata de um plano contido em \mathbb{R}^3 . Perceba que W é um subespaço vetorial de \mathbb{R}^3 mas P+W não é um subespaço vetorial de \mathbb{R}^3 pois não contém 0, de fato (x,y,z)=(0,0,0) não é solução da equação x+y+z=1.

2. Dependência linear

A maneira mais concreta de descrever um subespaço vetorial W de um espaço V é indicar explicitamente um conjunto $\{v_1, \ldots, v_k\}$ de vetores que geram W:

$$W = [v_1, \dots, v_k] = \{a_1v_1 + \dots + a_kv_k : a_1, \dots, a_k \in \mathbb{R}\}.$$

Por exemplo, o espaço solução de x + y + z = 0 é o seguinte subespaço de \mathbb{R}^3 :

$$\left[\left(\begin{array}{c} 1\\0\\-1 \end{array} \right), \left(\begin{array}{c} 0\\1\\-1 \end{array} \right) \right] < \mathbb{R}^3.$$

Dizemos que k vetores v_1, \ldots, v_k são linearmente independentes (l.i.) se a equação

$$c_1v_1 + \ldots + c_kv_k = 0$$

nas incognitas c_1, \ldots, c_k , tem somente a solução trivial $c_1 = \ldots = c_k = 0$.

Por exemplo os vetores de \mathbb{R}^n

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

são linearmente independentes pois

$$c_1e_1 + c_2e_2 + \ldots + c_ne_n = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

é o vetor nulo se e somente se $c_1 = 0, c_2 = 0, ..., c_n = 0.$

Se v_1, \ldots, v_k não são linearmente independentes, eles são chamados linearmente dependentes (l.d.). Por exemplo

$$v_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

são linearmente dependentes pois, buscando a solução de $c_1v_1 + c_2v_2 + c_3v_3 = 0$, temos

$$c_1v_1 + c_2v_2 + c_3v_3 = \begin{pmatrix} c_2 - c_3 \\ 2c_1 + 4c_2 + 2c_3 \\ c_1 + 2c_2 + c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

dá o sistema linear de matriz completa nas variáveis c_1, c_2, c_3

$$\left(\begin{array}{ccc|c}
0 & 1 & -1 & 0 \\
2 & 4 & 2 & 0 \\
1 & 2 & 1 & 0
\end{array}\right)$$

que depois do escalonamento é reduzido a

$$\left(\begin{array}{ccc|c}
2 & 4 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Ou seja $c_2 = c_3$ e $c_1 = -3c_3$, e escolhendo $c_3 = 1$ obtemos a solução não trivial $(c_1, c_2, c_3) = (-3, 1, 1)$. Em outras palavras, $-3v_1 + v_2 + v_3 = 0$.

Por exemplo

$$v_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

são linearmente independentes. De fato, resolvendo $c_1v_1+c_2v_2+c_3v_3=0$ obtemos a matriz completa

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 2 & 4 & 1 & 0 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

A matriz dos coeficientes tem determinante -1, diferente de 0, logo a única solução é $(c_1, c_2, c_3) = (0, 0, 0)$.

Os coeficientes de uma combinação linear de vetores linearmente independentes são únicos. Em outras palavras, se v_1, \ldots, v_k são vetores linearmente independentes e w é um vetor que é combinação linear deles, então existem únicos escalares c_1, \ldots, c_k tais que $w = c_1v_1 + \ldots + c_kv_k$. De fato, se

$$c_1v_1 + \ldots + c_kv_k = d_1v_1 + \ldots + d_kv_k$$

então

$$(c_1 - d_1)v_1 + \ldots + (c_k - d_k)v_k = 0$$

e sendo v_1, \ldots, v_k linearmente independentes, deduzimos que $c_i - d_i = 0$ para todo $i = 1, \ldots, k$, ou seja $c_1 = d_1, \ldots, c_k = d_k$.

TEOREMA. n vetores v_1, \ldots, v_n de \mathbb{R}^n são linearmente independentes se e somente se $\det(v_1, \ldots, v_n) \neq 0$.

DEMONSTRAÇÃO. Seja A a matriz (quadrada!) cujas colunas são os vetores v_1, \ldots, v_n . Dizer que $\{v_1, \ldots, v_n\}$ é linearmente independente é equivalente a dizer que o sistema linear Ax=0 admite como única solução x=0. Isso significa que depois do escalonamento da matriz A não tem variáveis livres, ou seja A é linhaequivalente à matriz identidade, ou seja é inversível. Isso acontece se e somente se $\det(A) \neq 0$.

41

2.1. Exercícios.

(1) Para cada uma das seguintes equações, diga se o conjunto das suas soluções é um subespaco vetorial de \mathbb{R}^3 .

$$x + 2y - 3z = 4$$
 $xyz = 0$ $x^2 + y^2 + z^2 = 0$ $x = z$

(2) Diga se

$$\begin{pmatrix} 0\\1\\5\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\12\\-2 \end{pmatrix} \in \mathbb{R}^4$$

são linearmente independentes.

(3) Diga se

$$\begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} \in \mathbb{R}^3$$

são linearmente independentes.

(4) Sejam

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{R}^3.$$

Encontre um vetor $w \in \mathbb{R}^3$ tal que $\{u, v, w\}$ seja linearmente independente.

(5) Sejam

$$u = \begin{pmatrix} 2\\1\\3 \end{pmatrix}, v = \begin{pmatrix} 0\\-2\\2 \end{pmatrix}, w = \begin{pmatrix} -1\\1\\-3 \end{pmatrix} \in \mathbb{R}^3.$$

(a) Mostre que u, v, w são linearmente dependentes.

(b) Diga se w pertence ao espaço $[u, v] < \mathbb{R}^3$.

(c) Diga se u pertence ao espaço $[v, w] < \mathbb{R}^3$.

(d) Diga se v pertence ao espaço $[u, w] < \mathbb{R}^3$.

Observe que dizer que w pertence a [u, v] é equivalente a dizer que existem escalares a, b tais que w = au + bv.

(6) Considere os vetores u, v do item anterior. Mostre que $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

pertence a [u,v] se e somente se $x_2+x_3=2x_1$. [Dica: considere a matriz quadrada A cujas colunas são u,v,x. Como formular a condição $x\in [u,v]$ em função da matriz A?]

3. Base de um espaço vetorial

Definição. Um conjunto finito $S = \{v_1, \dots, v_n\}$ de vetores de um espaço vetorial V é uma base de V se valem as seguintes condições.

(1) S é linearmente independente.

(2) $S \notin um \ conjunto \ gerador \ de \ V, \ ou \ seja \ [v_1, \ldots, v_n] = V.$

Assim, se $S = \{v_1, \ldots, v_n\}$ é uma base de V, então qualquer $v \in V$ pode ser expresso de maneira única como combinação linear $v = c_1v_1 + \ldots + c_nv_n$, sendo os c_i escalares.

A base canônica de \mathbb{R}^n é formada pelos vetores

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Teorema. Duas bases quaisquer de um espaço vetorial V têm o mesmo número de elementos.

DEMONSTRAÇÃO. Vamos mostrar primeiramente que se $S = \{v_1, \ldots, v_n\}$ é uma base de um espaço V então qualquer conjunto $T = \{w_1, \ldots, w_m\}$ com m vetores, m > n, é linearmente dependente. Existem escalares a_{ij} tais que

$$\begin{cases} w_1 = a_{11}v_1 + a_{21}v_2 + \dots + a_{n1}v_n \\ w_2 = a_{12}v_1 + a_{22}v_2 + \dots + a_{n2}v_n \\ \vdots \\ w_m = a_{1m}v_1 + a_{2m}v_2 + \dots + a_{nm}v_n \end{cases}$$

Precisamos encontrar escalares c_1, \ldots, c_m , não todos nulos, tais que

$$c_1w_1+\ldots+c_mw_m=0,$$

ou seja

 $c_1(a_{11}v_1+\ldots+a_{n1}v_n)+c_2(a_{12}v_1+\ldots+a_{n2}v_n)+\ldots+c_m(a_{1m}v_1+\ldots+a_{nm}v_n)=0$ ou seja

$$(a_{11}c_1 + a_{12}c_2 + \dots + a_{1m}c_m)v_1 + \dots + (a_{n1}c_1 + a_{n2}c_2 + \dots + a_{nm}c_m)v_n = 0.$$

Como os vetores v_1, \ldots, v_n são linearmente independentes, a igualdade acima é equivalente a

$$\begin{cases} a_{11}c_1 + a_{12}c_2 + \ldots + a_{1m}c_m = 0 \\ a_{21}c_1 + a_{22}c_2 + \ldots + a_{2m}c_m = 0 \\ \vdots \\ a_{n1}c_1 + a_{n2}c_2 + \ldots + a_{nm}c_m = 0 \end{cases}$$

Se trata de um sistema linear homogêneo com mais incognitas que equações, logo ele possui uma solução não trivial $(c_1, \ldots, c_m) \neq (0, \ldots, 0)$.

Agora, se $S = \{v_1, \ldots, v_n\}$ e $T = \{w_1, \ldots, w_m\}$ são duas bases distintas de um espaço vetorial V, então se m > n temos que, pelo argumento anterior, T é linearmente dependente, o que é falso pois T é uma base, e se m < n então, pelo argumento anterior, S é linearmente dependente, o que é falso pois S é uma base. Segue que m = n.

Então por exemplo qualquer base de \mathbb{R}^n tem exatamente n elementos, pois a base canônica de \mathbb{R}^n tem n elementos.

Definição (Dimensão). A dimensão de um espaço vetorial V é o número de elementos de uma base qualquer de V. É indicado com $\dim(V)$.

Esta definição faz sentido exatamente porque todas as bases de V têm o mesmo número de elementos.

Por exemplo, se $S = \{w_1, \ldots, w_m\}$ é um conjunto linearmente independente de vetores de V então o subespaço $W = [S] = [w_1, \ldots, w_m]$, ou seja o subespaço vetorial de V gerado por S, tem dimensão |S| = m.

Teorema. Seja V espaço vetorial de dimensão n e seja $S \subseteq V$.

- (1) Se S é l.i. e contém n vetores, então S é uma base de V.
- (2) Se S gera V então contém uma base de V.
- (3) Se S gera V e contém n vetores, S é uma base de V.
- (4) Se S é l.i. então está contido em uma base de V.
- (5) Se $W \leq V$ então $\dim(W) \leq \dim(V)$.

Demonstração. A ideia é usar o fato seguinte: se v_1, \ldots, v_k são linearmente dependentes então um deles é combinação linear dos outros.

Item 1. Seja $S = \{v_1, \ldots, v_n\}$ linearmente independente e seja $w \in V$ tal que $w \neq v_i$ para todo $i = 1, \ldots, n$. O conjunto $T = \{v_1, \ldots, v_n, w\}$ tem tamanho n+1, maior que n, logo existem escalares c, c_1, \ldots, c_n , não todos nulos, tais que $cw + c_1v_1 + \ldots + c_nv_n = 0$. Se fosse c = 0, então v_1, \ldots, v_n seriam linearmente dependentes, falso, logo $c \neq 0$. Segue que $w = -(c_1/c)v_1 - \ldots - (c_n/c)v_n$, ou seja w pertence a $[v_1, \ldots, v_n]$. Isso mostra que $[v_1, \ldots, v_n]$ contém todos os vetores de V, ou seja $[v_1, \ldots, v_n] = V$. Como $\{v_1, \ldots, v_n\}$ é (por hipótese) linearmente independente, segue que é uma base de V.

- Item 2. Suponha que S gera V. Se S é linearmente independente, é uma base de V. Caso contrário, existe um $w \in S$ que é combinação linear de vetores em S, logo o vetor w é redundante, ou seja o conjunto $S \{w\}$ (obtido a partir de S removendo o vetor w) também gera V. Procedendo desta forma podemos eliminar os vetores redundantes e no final obter uma base de V contida em S.
- Item 3. Se S gera V e contém n vetores, sendo $n = \dim(V)$, então, pelo item 2, S contém uma base B de V, que tem tamanho n (todas as bases de V têm o mesmo número de elementos), por outro lado $|S| = n \log_{10} S = B$.
- Item 4. Se S é l.i. e não gera V então existe $w \in V$ tal que $w \notin [S]$, logo $S \cup \{w\}$ também é l.i. Procedendo desta forma, adicionando vetores, conseguimos chegar em uma base de V.
- Item 5. Seja k o maior inteiro para o qual W contém k vetores linearmente independentes v_1, \ldots, v_k . Seja $w \in W$ com $w \neq v_i$ para $i = 1, \ldots, k$. Segue que $\{v_1, \ldots, v_k, w\}$ tem k+1 elementos, maior que k, logo é linearmente dependente, ou seja existem escalares c, c_1, \ldots, c_k , não todos nulos, tais que $cw + c_1v_1 + \ldots + c_kv_k = 0$. Como v_1, \ldots, v_k são linearmente independentes, temos $c \neq 0$, logo $w = -(c_1/c)v_1 \ldots (c_k/c)v_k$ e isso mostra que $\{v_1, \ldots, v_k\}$ gera W, logo dim(W) = k. Como v_1, \ldots, v_k são linearmente independentes em V, temos $k \leq n$ (se k > n então são linearmente dependentes).

Então por exemplo n vetores v_1, \ldots, v_n de \mathbb{R}^n formam uma base de \mathbb{R}^n se e somente se o determinante da matriz (quadrada!) cujas colunas são v_1, \ldots, v_n é diferente de zero.

Atenção. Se um conjunto S de vetores contém o vetor nulo 0 então S é automaticamente linearmente dependente. Por exemplo $\{v,w,0\}$ é linearmente dependente porque a combinação linear $0 \cdot v + 0 \cdot w + 1 \cdot 0 = 0$ é nula mas os seus coeficientes, 0,0,1, não são todos nulos.

4. Base do espaço solução (núcleo).

Considere o sistema linear

$$\begin{cases} x_1 + 3x_2 - 15x_3 + 7x_4 = 0 \\ x_1 + 4x_2 - 19x_3 + 10x_4 = 0 \\ 2x_1 + 5x_2 - 26x_3 + 11x_4 = 0 \end{cases} \qquad \begin{pmatrix} 1 & 3 & -15 & 7 & 0 \\ 1 & 4 & -19 & 10 & 0 \\ 2 & 5 & -26 & 11 & 0 \end{pmatrix}$$

$$\xrightarrow{\text{III-I}} \begin{pmatrix} 1 & 3 & -15 & 7 & 0 \\ 0 & 1 & -4 & 3 & 0 \\ 0 & -1 & 4 & -3 & 0 \end{pmatrix} \xrightarrow{\text{III+II}} \begin{pmatrix} \mathbf{1} & 3 & -15 & 7 & 0 \\ 0 & \mathbf{1} & -4 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

As variáveis livres são $x_3 = s$ e $x_4 = t$, e $x_2 = 4s - 3t$, $x_1 = -3x_2 + 15s - 7t = 3s + 2t$. Segue que

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3s + 2t \\ 4s - 3t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 3 \\ 4 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}.$$

O espaço solução (núcleo) é $W = [v, w] < \mathbb{R}^4$, sendo

$$v = \begin{pmatrix} 3\\4\\1\\0 \end{pmatrix}, \qquad w = \begin{pmatrix} 2\\-3\\0\\1 \end{pmatrix}.$$

Uma base do espaço solução é $\{v,w\}$, logo $\dim(W)=2$. Os vetores encontrados desta forma resolvendo um sistema linear homogêneo formam sempre uma base do espaço solução. Em outras palavras, a dimensão do espaço solução de um sistema linear homogêneo Ax=0 é sempre igual ao número de variáveis livres da matriz escalonada.

4.1. Exercícios.

- (1) Nos seguintes itens descubra se os vetores de \mathbb{R}^n dados constituem uma base de \mathbb{R}^n .
 - (a) (Livro 4.3(1)) $v_1 = (4,7), v_2 = (5,6).$
 - (b) (Livro 4.3(5)) $v_1 = (0, 7, -3), v_2 = (0, 5, 4), v_3 = (0, 5, 10).$
 - (c) (Livro 4.3(6)) $v_1 = (0,0,1), v_2 = (0,1,2), v_3 = (1,2,3).$
 - (d) (Livro 4.3(8)) $v_1 = (2,0,0,0), v_2 = (0,3,0,0), v_3 = (0,0,7,6), v_4 = (0,0,4,5).$
 - (e) $v_1 = (1, 0, 3, 0, 1), v_2 = (1, 1, 1, 1, 1), v_3 = (0, 1, 0, 3, 0), v_4 = (1, 2, 3, 4, 5).$
 - (f) $v_1 = (1, 2, 3), v_2 = (0, 1, 0), v_3 = (0, 0, 3), v_4 = (4, 4, 9).$
 - (g) $v_1 = (1, 2, 1), v_2 = (2, 10, -1), v_3 = (0, 2, -1).$

- (2) (Livro 4.3(12)) Encontre uma base para o subespaço de \mathbb{R}^4 formado pelos vetores da forma (a, b, c, d) tais que a = b + c + d.
- (3) (Livro 4.3(13)) Encontre uma base para o subespaço de \mathbb{R}^4 formado pelos vetores da forma (a, b, c, d) tais que a = 3c e b = 4d.
- (4) (Livro 4.3(17)) Encontre uma base do espaço-solução do sistema linear homogêneo

$$\begin{cases} x_1 - 3x_2 + 2x_3 - 4x_4 = 0 \\ 2x_1 - 5x_2 + 7x_3 - 3x_4 = 0 \end{cases}$$

(5) (Livro 4.3(25)) Encontre uma base do espaço-solução do sistema linear homogêneo

$$\begin{cases} x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0 \\ 2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0 \\ 3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0 \end{cases}$$

(6) (Livro 4.3(29)) Seja $\{v_1, v_2, \ldots, v_k\}$ uma base do subespaço próprio W do espaço vetorial V e suponha que o vetor v de V não está em W. Mostre que os vetores v_1, v_2, \ldots, v_k, v são linearmente independentes.

5. Posto de uma matriz

O problema que precisamos resolver agora é o seguinte: suponha de ter um conjunto de vetores, v_1, \ldots, v_m , e seja W o espaço gerado por eles, $W = [v_1, \ldots, v_m]$. Sabemos pelo teorema anterior que existe uma base de W contida em $\{v_1, \ldots, v_m\}$, mas como encontrar uma tal base?

Dado um sistema linear em geral existem equações redundantes. Por exemplo, no sistema linear

$$\begin{cases} x+y+z=0\\ 3x-y+z=0\\ 4x+2z=0 \end{cases}$$

a terceira equação é redundante pois é a soma das primeiras duas. Dado um sistema linear qualquer, queremos um algoritmo para eliminar todas as equações redundantes.

Dada uma matriz A de formato $m \times n$, indicaremos com ℓ_1, \ldots, ℓ_m as suas linhas, os "vetores-linha" de A. O subespaço de \mathbb{R}^n gerado pelos m vetores ℓ_1, \ldots, ℓ_m é denominado espaço-linha de A,

$$L(A) := [\ell_1, \dots, \ell_m] \le \mathbb{R}^n.$$

O posto-linha de A é por definição a dimensão do espaço-linha de A, dim(L(A)). Por exemplo, o posto-linha de

$$\left(\begin{array}{ccccccc}
\mathbf{1} & -3 & 2 & 5 & 3 \\
0 & 0 & \mathbf{1} & -4 & 2 \\
0 & 0 & 0 & \mathbf{1} & 7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

é igual a 3, pois as primeiras três linhas formam uma base do espaço-linha.

Observe que, no caso de uma matriz escalonada, as linhas não nulas formam sempre uma base do espaço-linha. Além disso, duas matrizes linha-equivalentes têm o mesmo espaço-linha, pois quando se passa de uma matriz A para uma matriz

B por meio de uma operação elementar, as linhas de B são combinações lineares de linhas de A e, sendo as operações elementares reversíveis, as linhas de A são combinações lineares das linhas de B. Segue que L(A) = L(B). Segue que, se E é a matriz escalonada obtida a partir de A, temos L(A) = L(E), e uma base do espaço-linha de E é dado pelas suas linhas não nulas. Segue que para encontrar uma base de L(A) é suficiente considerar as linhas não nulas da matriz escalonada de A.

O espaço-coluna de A, de formato $m \times n$, é o espaço gerado pelas n colunas c_1, \ldots, c_n de A,

$$C(A) = [c_1, \ldots, c_n] \leq \mathbb{R}^m$$
.

Observe que duas matrizes linha-equivalentes podem possuir diferentes espaçoscolunas, por exemplo as duas matrizes

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\text{II-I}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = B$$

têm diferentes espaços-colunas. De fato $C(A) = \left[\left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right], \, C(B) = \left[\left(\begin{array}{c} 1 \\ 0 \end{array} \right) \right].$

O posto-linha de A é a dimensão do seu espaço-linha. O posto-coluna de A é a dimensão do seu espaço-coluna. Vimos que matrizes linha-equivalentes têm o mesmo espaço-linha, em particular eles têm o mesmo posto-linha. Observe que, apesar do fato que matrizes linha-equivalentes podem ter diferentes espaços-colunas, o posto-coluna não muda.

Teorema. Seja A uma matriz. Então o posto-linha de A é igual ao seu postocoluna. Este número comum é chamado posto de A.

O posto (rank, em inglês) de uma matriz é, por definição, igual ao seu postolinha, igual também ao seu posto-coluna.

DEMONSTRAÇÃO. Seja E a matriz escalonada obtida a partir de A, e indicaremos com c_1, \ldots, c_n as colunas de A, com c_1^*, \ldots, c_n^* as colunas de E. Sabemos que Ax = 0 e Ex = 0 têm o mesmo espaço-solução. Em outras palavras Ax = 0 se e somente se Ex = 0, ou seja

$$x_1c_1 + \ldots + x_nc_n = 0$$
 \Leftrightarrow $x_1c_1^* + \ldots + x_nc_n^* = 0.$

Segue que se uma combinação das colunas de A é igual a zero, então a combinação linear das colunas de E com os mesmos coeficientes é também igual a zero, e viceversa. Segue que um conjunto de colunas de E é l.i. se e somente se o correspondente conjunto de colunas de E é l.i., logo $\dim(C(A)) = \dim(C(E))$. Por outro lado, o teorema é verdadeiro no caso de uma matriz escalonada. Segue que $\dim(C(A)) = \dim(C(E)) = \dim(L(E)) = \dim(L(A))$.

Exemplo típico. Dada a matriz

$$A = \left(\begin{array}{rrrrr} 1 & 2 & 1 & 3 & 2 \\ 3 & 4 & 9 & 0 & 7 \\ 2 & 3 & 5 & 1 & 8 \\ 2 & 2 & 8 & -3 & 5 \end{array}\right)$$

determine uma base do seu espaço-linha e uma base do seu espaço-coluna.

$$A = \begin{pmatrix} 1 & 2 & 1 & 3 & 2 \\ 3 & 4 & 9 & 0 & 7 \\ 2 & 3 & 5 & 1 & 8 \\ 2 & 2 & 8 & -3 & 5 \end{pmatrix} \xrightarrow{\text{II}-3\text{I}, \text{ III}-2\text{I}} \begin{pmatrix} 1 & 2 & 1 & 3 & 2 \\ 0 & -2 & 6 & -9 & 1 \\ 0 & -1 & 3 & -5 & 4 \\ 0 & -2 & 6 & -9 & 1 \end{pmatrix}$$

$$\underset{\text{IV-2III}}{\text{II} \leftrightarrow \text{III, II-2III}} \left(\begin{array}{ccccc} 1 & 2 & 1 & 3 & 2 \\ 0 & -1 & 3 & -5 & 4 \\ 0 & 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 1 & -7 \end{array} \right) \underset{-\text{II}}{\text{IV-III}} \left(\begin{array}{cccccc} \mathbf{1} & 2 & 1 & 3 & 2 \\ 0 & \mathbf{1} & -3 & 5 & -4 \\ 0 & 0 & 0 & \mathbf{1} & -7 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) = E.$$

As três linhas não nulas da matriz escalonada formam uma base do espaço-linha de A,

$$L(A) = L(E) = [(1, 2, 1, 3, 2), (0, 1, -3, 5, -4), (0, 0, 0, 1, -7)].$$

Pelo argumento usado na demonstração do teorema anterior, uma base do espaçocoluna de A é dada pelas colunas de A nas posições dos elementos líderes da matriz escalonada, ou seja a primeira, a segunda e a quarta coluna de A. Ou seja, uma base de C(A) é

$$B = \left\{ \begin{pmatrix} 1\\3\\2\\2 \end{pmatrix}, \begin{pmatrix} 2\\4\\3\\2 \end{pmatrix}, \begin{pmatrix} 3\\0\\1\\-3 \end{pmatrix} \right\}.$$

O posto de A é igual a $\dim(L(A)) = \dim(C(A)) = |B| = 3$.

Atenção: $\dim(C(A)) = \dim(C(E)) = 3$, por outro lado $C(A) \neq C(E)$. De fato, C(E) está contido no subespaço W de \mathbb{R}^4 definido pela equação $x_4 = 0$ (a quarta componente dos elementos de C(E) é igual a zero) mas C(A) não está contido em W, pois existem columas de A cuja quarta componente não é nula.

Explicado em poucas palavras, é o seguinte: o posto de uma matriz A é igual ao número de variáveis líderes da matriz escalonada obtida a partir do sistema linear homogêneo Ax=0. A dimensão do espaço-solução de Ax=0 é igual ao número de variáveis livres. Desta forma, a soma entre o posto de A e a dimensão do espaço solução de Ax=0 é sempre igual ao número de colunas de A.

Suponha de ter um conjunto de vetores, v_1,\ldots,v_m , e seja W o espaço gerado por eles, $W=[v_1,\ldots,v_m]$. Para determinar uma base de W contida em $\{v_1,\ldots,v_m\}$ pode se construir a matriz A cujas colunas são v_1,\ldots,v_m e escalonála. Os vetores v_i que estão nas posições correspondentes aos elementos líderes formarão uma base do espaço-coluna de A, ou seja uma base de W.

Por exemplo, considere

$$W = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 12 \\ -8 \\ -5 \end{pmatrix}, \begin{pmatrix} 7 \\ 2 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix} \le \mathbb{R}^4.$$

Vamos determinar uma base de W e a sua dimensão. Para fazer isso, é suficiente determinar uma base do espaço-coluna da matriz

$$A = \left(\begin{array}{cccc} 1 & 4 & 5 & 7 \\ 0 & 6 & 12 & 2 \\ 2 & -1 & -8 & -2 \\ 3 & 2 & -5 & 2 \end{array}\right).$$

Observe que se $\det(A) \neq 0$ então poderiamos concluir que $\dim(W) = \dim(C(A)) = 4$ e por consequência $W = \mathbb{R}^4$, por outro lado, infelizmente $\det(A) = 0$ neste caso. Segue que precisamos mesmo escalonar A.

$$A = \begin{pmatrix} 1 & 4 & 5 & 7 \\ 0 & 6 & 12 & 2 \\ 2 & -1 & -8 & -2 \\ 3 & 2 & -5 & 2 \end{pmatrix} \xrightarrow{\text{III}-2I} \begin{pmatrix} 1 & 4 & 5 & 7 \\ 0 & 6 & 12 & 2 \\ 0 & -9 & -18 & -16 \\ 0 & -10 & -20 & -19 \end{pmatrix}$$

$$\text{III}+9II/6} \begin{pmatrix} 1 & 4 & 5 & 7 \\ 0 & 6 & 12 & 2 \\ 0 & 6 & 12 & 2 \end{pmatrix} \xrightarrow{\text{IV}-47III/39} \begin{pmatrix} 1 & 4 & 5 & 7 \\ 0 & 3 & 6 & 1 \\ 0 & 3 & 6 & 1 \end{pmatrix}$$

$$\begin{array}{c} \underset{\text{IV}+10\text{II}/6}{\text{III}+9\text{II}/6} & \left(\begin{array}{cccc} 1 & 4 & 5 & 7 \\ 0 & 6 & 12 & 2 \\ 0 & 0 & 0 & -13 \\ 0 & 0 & 0 & -47/3 \end{array} \right) \underset{\text{II}/2,-\text{III}/13}{\overset{\text{IV}-47\text{III}/39}{\longrightarrow}} \left(\begin{array}{cccc} \mathbf{1} & 4 & 5 & 7 \\ 0 & \mathbf{3} & 6 & 1 \\ 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 \end{array} \right)$$

Segue que $\dim(W) = \dim(C(A)) = 3$, o posto de A é 3, e uma base de W é dada pela primeira, segunda e quarta coluna de A, ou seja, uma base de W é

$$B = \left\{ \begin{pmatrix} 1\\0\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\6\\-1\\2 \end{pmatrix}, \begin{pmatrix} 7\\2\\-2\\2 \end{pmatrix} \right\}.$$

Em particular, o terceiro vetor na definição de W é redundante, ou seja

$$W = [B] = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 7 \\ 2 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix}$$

Exemplo importante. Seja A uma matriz quadrada $n \times n$. Então A é inversível se e somente se o seu posto é n. Segue que para mostrar que o posto de A é igual a n é suficiente mostrar que $\det(A) \neq 0$.

5.1. Exercícios.

(1) (Livro 4.3 (20) e (26)) Encontre uma base do espaço-solução de

$$\begin{cases} x_1 - 3x_2 - 10x_3 + 5x_4 = 0 \\ x_1 + 4x_2 + 11x_3 - 2x_4 = 0 \\ x_1 + 3x_2 + 8x_3 - x_4 = 0 \end{cases} \begin{cases} 3x_1 + x_2 - 3x_3 + 11x_4 + 10x_5 = 0 \\ 5x_1 + 8x_2 + 2x_3 - 2x_4 + 7x_5 = 0 \\ 2x_1 + 5x_2 - x_4 + 14x_5 = 0 \end{cases}$$

(2) (Livro 4.4 (1), (5), (12)) Encontre uma base do espaço-linha e uma base do espaço-coluna das matrizes

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -3 & 4 \\ 2 & 5 & 11 & 12 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 3 & 3 & 0 \\ -1 & 0 & -2 & -1 & 1 \\ 2 & 3 & 7 & 8 & 1 \\ -2 & 4 & 0 & 6 & 7 \end{pmatrix}.$$

- (3) Determine o posto das matrizes do item anterior.
- (4) (Livro 4.4 (16)) Sejam $v_1 = (5, 4, 2, 2), v_2 = (3, 1, 2, 3), v_3 = (7, 7, 2, 1), v_4 = (1, -1, 2, 4), v_5 = (5, 4, 6, 7),$ vetores de \mathbb{R}^4 . Seja $S = \{v_1, v_2, v_3, v_4, v_5\}$. Encontre um subconjunto de S que seja uma base do subespaço de \mathbb{R}^4 gerado por S.
- (5) (Livro 4.4 (20)) Ache uma base T de \mathbb{R}^4 que contenha os vetores $v_1=(3,2,3,3)$ e $v_2=(5,4,5,5)$.
- (6) (Livro 4.4 (25)) Explique por que o posto de uma matriz A é igual ao posto da sua transposta A^T . Lembre-se que a transposta de uma matriz A é a matriz A^T cuja componente (i,j) é igual à componente (j,i) de A, ou seja as linhas de A^T são as colunas de A (na mesma ordem).
- (7) Calcule o posto de

$$\begin{pmatrix} 1 & 2 & 2 & 2 & 1 \\ 1 & 3 & 3 & 3 & 1 \\ 1 & 4 & 4 & 4 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 8 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$

(8) Calcule o posto da seguintes matrizes para todo valor de $h \in \mathbb{R}$.

$$\begin{pmatrix} 1 & 0 & h \\ 0 & 1 & 0 \\ h & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & h & 3 \\ 0 & 1 & h & 1 \\ 1 & -1 & h & h \end{pmatrix} \quad \begin{pmatrix} h+1 & h & 1 \\ h & 3 & h-1 \\ h & h-1 & 3 \end{pmatrix}$$

(9) Sejam

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -1 \\ -4 \\ 3 \\ -4 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix}.$$

- (a) Calcule a dimensão de $[v_1]$, $[v_1, v_2]$, $[v_1, v_2, v_5]$, $[v_1, v_2, v_3, v_4]$.
- (b) Mostre que $[v_1, v_2] = [v_3, v_4]$.
- (c) Mostre que o vetor coluna $x = (x_1, x_2, x_3, x_4)^T$ pertence a $[v_3, v_4, v_5]$ se e somente se $x_1 = x_3 + x_4$.
- (d) Para cada um dos seguintes espaços vetoriais, encontre um sistema linear homogêneo Ax=0 que o tenha como espaço-solução.

$$W_1 = [v_1, v_2, v_5], \qquad \quad W_2 = [v_1, v_2], \qquad \quad W_3 = [v_2].$$

- (e) Seja $w=v_1+v_2-2v_5$. Mostre que v_1,v_2,v_5,w são linearmente dependentes.
- (10) Observe que, como as operações elementares de linha não alteram o espaçolinha, duas matrizes linha-equivalentes têm o mesmo posto. Vale a volta? Ou seja, é verdade que duas matrizes que tem o mesmo formato e o mesmo posto são necessariamente linha-equivalentes?
- (11) Sejam A uma matriz $m \times n$, B uma matriz inversível $m \times m$, C uma matriz inversível $n \times n$. Mostre que o posto de BAC é igual ao posto de A. [Use o fato que toda matriz inversível é produto de matrizes elementares.]
- (12) (Difícil) Sejam A_1 e A_2 duas matrizes do mesmo formato, $m \times n$, tais que o posto de A_1 é igual ao posto de A_2 . Mostre que existem matrizes inversíveis B, de formato $m \times m$, e C, de formato $n \times n$, tais que $A_2 = BA_1C$. [A ideia é pensar nas matrizes que podem ser obtidas a partir de uma matriz dada combinando operações elementares de linha e operações elementares de coluna.]

6. Ortogonalidade

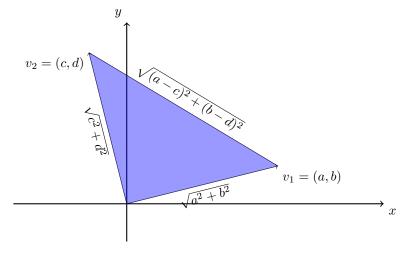
O comprimento do vetor $v=(x,y)\in\mathbb{R}^2$ é, pelo teorema de Pitágoras, $\sqrt{x^2+y^2}$. Suponha que $v_1=(a,b),\ v_2=(c,d)\in\mathbb{R}^2$ sejam ortogonais, ou seja que o ângulo formado por eles na origem seja de 90 graus. Considere o triângulo retângulo cujos vértices são $(0,0),\ (a,b),\ (c,d)$. Observe que o comprimento da hipotenusa é o comprimento do vetor $v_1-v_2=(a-c,b-d),$ ou seja $\sqrt{(a-c)^2+(b-d)^2}$. Por outro lado, usando o teorema de Pitágoras, temos que

$$\sqrt{\left(\sqrt{a^2 + b^2}\right)^2 + \left(\sqrt{c^2 + d^2}\right)^2}$$
 = Hipotenusa = $\sqrt{(a - c)^2 + (b - d)^2}$,

ou seja

$$a^{2} + b^{2} + c^{2} + d^{2} = (a - c)^{2} + (b - d)^{2} = a^{2} + c^{2} - 2ac + b^{2} + d^{2} - 2bd$$

e simplificando obtemos ac + bd = 0. Isso mostra que (a,b) e (c,d) são vetores ortogonais se e somente se ac + bd = 0.



Dados dois vetores $v = (a_1, \ldots, a_n)$, $w = (b_1, \ldots, b_n)$ de \mathbb{R}^n , o produto escalar $v \cdot w$ é definido como

$$v \cdot w := a_1 b_1 + \ldots + a_n b_n,$$

ou seja $v \cdot w$ é o único elemento não nulo do produto de matrizes $v \cdot w^T$. v e w são ditos "ortogonais" se $v \cdot w = 0$. O comprimento de um vetor v é definido como sendo $||v|| := \sqrt{v \cdot v}$. Observe que esta definição faz sentido pois $v \cdot v$ é sempre um número não-negativo, e é zero se e somente se v = 0. De fato, se $v = (x_1, \ldots, x_n)$, então

$$||v|| = \sqrt{v \cdot v} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Se os vetores não nulos $v_1,\ldots,v_k\in\mathbb{R}^n$ são mutuamente ortogonais (i.e. ortogonais dois a dois, $v_i\cdot v_j=0$ para todo $i\neq j$) então são linearmente independentes. De fato, se $\sum_{i=1}^k c_i v_i=0$ então, multiplicando por v_j , temos $c_j v_j\cdot v_j=0$ e, como $v_j\cdot v_j>0$, deduzimos $c_j=0$.

Uma base de \mathbb{R}^n formada por vetores mutuamente ortogonais é dita base ortogonal. Um exemplo de base ortogonal de \mathbb{R}^n é a sua base canônica.

Por exemplo, a seguinte base de \mathbb{R}^3 é uma base ortogonal.

$$B = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-5\\3 \end{pmatrix} \right\}.$$

Se $W \leq \mathbb{R}^n$, o complemento ortogonal de W é o subespaço de \mathbb{R}^n definido por

$$W^{\perp} := \{ v \in \mathbb{R}^n : v \cdot w = 0 \ \forall w \in W \}.$$

Note que $W \cap W^{\perp} = \{0\}$, pois se $v \in W \cap W^{\perp}$ então $v \cdot v = 0$, e isso só é possível se for v = 0.

TEOREMA 5. Seja A uma matriz $m \times n$, sejam V = L(A) e W o espaço-solução de Ax = 0 (núcleo de A). Então $V^{\perp} = W$. Se k é o posto de A então $\dim(V) = k$ e $\dim(W) = n - k$.

Demonstração. Observe que W é exatamente o conjunto dos vetores $v \in \mathbb{R}^n$ ortogonais aos vetores-linha de A, que geram V = L(A). Segue que $V^{\perp} = W$. \square

Segue do teorema anterior que se $V \leq \mathbb{R}^n$ então $\dim(V) + \dim(V^{\perp}) = n$. Segue que $\dim((V^{\perp})^{\perp}) = n - \dim(V^{\perp}) = n - (n - \dim(V)) = \dim(V)$. Por outro lado, V está obviamente contido em $(V^{\perp})^{\perp}$, logo $(V^{\perp})^{\perp} = V$.

Além disso, se $\{v_1,\ldots,v_k\}$ é uma base de $V \leq \mathbb{R}^n$ e $\{w_1,\ldots,w_h\}$ é uma base de V^\perp então $B=\{v_1,\ldots,v_k,w_1,\ldots,w_h\}$ é uma base de \mathbb{R}^n . De fato, já vimos que |B|=k+h=n, e basta mostrar que B é linearmente independente. Se $\sum_{i=1}^k a_iv_i + \sum_{i=1}^h b_iw_i = 0$ então $\sum_{i=1}^k a_iv_i = -\sum_{i=1}^h b_iw_i \in V \cap V^\perp = \{0\}$ logo

$$\sum_{i=1}^{k} a_i v_i = 0 \qquad \sum_{i=1}^{h} b_i w_i = 0.$$

Como v_1, \ldots, v_k são l.i. e w_1, \ldots, w_h são l.i., todos os coeficientes $a_1, \ldots, a_k, b_1, \ldots, b_h$ são nulos.

Segue que, se $V \leq \mathbb{R}^n$, então qualquer vetor de \mathbb{R}^n pode ser escrito de maneira única como soma de um vetor de V e um vetor de V^{\perp} . Em outras palavras, \mathbb{R}^n é uma soma direta $V \oplus V^{\perp}$.

Problema da projeção ortogonal. Dados $b \in \mathbb{R}^m$, $V \leq \mathbb{R}^m$, encontre $p \in V$, $q \in V^{\perp}$ tais que p+q=b. Eles são únicos. O vetor p é dito projeção ortogonal de b sobre V.

Como calcular a projeção ortogonal?

Seja $\{v_1,\ldots,v_k\}$ uma base de $V \leq \mathbb{R}^n$ e seja A a matriz cujas colunas são os v_i . Obviamente p tem a forma Ax para um oportuno $x \in \mathbb{R}^k$. Se $y \in \mathbb{R}^k$ então $Ay \in V$, logo Ay é ortogonal a q = b - p = b - Ax, segue que $(Ay)^T(b - Ax) = 0$, ou seja $y^TA^T(b - Ax) = 0$, ou seja $y^T(A^Tb - A^TAx) = 0$ para todo y. Segue que $A^Tb = A^TAx$. Como A tem posto k, a matriz quadrada A^TA , de formato $k \times k$, é inversível (se w é tal que $A^TAw = 0$ então $0 = w^TA^TAw = (Aw)^TAw$ logo Aw = 0, e isso implica w = 0 pois as colunas de A são linearmente independentes - isso mostra que as colunas de A^TA são l.i., ou seja A^TA é inversível), logo $x = (A^TA)^{-1}A^Tb$.

$$p = Ax = A(A^T A)^{-1} A^T b.$$

Se $\{v_1, \ldots, v_k\}$ é uma base ortogonal de V então a formula acima se simplifica muito, pois $A^T A$ é a matriz diagonal cujos termos diagonais são $v_1 \cdot v_1, \ldots, v_k \cdot v_k$, logo

$$x = (A^T A)^{-1} A^T b = \left(\frac{v_1 \cdot b}{v_1 \cdot v_1}, \dots, \frac{v_k \cdot b}{v_k \cdot v_k}\right)^T$$
$$p = Ax = \frac{v_1 \cdot b}{v_1 \cdot v_1} v_1 + \dots + \frac{v_k \cdot b}{v_k \cdot v_k} v_k.$$

Isso nos leva ao algoritmo para calcular uma base ortogonal de um espaço qualquer.

Algoritmo de Gram-Schmidt (Ortogonalização).

Seja $\{v_1,\ldots,v_k\}$ uma base de $V\leq\mathbb{R}^n$. Queremos encontrar uma base ortogonal $\{u_1,\ldots,u_k\}$ de V. Sejam

$$\begin{array}{l} u_1 := v_1 \\ u_2 := v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1, \\ u_3 := v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2, \\ \vdots \\ u_k := v_k - \frac{u_1 \cdot v_k}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_k}{u_2 \cdot u_2} u_2 - \ldots - \frac{u_{k-1} \cdot v_k}{u_{k-1} \cdot u_{k-1}} u_{k-1}. \end{array}$$

Note que u_2 é a componente de v_2 ortogonal a v_1 , u_3 é a componente de v_3 ortogonal a $[u_1, u_2]$, e assim diante, até u_k , que é a componente de v_k ortogonal a $[u_1, \ldots, u_{k-1}]$. Segue que $\{u_1, \ldots, u_k\}$ é uma base ortogonal de V.

Por exemplo, vamos determinar uma base ortogonal de $V = [v_1, v_2, v_3] < \mathbb{R}^4$ sendo

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}.$$

Observe que dim(V) = 3. Seja $u_1 := v_1$. Temos $u_1 \cdot v_2 = 5$ e $u_1 \cdot u_1 = 2$. Logo

$$u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} - \frac{5}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -3 \\ 4 \\ 6 \\ 3 \end{pmatrix}.$$

Temos $u_1 \cdot v_3 = -1$, $u_2 \cdot v_3 = -1/2$, $u_2 \cdot u_2 = 35/2$. Logo

$$\begin{aligned} u_3 &= v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2 \\ &= \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{-1/2}{35/2} \begin{pmatrix} -3/2 \\ 2 \\ 3 \\ 3/2 \end{pmatrix} = \frac{8}{35} \begin{pmatrix} 2 \\ 9 \\ -4 \\ -2 \end{pmatrix}. \end{aligned}$$

Segue que uma base ortogonal de V é

$$\left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} -3\\4\\6\\3 \end{pmatrix}, \quad \begin{pmatrix} 2\\9\\-4\\-2 \end{pmatrix} \right\}.$$

Observe que multipliquei cada vetor por um escalar oportuno para eliminar as frações, isso não altera a ortogonalidade.

6.1. Exercícios.

- (1) (Livro 5.1 (2)) Determine se $v_1 = (3, -2, 3, -4), v_2 = (6, 3, 4, 6), v_3 = (17, -12, -21, 3)$ são ortogonais entre si (dois a dois).
- (2) (Livro 5.1 (6)) Considere o triângulo cujos vértices A, B, C são A = (3,5,1,3), B = (4,2,6,4), C = (1,3,4,2), em \mathbb{R}^4 . Mostre que se trata de um triângulo retângulo, ou seja que um dos ângulos é de 90 graus.
- (3) (Livro 5.2 (17)) Determine a projeção ortogonal de b=(14,14,28) sobre o espaço vetorial $V<\mathbb{R}^3$ definido pela equação $x_1-3x_2+2x_3=0$.
- (4) (Livro 5.2 (21)) Determine a projeção ortogonal de b=(11,11,0,22) sobre o espaço-solução do sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 + 3x_2 + 3x_3 + x_4 = 0 \end{cases}$$

- (5) Nos seguintes itens, dada uma base $\{v_1, \ldots, v_k\}$ de um subespaço vetorial V de \mathbb{R}^n , transforme a base dada em uma base ortogonal $\{u_1, \ldots, u_k\}$ usando o algoritmo de Gram-Schmidt.
 - (a) (Livro 5.4 (1)) $v_1 = (3, 2), v_2 = (2, 3).$
 - (b) (Livro 5.4 (7)) $v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (0, 1, 1).$
 - (c) (Livro 5.4 (17)) $v_1 = (2, 1, 1, 1), v_2 = (2, 2, 1, 0), v_3 = (1, 2, 0, 1).$
 - (d) (Livro 5.4 (18)) $v_1 = (1, -1, 1, -1), v_2 = (1, 3, 1, -1), v_3 = (2, 0, 1, 1).$
- (6) (Livro 5.4 (14)) Calcule a projeção ortogonal de b=(3,3,3,3) sobre o subespaço vetorial de \mathbb{R}^4 gerado pelos vetores (1,1,1,0), (2,1,0,1), (3,0,1,1).
- (7) Mostre que os três pontos A = (0, 1, 1), B = (1, 2, 3), C = (2, 3, 5) de \mathbb{R}^3 pertencem a uma mesma reta e determine equações para tal reta.
- (8) Sejam A = (3, 2, 3), B = (2, 0, 1) em \mathbb{R}^3 . Encontre $C, D \in \mathbb{R}^3$ tais que A, B, C, D sejam os vértices de um quadrado.

7. Mudança de base

Considere duas bases $B_1 = \{v_1, \ldots, v_n\}$, $B_2 = \{w_1, \ldots, w_n\}$ de \mathbb{R}^n . Dado $v = \sum_{i=1}^n a_i v_i$, é possível escrever $v = \sum_{i=1}^n b_i w_i$ para oportunos (únicos!) escalares b_1, \ldots, b_n , por definição de base de um espaço vetorial. Como determinar os b_i a partir dos a_i ?

Seja M a matriz cujas colunas são v_1, \ldots, v_n e seja N a matriz cujas colunas são w_1, \ldots, w_n . Se trata de matrizes quadradas $n \times n$ inversíveis. Sejam $a = (a_1, \ldots, a_n)^T$, $b = (b_1, \ldots, b_n)^T$, então v = Ma = Nb. Segue que $b = N^{-1}Ma$.

EXEMPLO 1. Considere
$$B_1 = \{v_1, v_2\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, B_2 = \{w_1, w_2\} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$$
, são bases de \mathbb{R}^2 . Considere $v = a_1v_1 + a_2v_2$. Sejam
$$M := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad N := \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, \qquad a := \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

É claro que v = Ma = a. Queremos escrever v como $b_1w_1 + b_2w_2$, ou seja v = Nb sendo $b = (b_1, b_2)^T$. Mas sendo v = a, obtemos a equação a = Nb, que pode ser resolvida obtendo $b = N^{-1}a$, ou seja

$$\left(\begin{array}{c}b_1\\b_2\end{array}\right)=b=N^{-1}a=\left(\begin{array}{cc}3&-1\\-2&1\end{array}\right)\left(\begin{array}{c}a_1\\a_2\end{array}\right)=\left(\begin{array}{c}3a_1-a_2\\-2a_1+a_2\end{array}\right).$$

Em outras palavras $v = (3a_1 - a_2)w_1 + (-2a_1 + a_2)w_2$.

EXEMPLO 2. Considere
$$B_1 = \{v_1, v_2, v_3\} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\},$$

$$B_2 = \{w_1, w_2, w_3\} = \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} \right\}. \text{ São bases de } \mathbb{R}^3. \text{ Se } v = 0$$

 $\sum_{i=1}^3 a_i v_i = \sum_{i=1}^3 b_i w_i$ então $v = Ma = Nb \log b = N^{-1}Ma$, ou seja

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = b = N^{-1}Ma = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 3 & -3 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \frac{1}{12} \begin{pmatrix} 3 & 6 & -1 \\ 3 & -6 & 3 \\ 3 & -6 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \frac{1}{12} \begin{pmatrix} 2 & 5 & 13 \\ 6 & -3 & -3 \\ 2 & -7 & -11 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2a_1 + 5a_2 + 13a_3 \\ 6a_1 - 3a_2 - 3a_3 \\ 2a_1 - 7a_2 - 11a_3 \end{pmatrix}.$$

7.1. Exercícios.

(1) Sejam

$$B_1 = \{v_1, v_2\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}, \quad B_2 = \{w_1, w_2\} = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\},$$

bases de \mathbb{R}^2

- (a) Escreva um vetor qualquer $v=\left(\begin{array}{c}a_1\\a_2\end{array}\right)\in\mathbb{R}^2$ como $b_1v_1+b_2v_2.$
- (b) Dado $v = a_1v_1 + a_2v_2$, determine b_1, b_2 tais que $v = b_1w_1 + b_2w_2$.
- (c) Dado $v = a_1w_1 + a_2w_2$, determine b_1, b_2 tais que $v = b_1v_1 + b_2v_2$.
- (2) Considere

$$B_{1} = \{v_{1}, v_{2}, v_{3}\} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\},$$

$$B_{2} = \{w_{1}, w_{2}, w_{3}\} = \left\{ \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \right\}.$$

São bases de \mathbb{R}^3 .

(a) Escreva um vetor qualquer
$$v = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 \text{ como } b_1v_1 + b_2v_2 + b_3v_3.$$

- (b) Dado $v = a_1v_1 + a_2v_2 + a_3v_3$, determine os escalares b_1, b_2, b_3 tais que $v = b_1w_1 + b_2w_2 + b_3w_3$.
- (c) Escreva $2v_1 v_3$ como combinação linear de w_1, w_2, w_3 .
- (d) Dado $v = a_1w_1 + a_2w_2 + a_3w_3$, determine os escalares b_1, b_2, b_3 tais que $v = b_1v_1 + b_2v_2 + b_3v_3$.
- (e) Escreva $w_1 + 2w_2 w_3$ como combinação linear de v_1, v_2, v_3 .
- (3) Os pontos $A=(1,2),\ B=(5,-2),\ C=(-4,7)$ de \mathbb{R}^2 pertencem a uma mesma reta? Qual?
- (4) Mostre que os pontos A = (1, 2, 3), B = (0, -2, 0), C = (1, 1, 2) de \mathbb{R}^3 pertencem a um mesmo plano H, contido em \mathbb{R}^3 . Encontre uma equação que defina tal plano. O triângulo cujos vértices são A, B, C é retângulo? Caso não o seja, encontre um ponto D pertencente ao plano H e tal que A, B, D seja um triângulo retângulo.
- (5) Encontre uma matriz quadrada A de posto 2 tal que A^2 tem posto 1.
- (6) Encontre uma matriz quadrada A de posto 3 tal que A^2 tem posto 1.
- (7) Mostre que se A, B são matrizes tal que o produto AB faz sentido, com A de posto k e B de posto h, então o posto de AB é menor ou igual a k e também menor ou igual a h.
- (8) Indicaremos com $\operatorname{rk}(A)$ o posto de A (rank). Sejam A,B duas matrizes do mesmo formato. Mostre que

$$rk(A + B) \le rk(A) + rk(B)$$
.

[Pense no espaço-coluna das matrizes envolvidas.]

- (9) O posto de uma soma de matrizes é a soma dos postos?
- (10) Sejam A, B duas matrizes quadradas do mesmo formato, $n \times n$. É sempre verdade que AB e BA têm o mesmo posto? Se a resposta for sim, dê uma demonstração. Caso contrário, dê um contra-exemplo.
- (11) Sejam $u, v, w \in \mathbb{R}^n$ e lembre-se que $u \cdot v$ indica o produto escalar entre $u \in v$. Lembre-se que o comprimento (módulo, magnitude) de $v \in ||v|| := \sqrt{v \cdot v}$. Seja B uma base de \mathbb{R}^n . Para cada uma das seguintes afirmações, diga se v everdadeira (demonstrando) ou falsa (dando um contra-exemplo).
 - (a) Se $u \neq 0$ e $u \cdot v = u \cdot w$ então v = w.
 - (b) Se $v \cdot w = 0$ para todo $w \in \mathbb{R}^n$ então v = 0.
 - (c) Se $v \cdot w = 0$ para todo $w \in B$ então v = 0.
 - (d) Se $u \cdot v = u \cdot w$ para todo $u \in \mathbb{R}^n$ então v = w.
 - (e) Se $u \cdot v = u \cdot w$ para todo $u \in B$ então v = w.
 - (f) Se λ é um escalar, $||\lambda v|| = \lambda ||v||$.
 - (g) ||v + w|| = ||v|| + ||w||.
 - (h) ||v w|| = ||v|| ||w||.
 - (i) ||v + w|| = ||v w|| se e somente se $v \cdot w = 0$.
 - $(j) ||v+w||^2 + ||v-w||^2 = 2(||v||^2 + ||w||^2).$
 - (k) $||v + w||^2 ||v w||^2 = 4v \cdot w$.

8. Resolução dos exercícios

(1) Para cada uma das seguintes equações, diga se o conjunto das suas soluções é um subespaço vetorial de \mathbb{R}^3 .

$$x + 2y - 3z = 4$$
 $xyz = 0$ $x^2 + y^2 + z^2 = 0$ $x = z$

Os primeiros dois não, os últimos dois sim. O primeiro é uma reta em \mathbb{R}^3 que não passa pela origem (0,0,0), o segundo é uma união de três retas, dadas pelas equações $x=0,\ y=0$ e z=0, o terceiro é o espaço nulo $\{(0,0,0)\}$ e o quarto é o espaço-solução da equação linear homogênea x-z=0.

(2) Diga se

$$\begin{pmatrix} 0\\1\\5\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\12\\-2 \end{pmatrix} \in \mathbb{R}^4$$

são linearmente independentes.

$$\det\begin{pmatrix} 0 & -1 & 1 & 2\\ 1 & 0 & 1 & 3\\ 5 & 1 & 3 & 12\\ 0 & 1 & -1 & -2 \end{pmatrix} = -\det\begin{pmatrix} -1 & 1 & 2\\ 1 & 3 & 12\\ 1 & -1 & -2 \end{pmatrix} + 5\det\begin{pmatrix} -1 & 1 & 2\\ 0 & 1 & 3\\ 1 & -1 & -2 \end{pmatrix} = -(6+12-2-6+2-12) + 5(2+3-2-3) = 0$$

logo os vetores dados são linearmente dependentes.

(3) Diga se

$$\left(\begin{array}{c} 0\\1\\5 \end{array}\right),\; \left(\begin{array}{c} 4\\0\\2 \end{array}\right),\; \left(\begin{array}{c} 1\\2\\7 \end{array}\right) \in \mathbb{R}^3$$

são linearmente independentes.

$$\det \begin{pmatrix} 0 & 4 & 1 \\ 1 & 0 & 2 \\ 5 & 2 & 7 \end{pmatrix} = 40 + 2 - 28 = 14 \neq 0,$$

logo os três vetores dados são linearmente independentes.

(4) Sejam

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{R}^3.$$

Encontre um vetor $w \in \mathbb{R}^3$ tal que $\{u, v, w\}$ seja linearmente independente.

Basta escolher
$$w = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 pois

$$\det \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 3 & 1 & 1 \end{array} \right) = -1 \neq 0.$$

(5) Sejam

$$u = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}, w = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} \in \mathbb{R}^3.$$

- (a) Mostre que u, v, w são linearmente dependentes.
- (b) Diga se w pertence ao espaço $[u, v] < \mathbb{R}^3$.
- (c) Diga se u pertence ao espaco $[v, w] < \mathbb{R}^3$.

(d) Diga se v pertence ao espaço $[u, w] < \mathbb{R}^3$.

Observe que dizer que w pertence a [u, v] é equivalente a dizer que existem escalares a, b tais que w = au + bv.

Resolvendo au+bv+cw=0 obtemos $2a-c=0,\ a-2b+c=0,\ 3a+2b-3c=0.$ Uma solução é (a,b,c)=(2,3,4), ou seja 2u+3v+4w=0. Segue que $w=-u/2-3v/4\in [u,v],\ u=-3v/2-2w\in [v,w],\ v=-2u/3-4w/3\in [u,w].$

(6) Considere os vetores u, v do item anterior. Mostre que $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

pertence a [u,v] se e somente se $x_2+x_3=2x_1$. [Dica: considere a matriz quadrada A cujas colunas são u,v,x. Como formular a condição $x \in [u,v]$ em função da matriz A?]

x pertence a [u, v] se e somente se o seguinte determinante é nulo.

$$\det \begin{pmatrix} 2 & 0 & x_1 \\ 1 & -2 & x_2 \\ 3 & 2 & x_3 \end{pmatrix} = 8x_1 - 4x_2 - 4x_3.$$

- (7) Nos seguintes itens descubra se os vetores de \mathbb{R}^n dados constituem uma base de \mathbb{R}^n .
 - (a) (Livro 4.3(1)) $v_1 = (4,7), v_2 = (5,6).$

$$\det \left(\begin{array}{cc} 4 & 7 \\ 5 & 6 \end{array} \right) = 24 - 35 = -11 \neq 0.$$

São 2 vetores linearmente independentes de \mathbb{R}^2 , logo formam uma base de \mathbb{R}^2 .

(b) (Livro 4.3(5)) $v_1 = (0, 7, -3), v_2 = (0, 5, 4), v_3 = (0, 5, 10).$

$$\det\left(\begin{array}{ccc} 0 & 7 & -3\\ 0 & 5 & 4\\ 0 & 5 & 10 \end{array}\right) = 0.$$

São linearmente dependentes, logo não formam uma base de \mathbb{R}^3 .

(c) (Livro 4.3(6)) $v_1 = (0,0,1), v_2 = (0,1,2), v_3 = (1,2,3).$

$$\det\left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 1 & 2\\ 1 & 2 & 3 \end{array}\right) = -1 \neq 0.$$

São 3 vetores linearmente independentes de \mathbb{R}^3 , logo formam uma base de \mathbb{R}^3 .

(d) (Livro 4.3(8)) $v_1 = (2,0,0,0), v_2 = (0,3,0,0), v_3 = (0,0,7,6), v_4 = (0,0,4,5).$

$$\det \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 6 & 5 \end{pmatrix} = 6 \cdot (35 - 24) = 66 \neq 0.$$

São 4 linearmente independentes de \mathbb{R}^4 , logo formam uma base de \mathbb{R}^4 .

- (e) $v_1 = (1, 0, 3, 0, 1), v_2 = (1, 1, 1, 1, 1), v_3 = (0, 1, 0, 3, 0), v_4 = (1, 2, 3, 4, 5).$ Não formam uma base de \mathbb{R}^5 pois são apenas 4 vetores e toda base de \mathbb{R}^5 contém exatamente 5 vetores.
- (f) $v_1 = (1, 2, 3), v_2 = (0, 1, 0), v_3 = (0, 0, 3), v_4 = (4, 4, 9)$. São 4 vetores de \mathbb{R}^3 , logo não formam uma base de \mathbb{R}^3 , pois toda base de \mathbb{R}^3 contém exatamente 3 vetores.
- (g) $v_1 = (1, 2, 1), v_2 = (2, 10, -1), v_3 = (0, 2, -1).$

$$\det \begin{pmatrix} 1 & 2 & 0 \\ 2 & 10 & 2 \\ 1 & -1 & -1 \end{pmatrix} = -10 + 4 + 4 + 2 = 0.$$

São linearmente dependentes, logo não formam uma base de \mathbb{R}^3 .

(8) (Livro 4.3(12)) Encontre uma base para o subespaço de \mathbb{R}^4 formado pelos vetores da forma (a, b, c, d) tais que a = b + c + d.

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} b+c+d \\ b \\ c \\ d \end{pmatrix} = b \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base é

$$B = \left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\}.$$

(9) (Livro 4.3(13)) Encontre uma base para o subespaço de \mathbb{R}^4 formado pelos vetores da forma (a,b,c,d) tais que a=3c e b=4d.

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3c \\ 4d \\ c \\ d \end{pmatrix} = c \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 4 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base é

$$B = \left\{ \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

(10) (Livro 4.3(17)) Encontre uma base do espaço-solução do sistema linear homogêneo

$$\begin{cases} x_1 - 3x_2 + 2x_3 - 4x_4 = 0 \\ 2x_1 - 5x_2 + 7x_3 - 3x_4 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & -3 & 2 & -4 & 0 \\ 2 & -5 & 7 & -3 & 0 \end{pmatrix} \xrightarrow{\text{II}-2\text{II}} \begin{pmatrix} 1 & -3 & 2 & -4 & 0 \\ 0 & 1 & 3 & 5 & 0 \end{pmatrix}$$

Escolhendo $x_3 = s$, $x_4 = t$ temos $x_2 = -3s - 5t$, $x_1 = 3x_2 - 2s + 4t = 3(-3s - 5t) - 2s + 4t = -11s - 11t$. Segue que

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -11s - 11t \\ -3s - 5t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -11 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -11 \\ -5 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base do espaço-solução é

$$B = \left\{ \begin{pmatrix} -11\\ -3\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} -11\\ -5\\ 0\\ 1 \end{pmatrix} \right\}.$$

(11) (Livro 4.3(25)) Encontre uma base do espaço-solução do sistema linear homogêneo

$$\begin{cases} x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0 \\ 2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0 \\ 3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0 \end{cases}$$

As variáveis livres são $x_2 = r$, $x_4 = s$, $x_5 = t$. Temos $x_3 = x_4 - 4x_5 = s - 4t$ e $x_1 = -2x_2 - 7x_3 + 9x_4 - 31x_5 = -2r - 7(s - 4t) + 9s - 31t = -2r + 2s - 3t$, logo

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2r + 2s - 3t \\ r \\ s - 4t \\ s \\ t \end{pmatrix} = r \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 0 \\ -4 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base do espaço-solução é

$$B = \left\{ \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\-4\\0\\1 \end{pmatrix} \right\}.$$

(12) (Livro 4.3(29)) Seja $\{v_1, v_2, \ldots, v_k\}$ uma base do subespaço próprio W do espaço vetorial V e suponha que o vetor v de V não está em W. Mostre que os vetores v_1, v_2, \ldots, v_k, v são linearmente independentes.

Suponha $c_1v_1+\ldots+c_kv_k+cv=0$. Suponha que $c\neq 0$. Segue que $v=-c_1v_1/c-\ldots-c_kv_k/c\in W$, uma contradição. Segue que c=0, logo $c_1v_1+\ldots+c_kv_k=0$ e isso implica que $c_1=0,\ldots,c_k=0$ pois v_1,\ldots,v_k são linearmente independentes. Isso mostra que v_1,\ldots,v_k,v são linearmente independentes.

(13) (Livro 4.3 (20) e (26)) Encontre uma base do espaco-solução de

$$\begin{cases} x_1 - 3x_2 - 10x_3 + 5x_4 = 0 \\ x_1 + 4x_2 + 11x_3 - 2x_4 = 0 \\ x_1 + 3x_2 + 8x_3 - x_4 = 0 \end{cases} \begin{cases} 3x_1 + x_2 - 3x_3 + 11x_4 + 10x_5 = 0 \\ 5x_1 + 8x_2 + 2x_3 - 2x_4 + 7x_5 = 0 \\ 2x_1 + 5x_2 - x_4 + 14x_5 = 0 \end{cases}$$

Primeiro sistema.

$$\begin{pmatrix} 1 & -3 & -10 & 5 & 0 \\ 1 & 4 & 11 & -2 & 0 \\ 1 & 3 & 8 & -1 & 0 \end{pmatrix} \xrightarrow{\text{III-I}} \begin{pmatrix} 1 & -3 & -10 & 5 & 0 \\ 0 & 7 & 21 & -7 & 0 \\ 0 & 6 & 18 & -6 & 0 \end{pmatrix}$$

$$\xrightarrow{\text{III}-6\text{II}/7} \begin{pmatrix} 1 & -3 & -10 & 5 & 0 \\ 0 & 1 & 3 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

As variáveis livres são $x_3 = s$, $x_4 = t$, e temos $x_2 = -3x_3 + x_4 = -3s + t$ e $x_1 = 3x_2 + 10x_3 - 5x_4 = 3(-3s + t) + 10s - 5t = s - 2t$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} s - 2t \\ -3s + t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base do espaço-solução é

$$B = \left\{ \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Segundo sistema.

$$\left(\begin{array}{ccc|ccc|c} 3 & 1 & -3 & 11 & 10 & 0 \\ 5 & 8 & 2 & -2 & 7 & 0 \\ 2 & 5 & 0 & -1 & 14 & 0 \end{array} \right) \xrightarrow{\text{II}-2\text{III}} \left(\begin{array}{ccc|ccc|c} 1 & -4 & -3 & 12 & -4 & 0 \\ 1 & -2 & 2 & 0 & -21 & 0 \\ 2 & 5 & 0 & -1 & 14 & 0 \end{array} \right) \xrightarrow{\text{II}-1} \xrightarrow{\text{III}-2\text{III}}$$

$$\left(\begin{array}{cccc|c} 1 & -4 & -3 & 12 & -4 & 0 \\ 0 & 2 & 5 & -12 & -17 & 0 \\ 0 & 13 & 6 & -25 & 22 & 0 \end{array} \right) \stackrel{\text{III}-6\text{II}}{\longrightarrow} \left(\begin{array}{cccc|c} 1 & -4 & -3 & 12 & -4 & 0 \\ 0 & 2 & 5 & -12 & -17 & 0 \\ 0 & 1 & -24 & 47 & 124 & 0 \end{array} \right) \stackrel{\text{II}-2\text{III}}{\longrightarrow} \stackrel{\text{III}-6\text{III}}{\longrightarrow}$$

$$\begin{pmatrix}
1 & -4 & -3 & 12 & -4 & | & 0 \\
0 & 1 & -24 & 47 & 124 & | & 0 \\
0 & 0 & 53 & -106 & -265 & | & 0
\end{pmatrix} \xrightarrow{\text{III}/53} \begin{pmatrix}
1 & -4 & -3 & 12 & -4 & | & 0 \\
0 & 1 & -24 & 47 & 124 & | & 0 \\
0 & 0 & 1 & -2 & -5 & | & 0
\end{pmatrix}$$

As variáveis livres são $x_4=s$ e $x_5=t$. Temos $x_3=2x_4+5x_5=2s+5t$, $x_2=24x_3-47x_4-124x_5=24(2s+5t)-47s-124t=s-4t$ e $x_1=4x_2+3x_3-12x_4+4x_5=4(s-4t)+3(2s+5t)-12s+4t=-2s+3t$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2s + 3t \\ s - 4t \\ 2s + 5t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -2 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -4 \\ 5 \\ 0 \\ 1 \end{pmatrix}.$$

Uma base do espaço-solução é

$$B = \left\{ \begin{pmatrix} -2\\1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 3\\-4\\5\\0\\1 \end{pmatrix} \right\}.$$

(14) (Livro 4.4 (1), (5), (12)) Encontre uma base do espaço-linha e uma base do espaço-coluna das matrizes

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -3 & 4 \\ 2 & 5 & 11 & 12 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 3 & 3 & 0 \\ -1 & 0 & -2 & -1 & 1 \\ 2 & 3 & 7 & 8 & 1 \\ -2 & 4 & 0 & 6 & 7 \end{pmatrix}.$$

Primeira matriz.

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & 2 \end{array}\right) \overset{\text{II-I}}{\underset{\text{III-2I}}{\longrightarrow}} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 3 & -12 \\ 0 & 1 & -4 \end{array}\right) \overset{\text{II-3III}}{\underset{\text{II}\leftrightarrow\text{III}}{\longrightarrow}} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{array}\right)$$

Bases do espaço-linha e do espaço-coluna são

$$\{(1,2,3),(0,1,-4)\}, \qquad \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\5\\5 \end{pmatrix} \right\}.$$

Segunda matriz.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -3 & 4 \\ 2 & 5 & 11 & 12 \end{pmatrix} \xrightarrow{\text{III}-3I} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -6 & 1 \\ 0 & 3 & 9 & 10 \end{pmatrix} \xrightarrow{\text{III}+II} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 11 \\ 0 & -2 & -6 & 1 \end{pmatrix} \xrightarrow{\text{III}+2II} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 11 \\ 0 & 0 & 0 & 23 \end{pmatrix}$$

Bases do espaço-linha e do espaço-coluna são

$$\{(1,1,1,1),(0,1,3,11),(0,0,0,23)\},\ \left\{\left(\begin{array}{c}1\\3\\2\end{array}\right),\ \left(\begin{array}{c}1\\1\\5\end{array}\right),\ \left(\begin{array}{c}1\\4\\12\end{array}\right)\right\}.$$

Terceira matriz.

$$\begin{pmatrix} 1 & 1 & 3 & 3 & 0 \\ -1 & 0 & -2 & -1 & 1 \\ 2 & 3 & 7 & 8 & 1 \\ -2 & 4 & 0 & 6 & 7 \end{pmatrix} \xrightarrow{\text{II+I, III-2I}} \begin{pmatrix} 1 & 1 & 3 & 3 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 6 & 6 & 12 & 7 \end{pmatrix}$$

$$\underset{\text{IV-6II, III} \leftrightarrow \text{IV}}{\underset{\text{IV}}{\overset{\text{III-II}}{\longrightarrow}}} \left(\begin{array}{ccccc} \mathbf{1} & 1 & 3 & 3 & 0 \\ 0 & \mathbf{1} & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

Bases do espaço-linha e do espaço-coluna são

$$\left\{ (1,1,3,3,0), (0,1,1,2,1), (0,0,0,0,1) \right\}, \quad \left\{ \begin{pmatrix} 1\\-1\\2\\-2 \end{pmatrix}, \begin{pmatrix} 1\\0\\3\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\7 \end{pmatrix} \right\}.$$

(15) Determine o posto das matrizes do item anterior.

O posto é a dimensão do espaço-linha, igual à dimensão do espaço-coluna, que é o tamanho de uma base de um desses dois espaços. Segue que a primeira matriz tem posto 2, a segunda matriz tem posto 3 e a terceira matriz tem posto 3.

(16) (Livro 4.4 (16)) Sejam $v_1 = (5,4,2,2), v_2 = (3,1,2,3), v_3 = (7,7,2,1), v_4 = (1,-1,2,4), v_5 = (5,4,6,7),$ vetores de \mathbb{R}^4 . Seja $S = \{v_1,v_2,v_3,v_4,v_5\}$. Encontre um subconjunto de S que seja uma base do subespaço de \mathbb{R}^4 gerado por S.

Vamos escalonar a matriz cujas colunas são os vetores dados, na ordem dada

$$\begin{pmatrix} 5 & 3 & 7 & 1 & 5 \\ 4 & 1 & 7 & -1 & 4 \\ 2 & 2 & 2 & 2 & 6 \\ 2 & 3 & 1 & 4 & 7 \end{pmatrix} \xrightarrow{\text{III}} \xrightarrow{\text{III}} V \begin{pmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & -3 & 3 & -5 & -8 \\ 0 & -1 & 1 & -2 & -1 \\ 2 & 3 & 1 & 4 & 7 \end{pmatrix} \xrightarrow{\text{IV}-2\text{I}, -\text{III}} \overrightarrow{\text{II}-3\text{III}}$$

$$\begin{pmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & -1 & 1 & 0 & 5 \end{pmatrix} \xrightarrow{\text{IV+III}} \begin{pmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 2 & 6 \end{pmatrix} \xrightarrow{\text{IV-2III}} \begin{pmatrix} \mathbf{1} & 2 & 0 & 2 & 1 \\ 0 & \mathbf{1} & -1 & 2 & 1 \\ 0 & 0 & 0 & \mathbf{1} & -5 \\ 0 & 0 & 0 & 0 & \mathbf{16} \end{pmatrix}$$

Os elementos líderes estão nas colunas 1, 2, 4, 5, logo uma base de [S] contida em S é $\{v_1,v_2,v_4,v_5\}$.

(17) (Livro 4.4 (20)) Ache uma base T de \mathbb{R}^4 que contenha os vetores $v_1=(3,2,3,3)$ e $v_2=(5,4,5,5)$.

Uma base é

$$B = \left\{ \begin{pmatrix} 3\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} 5\\4\\5\\5 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$

pois

$$\det \left(\begin{array}{cccc} 3 & 5 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 3 & 5 & 1 & 0 \\ 3 & 5 & 0 & 1 \end{array} \right) = 2 \neq 0.$$

(18) (Livro 4.4 (25)) Explique por que o posto de uma matriz A é igual ao posto da sua transposta A^T . Lembre-se que a transposta de uma matriz A é a matriz A^T cuja componente (i,j) é igual à componente (j,i) de A, ou seja as linhas de A^T são as colunas de A (na mesma ordem).

Observe que as colunas de A são as linhas de A^T , logo $C(A) = L(A^T)^T$, onde, se W é um subespaço vetorial de \mathbb{R}^n , W^T indica o espaço obtido transpondo os vetores em W. É claro que $\dim(W^T) = \dim(W)$, pois a única diferença entre W e W^T está na notação dos seus elementos. Segue que $\dim(L(A)) = \dim(C(A)) = \dim(L(A^T)^T) = \dim(L(A^T))$, ou seja o espaço-linha de A e de A^T têm a mesma dimensão. Isso significa que A e A^T têm o mesmo posto.

(19) Calcule o posto de

$$\begin{pmatrix} 1 & 2 & 2 & 2 & 1 \\ 1 & 3 & 3 & 3 & 1 \\ 1 & 4 & 4 & 4 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 8 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$

Primeira matriz.

O posto da primeira matriz é 2.

Segunda matriz.

$$\begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 8 & 1 \end{pmatrix} \xrightarrow{\text{III}+\text{I}} \begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & -15 \end{pmatrix} \xrightarrow{\text{III}+15\text{II}} \begin{pmatrix} \mathbf{1} & 2 & 4 \\ 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{pmatrix}$$

O posto da segunda matriz é 2.

Terceira matriz.

$$\begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix} \xrightarrow{\text{II+I}} \begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & -8 & -15 \end{pmatrix} \xrightarrow{\text{II} \leftrightarrow \text{III}} \begin{pmatrix} \mathbf{1} & 2 & 4 \\ 0 & \mathbf{8} & 15 \\ 0 & 0 & \mathbf{1} \end{pmatrix}$$

O posto da segunda matriz é 3.

Quarta matriz.

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{array}\right) \xrightarrow{\text{II}-2I} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

O posto da quarta matriz é 1.

(20) Calcule o posto da seguintes matrizes para todo valor de $h \in \mathbb{R}$.

$$\left(\begin{array}{ccc} 1 & 0 & h \\ 0 & 1 & 0 \\ h & 0 & 1 \end{array} \right) \quad \left(\begin{array}{ccc} 1 & 2 & h & 3 \\ 0 & 1 & h & 1 \\ 1 & -1 & h & h \end{array} \right) \quad \left(\begin{array}{ccc} h+1 & h & 1 \\ h & 3 & h-1 \\ h & h-1 & 3 \end{array} \right)$$

Primeira matriz.

Fazendo a operação elementar III – hI obtemos a matriz

$$\left(\begin{array}{ccc}
1 & 0 & h \\
0 & 1 & 0 \\
0 & 0 & 1 - h^2
\end{array}\right)$$

Esta matriz tem posto 3 se $1-h^2 \neq 0$, ou seja se $h \neq \pm 1$. Falta considerar os dois casos h=1 e h=-1. Nestes dois casos obtemos as matrizes

$$\left(\begin{array}{ccc} \mathbf{1} & 0 & 1 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 \end{array}\right), \qquad \left(\begin{array}{ccc} \mathbf{1} & 0 & -1 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Segue que quando $h = \pm 1$ a matriz dada tem posto 2.

Segunda matriz.

Observe que a segunda matriz é 3×4 e as primeiras duas colunas são l.i., logo o posto é 2 ou 3. É claro que se as primeiras três colunas são linearmente independentes então o posto é 3. O determinante da matriz formada pelas primeiras três colunas é

$$\det \begin{pmatrix} 1 & 2 & h \\ 0 & 1 & h \\ 1 & -1 & h \end{pmatrix} = h + 2h - h + h = 3h.$$

Segue que se $h \neq 0$ então a matriz dada tem posto 3. No caso h = 0 temos a matriz

$$\left(\begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0 \end{array}\right) \stackrel{\text{III-I}}{\longrightarrow} \left(\begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & -3 & 0 & -3 \end{array}\right) \stackrel{\text{III+3II}}{\longrightarrow} \left(\begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Segue que se h = 0 então a matriz dada tem posto 2.

Terceira matriz. Se trata de uma matriz quadrada 3×3 , logo o seu posto é 3 exatamente quando o seu determinante

$$\det\begin{pmatrix} h+1 & h & 1\\ h & 3 & h-1\\ h & h-1 & 3 \end{pmatrix} = 9(h+1)+h^2(h-1)+h(h-1)-3h-3h^2-(h-1)^2(h+1)$$

$$= 9h+9+h^3-h^2+h^2-h-3h-3h^2-h^3+h+h^2-1 = -2h^2+6h+8$$

$$= -2(h^2-3h-4).$$

é diferente de zero. Este determinante é nulo se e somente se $h^2-3h-4=0$, ou seja h=-1 ou h=4. Esses dois casos precisam ser analizados separadamente. As matrizes correspondentes a h=-1 e h=4 são

$$\left(\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 3 & -2 \\
-1 & -2 & 3
\end{array}\right) \qquad \left(\begin{array}{ccc}
5 & 4 & 1 \\
4 & 3 & 3 \\
4 & 3 & 3
\end{array}\right)$$

O posto dessas duas matrizes é menor que 3 (tendo determinante igual a zero), por outro lado as primeiras duas colunas dessas duas matrizes são linearmente independentes, logo essas duas matrizes têm posto 2.

(21) Sejam

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -1 \\ -4 \\ 3 \\ -4 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix}.$$

(a) Calcule a dimensão de $[v_1]$, $[v_1, v_2]$, $[v_1, v_2, v_5]$, $[v_1, v_2, v_3, v_4]$. Como v_1 é um vetor não nulo, $\dim([v_1]) = 1$, e como v_1, v_2 são linearmente independentes, $\dim([v_1, v_2]) = 2$. $[v_1, v_2, v_5]$ é o espaço-coluna da matriz

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix} \xrightarrow{\text{III-I}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -2 & -2 \\ 0 & 2 & 2 \end{pmatrix} \xrightarrow{\text{III+II}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Segue que v_1, v_2, v_5 são linearmente independentes e $[v_1, v_2, v_5]$ tem dimensão 3.

 $\left[v_1,v_2,v_3,v_4\right]$ é o espaço coluna da matriz

$$\begin{pmatrix}
1 & 1 & -1 & 2 \\
0 & 2 & -4 & 1 \\
1 & -1 & 3 & 1 \\
0 & 2 & -4 & 1
\end{pmatrix}
\xrightarrow{\text{III-I}}
\begin{pmatrix}
1 & 1 & -1 & 2 \\
0 & 2 & -4 & 1 \\
0 & -2 & 4 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{III+II}}
\begin{pmatrix}
1 & 1 & -1 & 2 \\
0 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Segue que $\dim([v_1, v_2, v_3, v_4]) = 2$ e uma base de $[v_1, v_2, v_3, v_4]$ é $\{v_1, v_2\}$.

(b) Mostre que $[v_1, v_2] = [v_3, v_4]$.

Vimos no item anterior que $[v_1, v_2, v_3, v_4]$ tem dimensão 2. Mas ele contém os subespaços $[v_1, v_2]$ e $[v_3, v_4]$, que também têm dimensão 2, pois v_1, v_2 são l.i. e v_3, v_4 são l.i. Segue que

$$[v_1, v_2] = [v_1, v_2, v_3, v_4] = [v_3, v_4].$$

(c) Mostre que o vetor coluna $x = (x_1, x_2, x_3, x_4)^T$ pertence a $[v_3, v_4, v_5]$ se e somente se $x_1 = x_3 + x_4$.

Observe que $\{v_3, v_4, v_5\}$ é uma base de $W = [v_3, v_4, v_5]$ pois W é o espaço-coluna da matriz

$$\begin{pmatrix} -1 & 2 & 1 \\ -4 & 1 & 1 \\ 3 & 1 & -1 \\ -4 & 1 & 2 \end{pmatrix} \xrightarrow{\text{II}} \xrightarrow{\text{II}} \begin{pmatrix} -1 & 2 & 1 \\ 0 & -7 & -3 \\ 0 & 7 & 2 \\ 0 & -7 & -2 \end{pmatrix} \xrightarrow{\text{III}} \begin{pmatrix} -1 & 2 & 1 \\ 0 & -7 & -3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

É claro que, se x pertence a W, então é combinação linear de v_3, v_4, v_5 , logo v_3, v_4, v_5, x são l.d. Vice-versa, se v_3, v_4, v_5, x são l.d., então existe uma combinação linear do tipo $av_3 + bv_4 + cv_5 + dx = 0$ com a, b, c, d não todos nulos e, sendo v_3, v_4, v_5 l.i., temos $d \neq 0$, logo $x = -av_3/d - bv_4/d - cv_5/d \in [v_3, v_4, v_5]$.

Segue que x pertence a W se e somente se v_3, v_4, v_5, x são l.d., e isso é equivalente a dizer que a matriz cujas colunas são v_3, v_4, v_5, x tem determinante igual a zero, ou seja

$$0 = \det \begin{pmatrix} -1 & 2 & 1 & x_1 \\ -4 & 1 & 1 & x_2 \\ 3 & 1 & -1 & x_3 \\ -4 & 1 & 2 & x_4 \end{pmatrix} = 7x_1 - 7x_3 - 7x_4$$

(d) Para cada um dos seguintes espaços vetoriais, encontre um sistema linear homogêneo Ax=0 que o tenha como espaço-solução.

$$W_1 = [v_1, v_2, v_5],$$
 $W_2 = [v_1, v_2],$ $W_3 = [v_2].$

No caso de W_1 , como $[v_1,v_2]=[v_3,v_4]$, temos $[v_3,v_4,v_5]=[v_1,v_2,v_5]$, logo W_1 é determinado pela equação do item anterior, $x_1=x_3+x_4$. No caso de W_2 , como está contido em W_1 , com certeza todos os vetores de W_2 satisfazem $x_1=x_3+x_4$. Precisamos de uma outra equação. Uma possibilidade é considerar a equação que caracteriza $[v_1,v_2,e_4]$, sendo e_4 o quarto vetor da base canônica:

$$0 = \det \begin{pmatrix} 1 & 1 & 0 & x_1 \\ 0 & 2 & 0 & x_2 \\ 1 & -1 & 0 & x_3 \\ 0 & 2 & 1 & x_4 \end{pmatrix} = 2x_1 - 2x_2 - 2x_3$$

Segue que W_2 é o espaço-solução, ou núcleo, do sistema linear homogêneo

$$\begin{cases} x_1 - x_3 - x_4 = 0 \\ x_1 - x_2 - x_3 = 0 \end{cases}$$

Para determinar $W_3 = [v_2]$ precisamos de uma equação que v_2 satisfaz, e linearmente independente das anteriores, como por exemplo

 $x_2 = x_4$. Segue que W_3 é o espaço-solução (núcleo) do sistema linear homogêneo

$$\begin{cases} x_1 - x_3 - x_4 = 0 \\ x_1 - x_2 - x_3 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

(e) Seja $w = v_1 + v_2 - 2v_5$. Mostre que v_1, v_2, v_5, w são linearmente dependentes.

A relação dada pode ser escrita como $v_1 + v_2 - 2v_5 - w = 0$. Essa é uma combinação linear nula cujos coeficientes não são todos nulos. Segue que os vetores dados são linearmente dependentes.

(22) Observe que, como as operações elementares de linha não alteram o espaçolinha, duas matrizes linha-equivalentes têm o mesmo posto. Vale a volta? Ou seja, é verdade que duas matrizes que tem o mesmo formato e o mesmo posto são necessariamente linha-equivalentes?

Não, por exemplo as duas matrizes

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \qquad \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

têm o mesmo formato (2×2) , o mesmo posto, igual a 1, mas não são linha-equivalentes pois o espaço-linha da primeira é [(1,1)], o espaço-linha da segunda é [(1,0)] e as operações elementares de linha não alteram o espaço-linha.

(23) Sejam A uma matriz $m \times n$, B uma matriz inversível $m \times m$, C uma matriz inversível $n \times n$. Mostre que o posto de BAC é igual ao posto de A. [Use o fato que toda matriz inversível é produto de matrizes elementares.]

Multiplicar à esquerda por uma matriz inversível é equivalente a fazer um certo número de operações elementares de linha. Multiplicar à direita por uma matriz inversível é equivalente a fazer um certo número de operações elementares de coluna. Como as operações elementares (de linha e de coluna) não alteram o posto, o resultado segue.

(24) (Difícil) Sejam A_1 e A_2 duas matrizes do mesmo formato, $m \times n$, tais que o posto de A_1 é igual ao posto de A_2 . Mostre que existem matrizes inversíveis B, de formato $m \times m$, e C, de formato $n \times n$, tais que $A_2 = BA_1C$. [A ideia é pensar nas matrizes que podem ser obtidas a partir de uma matriz dada combinando operações elementares de linha e operações elementares de coluna.]

Operando nas linhas e nas colunas, é possível levar toda matriz a uma matriz cujos coeficientes não nulos estão nas posições $(1,1),\ldots,(k,k)$, sendo k o posto, e são iguais a 1. Como exemplo, considere o seguinte.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix} \xrightarrow{\text{I-II}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{III-I}} \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\substack{\text{c3+c1} \\ \text{c3-2c2}}} \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\substack{\text{c4+2c1} \\ \text{c4-3c2}}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Podemos dizer que duas matrizes são "equivalentes" (ou "linha-colunaequivalentes") se podem ser obtidas uma da outra combinando operações de linha e de coluna. Fazer operações de linha é equivalente a multiplicar a esquerda por matrizes elementares, fazer operações de coluna é equivalente a multiplicar à direita por matrizes elementares, logo, como toda matriz inversível é produto de matrizes elementares, se A_1 é equivalente a A_2 então existem matrizes inversíveis B,C tais que $A_2=BA_1C$. Por outro lado, seguindo o argumento do exemplo acima, é sempre possível chegar em uma matriz equivalente de tipo "diagonal", cuja estrutura depende apenas do formato e do posto. Isso implica que duas matrizes do mesmo formato são linha-coluna-equivalentes se e somente se elas têm o mesmo posto.

Observe que duas matrizes do mesmo formato são linha-equivalentes se e somente se elas têm o mesmo espaço-linha, e são coluna-equivalentes se e somente se elas têm o mesmo espaço-coluna. Isso implica que o espaço-linha classifica as matrizes por linha-equivaência, o espaço-coluna classifica as matrizes por coluna-equivalência, e o argumento acima mostra que o posto classifica as matrizes por linha-coluna-equivalência.

- (25) (Livro 5.1 (2)) Determine se $v_1 = (3, -2, 3, -4), v_2 = (6, 3, 4, 6), v_3 = (17, -12, -21, 3)$ são ortogonais entre si (dois a dois). $v_1 \cdot v_2 = 18 - 6 + 12 - 24 = 0, v_1 \cdot v_3 = 51 + 24 - 63 - 12 = 0,$ $v_2 \cdot v_3 = 102 - 36 - 84 + 18 = 0.$ Sim, são ortogonais entre si.
- (26) (Livro 5.1 (6)) Considere o triângulo cujos vértices A, B, C são A = (3, 5, 1, 3), B = (4, 2, 6, 4), C = (1, 3, 4, 2), em \mathbb{R}^4 . Mostre que se trata de um triângulo retângulo, ou seja que um dos ângulos é de 90 graus.

 $(A-C)\cdot (B-C)=(2,2,-3,1)\cdot (3,-1,2,2)=6-2-6+2=0.$ Segue que os vetores A-C e B-C são ortogonais, ou seja o ângulo em C é de 90 graus. Podemos também determinar os outros dois ângulos. Temos $(A-B)\cdot (C-B)=(-1,3,-5,-1)\cdot (-3,1,-2,-2)=3+3+10+2=18,$ $||A-B||=||(-1,3,-5,1)||=\sqrt{36}=6,$ $||C-B||=||(-3,1,-2,-2)||=\sqrt{18},$ logo o cosseno do ângulo em B vale

$$\cos(\theta) = \frac{(A-B) \cdot (C-B)}{||A-B|| \cdot ||C-B||} = \frac{18}{6\sqrt{18}} = \frac{\sqrt{2}}{2},$$

ou seja o ângulo em B é de 45 graus. Como a soma dos três ângulos é 180 graus, segue que o ângulo em A também é de 45 graus.

(27) (Livro 5.2 (17)) Determine a projeção ortogonal de b=(14,14,28) sobre o espaço vetorial $V<\mathbb{R}^3$ definido pela equação $x_1-3x_2+2x_3=0$.

Vamos primeiro determinar uma base de V, que é um plano em \mathbb{R}^3 . Escolhendo $x_2=s, x_3=t$ temos $x_1=3s-2t$, logo

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3s - 2t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix},$$

sejam $v_1 = (3,1,0)^T$, $v_2 = (-2,0,1)^T$. O conjunto $B = \{v_1,v_2\}$ é uma base de V. Seja

$$A := \left(\begin{array}{cc} 3 & -2 \\ 1 & 0 \\ 0 & 1 \end{array}\right), \qquad A^T A = \left(\begin{array}{cc} 3 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right) \left(\begin{array}{cc} 3 & -2 \\ 1 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 10 & -6 \\ -6 & 5 \end{array}\right).$$

Segue que

$$(A^T A)^{-1} = \frac{1}{14} \begin{pmatrix} 5 & 6 \\ 6 & 10 \end{pmatrix}$$

e podemos calcular a projeção ortogonal:

$$p = A(A^{T}A)^{-1}A^{T}b = \begin{pmatrix} 3 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{14} \begin{pmatrix} 5 & 6 \\ 6 & 10 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 14 \\ 14 \\ 28 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 20 \\ 24 \end{pmatrix}.$$

Observe que o vetor p calculado acima realmente pertence a V pois $p = 20v_1 + 24v_2$. Além disso, $q = b - p = \begin{pmatrix} 2 \\ -6 \\ 4 \end{pmatrix}$ é ortogonal a todos os vetores de V pois é ortogonal a v_1 e a v_2 .

(28) (Livro 5.2 (21)) Determine a projeção ortogonal de b=(11,11,0,22) sobre o espaço-solução do sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 + 3x_2 + 3x_3 + x_4 = 0 \end{cases}$$

Resolvendo o sistema com $x_3 = s$, $x_4 = t$, obtemos

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2t \\ -s+t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Sejam

$$A := \left(\begin{array}{ccc} 0 & -2 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right), \qquad A^T A = \left(\begin{array}{ccc} 0 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 0 & -2 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{ccc} 2 & -1 \\ -1 & 6 \end{array} \right).$$

Segue que

$$(A^T A)^{-1} = \frac{1}{11} \begin{pmatrix} 6 & 1 \\ 1 & 2 \end{pmatrix}$$

e podemos calcular a projeção ortogonal:

$$p = A(A^{T}A)^{-1}A^{T}b = \begin{pmatrix} 0 & -2 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{11} \begin{pmatrix} 6 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 11 \\ 11 \\ 0 \\ 22 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -2 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -5 & 6 & 1 \\ -4 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 8 & -2 & -2 & -4 \\ -2 & 6 & -5 & 1 \\ -2 & -5 & 6 & 1 \\ -4 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ -5 \\ 1 \end{pmatrix}.$$

Segue que $q=b-p=(13,5,5,21)^T$ é ortogonal a todos os vetores do espaço-solução.

- (29) Nos seguintes itens, dada uma base $\{v_1, \ldots, v_k\}$ de um subespaço vetorial V de \mathbb{R}^n , transforme a base dada em uma base ortogonal $\{u_1, \ldots, u_k\}$ usando o algoritmo de Gram-Schmidt.
 - (a) (Livro 5.4 (1)) $v_1 = (3, 2), v_2 = (2, 3).$ $u_1 = v_1 = (3, 2),$

$$u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - \frac{12}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} -10 \\ 15 \end{pmatrix}.$$

(b) (Livro 5.4 (7)) $v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (0, 1, 1).$ $u_1 = v_1 = (1, 1, 0),$

$$u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

Podemos escolher $u_2 = (1, -1, 2)$.

$$u_3 = v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} -3 - 1 \\ 6 - 3 + 1 \\ 6 - 2 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

A base ortogonal assim obtida é

$$\left\{ \left(\begin{array}{c} 1\\1\\0 \end{array}\right), \ \left(\begin{array}{c} 1\\-1\\2 \end{array}\right), \ \left(\begin{array}{c} -1\\1\\1 \end{array}\right) \right\}.$$

(c) (Livro 5.4 (17)) $v_1 = (2, 1, 1, 1), v_2 = (2, 2, 1, 0), v_3 = (1, 2, 0, 1).$ $u_1 = v_1 = (2, 1, 1, 1),$

$$u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 0 \end{pmatrix} - \frac{7}{7} \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix},$$

$$\begin{aligned} u_3 &= v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2 \\ &= \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} - \frac{5}{7} \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} -6 \\ 11 \\ -10 \\ 11 \end{pmatrix}. \end{aligned}$$

A base ortogonal assim obtida é

$$\left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \begin{pmatrix} -6\\11\\-10\\11 \end{pmatrix} \right\}.$$

(d) (Livro 5.4 (18)) $v_1 = (1, -1, 1, -1), v_2 = (1, 3, 1, -1), v_3 = (2, 0, 1, 1).$ $u_1 = v_1 = (1, -1, 1, -1),$

$$u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 3 \\ 1 \\ -1 \end{pmatrix} - \frac{0}{4} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = v_2,$$

$$\begin{aligned} u_3 &= v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2 \\ &= \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{4} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} - \frac{2}{12} \begin{pmatrix} 1 \\ 3 \\ 1 \\ -1 \end{pmatrix} \\ &= \frac{1}{6} \begin{pmatrix} 12 - 3 - 1 \\ 3 - 3 \\ 6 - 3 - 1 \\ 6 + 3 + 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 4 \\ 0 \\ 1 \\ 5 \end{pmatrix}. \end{aligned}$$

A base ortogonal assim obtida é

$$\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\3\\1\\-1 \end{pmatrix}, \begin{pmatrix} 4\\0\\1\\5 \end{pmatrix} \right\}.$$

(30) (Livro 5.4 (14)) Calcule a projeção ortogonal de b = (3,3,3,3) sobre o subespaço vetorial de \mathbb{R}^4 gerado pelos vetores (1,1,1,0), (2,1,0,1),

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad A^T A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 3 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 4 \\ 3 & 6 & 7 \\ 4 & 7 & 11 \end{pmatrix},$$

$$\begin{split} p &= A(A^TA)^{-1}A^Tb \\ &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \frac{1}{24} \begin{pmatrix} 17 & -5 & -3 \\ -5 & 17 & -9 \\ -3 & -9 & 9 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 3 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ 12 \\ 15 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \frac{1}{24} \begin{pmatrix} -2 & 2 & 6 \\ 12 & 12 & -12 \\ 14 & -14 & 6 \\ -8 & 8 & 0 \end{pmatrix} \begin{pmatrix} 9 \\ 12 \\ 15 \end{pmatrix} = \frac{1}{24} \begin{pmatrix} 96 \\ 72 \\ 48 \\ 24 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} \end{split}$$

Segue que q = b - p = (-1, 0, 1, 2).

(31) Mostre que os três pontos A=(0,1,1), B=(1,2,3), C=(2,3,5) de \mathbb{R}^3 pertencem a uma mesma reta e determine equações para tal reta.

Um ponto P=(x,y,z) pertence à reta que passa por A e por B se e somente se existe um escalar λ tal que $P=A+\lambda(B-A)$, ou seja

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right) + \lambda \left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right),$$

ou seja $x=\lambda,\ y=1+\lambda,\ z=1+2\lambda.$ Em outras palavras y=1+x e z=1+2x. Essas duas equações determinam uma reta, e o ponto C pertence a ela pois satisfaz as duas equações.

(32) Sejam A = (3,2,3), B = (2,0,1) em \mathbb{R}^3 . Encontre $C, D \in \mathbb{R}^3$ tais que A, B, C, D sejam os vértices de um quadrado.

Observe que $||B-A||=||(-1,-2,-2)||=\sqrt{1+4+4}=3$, logo ||C-A||=3. O vetor C-A precisa ser ortogonal a B-A=(-1,-2,-2) e precisa ter comprimento 3. Por exemplo, o vetor (2,-1,0) é ortogonal a B-A mas o seu comprimento é $\sqrt{5}$, isso implica que podemos escolher $C-A=\frac{3}{\sqrt{5}}(2,-1,0)$, ou seja $C=A+\frac{3}{\sqrt{5}}(2,-1,0)=(3+6/\sqrt{5},2-3/\sqrt{5},3)$. Para formar um quadrado junto com A,B,C, o ponto D precisa ser igual a C+(B-A), ou seja $D=(2+6/\sqrt{5},-3/\sqrt{5},1)$.

(33) Sejam

$$B_1 = \{v_1, v_2\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}, \quad B_2 = \{w_1, w_2\} = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\},$$

bases de \mathbb{R}^2 .

(a) Escreva um vetor qualquer $v = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in \mathbb{R}^2$ como $b_1v_1 + b_2v_2$.

$$v = \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right),$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} -1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} -a_1 - 2a_2 \\ -a_1 + a_2 \end{pmatrix},$$

ou seja $b_1 = (a_2 + 2a_2)/3$ e $b_2 = (a_1 - a_2)/3$.

(b) Dado $v = a_1v_1 + a_2v_2$, determine b_1, b_2 tais que $v = b_1w_1 + b_2w_2$.

$$\left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) = v = \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right),$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -a_1 + a_2 \\ 3a_1 \end{pmatrix},$$

ou seja $b_1 = -a_1 + a_2$ e $b_2 = 3a_1$.

(c) Dado $v = a_1w_1 + a_2w_2$, determine b_1, b_2 tais que $v = b_1v_1 + b_2v_2$.

$$\left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) = v = \left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right),$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
$$= -\frac{1}{3} \begin{pmatrix} -1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
$$= -\frac{1}{3} \begin{pmatrix} 0 & -1 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} a_2/3 \\ a_1 + a_2/3 \end{pmatrix},$$

ou seja $b_1 = a_2/3$ e $b_2 = a_1 + a_2/3$

(34) Considere

$$B_{1} = \{v_{1}, v_{2}, v_{3}\} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\},$$

$$B_{2} = \{w_{1}, w_{2}, w_{3}\} = \left\{ \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \right\}.$$

São bases de \mathbb{R}^3 .

(a) Escreva um vetor qualquer $v = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 \text{ como } b_1v_1 + b_2v_2 + b_3v_3.$

$$v = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 & -3 & -1 \\ 2 & 1 & -1 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \begin{pmatrix} (2a_1 - 3a_2 - a_3)/4 \\ (2a_1 + a_2 - a_3)/4 \\ (-2a_1 + a_2 + 3a_3)/4 \end{pmatrix}.$$

(b) Dado $v = a_1v_1 + a_2v_2 + a_3v_3$, determine os escalares b_1, b_2, b_3 tais que $v = b_1w_1 + b_2w_2 + b_3v_3$.

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = v = \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= -\frac{1}{5} \begin{pmatrix} -3 & -3 & 2 \\ 2 & 7 & -3 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= -\frac{1}{5} \begin{pmatrix} 2 & -7 & 1 \\ -8 & 8 & -4 \\ -1 & -4 & -3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

ou seja

$$b_1 = -(2a_1 - 7a_2 + a_3)/5,$$

$$b_2 = -(-8a_1 + 8a_2 - 4a_3)/5,$$

$$b_3 = -(-a_1 - 4a_2 - 3a_3)/5.$$

(c) Escreva $2v_1-v_3$ como combinação linear de w_1,w_2,w_3 . É suficiente escolher $a_1=2,\ a_2=0$ e $a_3=-1$ no item anterior, obtendo $b_1=-3/5,\ b_2=12/5$ e $b_3=-1/5$. Ou seja

$$2v_1 - v_3 = -\frac{3}{5}w_1 + \frac{12}{5}w_2 - \frac{1}{5}w_3.$$

(d) Dado $v=a_1w_1+a_2w_2+a_3w_3$, determine os escalares b_1,b_2,b_3 tais que $v=b_1v_1+b_2v_2+b_3v_3$.

$$\begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = v = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

logo

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 2 & -3 & -1 \\ 2 & 1 & -1 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 8 & 5 & -4 \\ 4 & 1 & 0 \\ -8 & -3 & 8 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

ou seja

$$b_1 = (8a_1 + 5a_2 - 4a_3)/4,$$

 $b_2 = (4a_1 + a_2)/4,$
 $b_3 = (-8a_1 - 3a_2 + 8a_3)/4.$

(e) Escreva $w_1 + 2w_2 - w_3$ como combinação linear de v_1, v_2, v_3 . É suficiente escolher $a_1 = 1$, $a_2 = 2$, $a_3 = -1$ no item anterior, obtendo $b_1 = 11/2$, $b_2 = 3/2$, $b_3 = -11/2$. Ou seja

$$w_1 + 2w_2 - w_3 = \frac{11}{2}v_1 + \frac{3}{2}v_2 - \frac{11}{2}v_3.$$

(35) Os pontos $A=(1,2),\ B=(5,-2),\ C=(-4,7)$ de \mathbb{R}^2 pertencem a uma mesma reta? Qual?

Sim, é suficiente fazer um desenho. A reta tem equação y = -x + 3.

(36) Mostre que os pontos A=(1,2,3), B=(0,-2,0), C=(1,1,2) de \mathbb{R}^3 pertencem a um mesmo plano H, contido em \mathbb{R}^3 . Encontre uma equação que defina tal plano. O triângulo cujos vértices são A,B,C é retângulo? Caso não o seja, encontre um ponto D pertencente ao plano H e tal que A,B,D seja um triângulo retângulo.

Para determinar o plano contendo A,B,C precisamos considerar P=(x,y,z) que pertença a tal plano, isso significa que os vetores $B-A=(-1,-4,-3),\ C-A=(0,-1,-1),\ P-A=(x-1,y-2,z-3)$ são linearmente dependentes, ou seja

$$0 = \det \begin{pmatrix} -1 & 0 & x-1 \\ -4 & -1 & y-2 \\ -3 & -1 & z-3 \end{pmatrix} = x-1-(y-2)+(z-3) = x-y+z-2$$

Ou seja o plano H tem equação x-y+z=2. Os pontos A,B,C não são vértices de um triângulo retângulo porque $(B-A)\cdot(C-A)=4+3=7\neq 0$, $(A-B)\cdot(C-B)=(1,4,3)\cdot(1,3,2)=19\neq 0$ e $(A-C)\cdot(B-C)=(0,1,1)\cdot(-1,-3,-2)=-5\neq 0$. Um ponto D=(x,y,z) pertencente a H tal que A,B,D são os vértices de um triângulo retângulo é, por exemplo, um que satisfaz $D\in H$ (ou seja x-y+z=2 e $(D-A)\cdot(B-A)=0$, ou seja $(x-1,y-2,z-3)\cdot(-1,-4,-3)=0$, ou seja

$$0 = -(x-1) - 4(y-2) - 3(z-3) = -x - 4y - 3z + 18 = 0.$$

Resolvendo o sistema linear

$$\begin{cases} x - y + z = 2 \\ -x - 4y - 3z = -18 \end{cases}$$

obtemos z=t, y=(16-2t)/5, e podemos escolher um t qualquer, por exemplo escolhendo t=8 temos y=0, z=8 e x=-6. Podemos então escolher D=(-6,0,8) (não é a única escolha possível).

(37) Encontre uma matriz quadrada A de posto 2 tal que A^2 tem posto 1.

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right), \qquad A^2 = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

(38) Encontre uma matriz quadrada A de posto 3 tal que A^2 tem posto 1.

(39) Mostre que se A, B são matrizes tal que o produto AB faz sentido, com A de posto k e B de posto h, então o posto de AB é menor ou igual a k e também menor ou igual a h.

Observe que o espaço-coluna de AB é $C(AB) = \{ABx : x \in \mathbb{R}^m\}$ sendo m o número de colunas de B. Mas o produto ABx é obviamente igual a Ay sendo y = Bx, logo é uma combinação linear de colunas de A. Segue que qualquer combinação linear de colunas de AB é em particular uma combinação linear de colunas de A; em outras palavras, C(AB) está contido em C(A). Segue que C(AB) é um subespaço vetorial de C(A), logo $\dim(C(AB)) \leq \dim(C(A))$, ou seja o posto de AB é menor ou igual ao posto de A.

Analogamente, o espaço-linha de AB é $L(AB) = \{xAB : x \in \mathbb{R}^n\}$ sendo n o número de linhas de A. Mas o produto xAB é obviamente igual a yB sendo y = xA (observe que aqui x e y são linhas), logo é uma combinação linear de linhas de B. Segue que qualquer combinação linear de linhas de AB é em particular uma combinação linear de linhas de B; em outras palavras, L(AB) está contido em L(B). Segue que L(AB) é um subespaço vetorial de L(B), logo $\dim(L(AB)) \leq \dim(L(B))$, ou seja o posto de AB é menor ou igual ao posto de B.

(40) Indicaremos com $\operatorname{rk}(A)$ o posto de A (rank). Sejam A,B duas matrizes do mesmo formato. Mostre que

$$rk(A + B) < rk(A) + rk(B)$$
.

[Pense no espaço-coluna das matrizes envolvidas.]

O posto de A+B é igual a $\dim(C(A+B))$. Mas $C(A+B)=\{(A+B)x:x\in\mathbb{R}^m\}$, sendo m o número de colunas de A e de B. Como (A+B)x=Ax+Bx, obtemos que todo vetor em C(A+B) é uma combinação linear de $v_1,\ldots,v_m,w_1,\ldots,w_m$ sendo v_1,\ldots,v_m as colunas de A e w_1,\ldots,w_m as colunas de B. Segue que C(A+B) é um subespaço vetorial de $[v_1,\ldots,v_m,w_1,\ldots,w_m]$, cuja dimensão obviamente não pode ultrapassar a soma das dimensões de C(A) e de C(B).

(41) O posto de uma soma de matrizes é a soma dos postos?

Não, por exemplo se A é uma matriz de posto $k \ge 1$ então -A também tem posto k mas A + (-A) = 0 tem posto 0.

(42) Sejam A, B duas matrizes quadradas do mesmo formato, $n \times n$. É sempre verdade que AB e BA têm o mesmo posto? Se a resposta for sim, dê uma demonstração. Caso contrário, dê um contra-exemplo.

Não, por exemplo

$$A=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right),\ B=\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right),\ AB=\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right),\ BA=\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

- (43) Sejam $u, v, w \in \mathbb{R}^n$ e lembre-se que $u \cdot v$ indica o produto escalar entre u e v. Lembre-se que o comprimento (módulo, magnitude) de v é $||v|| := \sqrt{v \cdot v}$. Seja B uma base de \mathbb{R}^n . Para cada uma das seguintes afirmações, diga se é verdadeira (demonstrando) ou falsa (dando um contra-exemplo).
 - (a) Se $u \neq 0$ e $u \cdot v = u \cdot w$ então v = w. Falso, por exemplo se u = (1,0), v = (0,1), w = (0,2) então $u \cdot v = u \cdot w = 0$ mas $v \neq w$.
 - (b) Se $v \cdot w = 0$ para todo $w \in \mathbb{R}^n$ então v = 0. Verdadeiro, pois escolhendo w = v temos $v \cdot v = 0$ ou seja v = 0.
 - (c) Se $v \cdot w = 0$ para todo $w \in B$ então v = 0. Verdadeiro, pois se $B = \{w_1, \dots, w_n\}$ então podemos escrever $v = \sum_{i=1}^n a_i w_i$ para escalares oportunos a_i , e

$$v \cdot v = v \cdot \left(\sum_{i=1}^{n} a_i w_i\right) = \sum_{i=1}^{n} a_i v \cdot w_i = \sum_{i=1}^{n} a_i \cdot 0 = 0,$$

 $\log v = 0.$

(d) Se $u \cdot v = u \cdot w$ para todo $u \in \mathbb{R}^n$ então v = w. Verdadeiro, pois escolhendo u = v - w temos que

$$0 = u \cdot v - u \cdot w = u \cdot (v - w) = (v - w) \cdot (v - w),$$

e isso implica que v - w = 0, ou seja v = w.

- (e) Se $u \cdot v = u \cdot w$ para todo $u \in B$ então v = w. Verdadeiro, pois a condição pode ser escrita como $u \cdot (v - w) = 0$ para todo $u \in B$, e o argumento de dois itens acima implica que v - w = 0, ou seja v = w.
- (f) Se λ é um escalar, $||\lambda v|| = \lambda ||v||$. Falso, por exemplo escolhendo $\lambda = -1$ temos $||-v|| = ||v|| \neq -||v||$ se $v \neq 0$.
- (g) ||v+w|| = ||v|| + ||w||. Falso, por exemplo se n=1, v=1, w=-1, então ||v+w|| = 0 mas ||v|| + ||w|| = 1 + 1 = 2.
- (h) ||v-w||=||v||-||w||. Falso, por exemplo se $n=1,\,v=1,\,w=-1,$ então ||v-w||=2 mas ||v||-||w||=0.
- (i) ||v+w|| = ||v-w|| se e somente se $v \cdot w = 0$. Verdadeiro, pois ||v+w|| = ||v-w|| pode ser escrito como $(v+w) \cdot (v+w) = (v-w) \cdot (v-w)$ ou seja $2v \cdot w = -2v \cdot w$, ou seja $v \cdot w = 0$.
- (j) $||v + w||^2 + ||v w||^2 = 2(||v||^2 + ||w||^2).$

Verdadeiro, pois

$$\begin{aligned} ||v+w||^2 + ||v-w||^2 &= (v+w) \cdot (v+w) + (v-w) \cdot (v-w) \\ &= v \cdot v + 2v \cdot w + w \cdot w + v \cdot v - 2v \cdot w + w \cdot w \\ &= 2(v \cdot v + w \cdot w) = 2(||v||^2 + ||w||^2). \end{aligned}$$

(k)
$$||v+w||^2 - ||v-w||^2 = 4v \cdot w$$
.
Verdadeiro, pois

$$||v + w||^2 - ||v - w||^2 = (v + w) \cdot (v + w) - (v - w) \cdot (v - w)$$
$$= v \cdot v + 2v \cdot w + w \cdot w - (v \cdot v - 2v \cdot w + w \cdot w)$$
$$= 4v \cdot w.$$

CAPíTULO 3

Operadores lineares

1. Transformações lineares

Sejam V,W dois espaços vetoriais. Uma função $T:V\to W,\,v\mapsto T(v),$ é dita transformação linear (ou operador linear) se

$$T(u+v) = T(u) + T(v),$$
 $T(\lambda v) = \lambda T(v)$

para todo $u, v \in V, \lambda \in \mathbb{R}$.

O exemplo típico de transformação linear é o seguinte: se A é uma matriz $m \times n$ e $v \in \mathbb{R}^n$ então o produto Av faz sentido e pertence a \mathbb{R}^m , logo temos uma função

$$T: \mathbb{R}^n \to \mathbb{R}^m, \qquad T(v) = Av$$

que é linear pelas propriedades básicas da multiplicação de matrizes.

Um exemplo explicito é o seguinte.

$$T: \mathbb{R}^2 \to \mathbb{R}^3, \qquad T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 2 & -1 \\ 3 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x+y \\ 2x-y \\ 3x+y \end{array}\right).$$

Observe que a linearidade de $T:\mathbb{R}^n\to\mathbb{R}^m$ pode ser caracterizada dizendo que toda entrada não identicamente nula da imagem de um vetor v é um polinômio homogêneo de grau 1 nas coordenadas de v. No exemplo acima, tais entradas são x+y, 2x-y e 3x+y. Mais ainda, se tivermos uma tal expressão, é sempre possível escrevê-la como "matriz por vetor", Av. Por exemplo, considere

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \qquad T \left(egin{array}{c} x \\ y \\ z \end{array}
ight) = \left(egin{array}{c} x+y-z \\ 2x+z \end{array}
ight).$$

Existe uma matriz A tal que T(v) = Av para todo $v \in \mathbb{R}^3$. Se trata da matriz

$$A = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 0 & 1 \end{array}\right).$$

As colunas da matriz A são exatamente os vetores $T(e_1)$, $T(e_2)$, $T(e_3)$, sendo $\{e_1, e_2, e_3\}$ a base canonica de \mathbb{R}^3 .

Resumindo, se $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma qualquer transformação linear, considere a matriz A cujas colunas são $T(e_1), \ldots, T(e_n)$, sendo $\{e_1, \ldots, e_n\}$ a base canônica de \mathbb{R}^n , ou seja $T(e_i) = Ae_i$ para $i = 1, \ldots, n$. Então T(v) = Av para todo $v \in \mathbb{R}^n$, de fato se $v = (a_1, \ldots, a_n)$ então

$$T(v) = T\left(\sum_{i=1}^{n} a_i e_i\right) = \sum_{i=1}^{n} a_i T(e_i) = \sum_{i=1}^{n} a_i A e_i = A \sum_{i=1}^{n} a_i e_i = A v.$$

A é uma matriz $m \times n$ dita matriz associada à transformação linear T.

O núcleo de $T: \mathbb{R}^n \to \mathbb{R}^m$ é definido como sendo

$$\ker(T) = \{ v \in V : T(v) = 0 \}$$

(kernel = núcleo, em inglês) e coincide com o núcleo da matriz que representa T no sentido acima. Ou seja, se T(v) = Av para todo $v \in V = \mathbb{R}^n$, então o núcleo de T é nada mais que o espaço-solução de Ax = 0 (o núcleo de A). O espaço-coluna de A é também chamado de imagem de T, e coincide com

$$Im(T) = \{T(v) : v \in \mathbb{R}^n\} = \{Av : v \in \mathbb{R}^n\} = C(A),$$

ou seja a imagem da transformação T. A soma entre a dimensão do espaço-coluna de A (igual ao número de elementos líderes na matriz escalonada) e a dimensão do núcleo de A (igual ao número de variáveis livres) é igual a n, o número de colunas de A. Segue que

$$\dim(\ker(T)) + \dim(\operatorname{Im}(T)) = n.$$

A identidade é a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ que fixa todos os vetores: T(v) = v para todo $v \in \mathbb{R}^n$. A matriz que representa tal transformação é a matriz identidade $\mathbb{1}_n$.

Se $T_1: \mathbb{R}^n \to \mathbb{R}^m$ e $T_2: \mathbb{R}^m \to \mathbb{R}^k$ são transformações lineares, representadas pelas matrizes A_1 e A_2 , assim $T_1(v) = A_1v$ e $T_2(w) = A_2w$ para todo $v \in \mathbb{R}^n$ e $w \in \mathbb{R}^m$, então a composição $T_2 \circ T_1: \mathbb{R}^n \to \mathbb{R}^k$ é exatamente a transformação linear representada pela matriz A_2A_1 . De fato,

$$T_2 \circ T_1(v) = T_2(T_1(v)) = T_2(A_1v) = A_2A_1v.$$

Segue que a invertibilidade de $T: \mathbb{R}^n \to \mathbb{R}^n$ como função, ou seja a existência de $F: \mathbb{R}^n \to \mathbb{R}^n$ tal que T(F(v)) = v e F(T(v)) = v para todo $v \in \mathbb{R}^n$, é equivalente à invertibilidade da matriz A que representa T (ou seja a matriz A tal que T(v) = Av para todo $v \in \mathbb{R}^n$). Em outras palavras, T é bijetora se e somente se a matriz A é inversível, ou seja $\det(A) \neq 0$. Se isso acontece, a inversa de T é $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$, $T^{-1}(v) = A^{-1}v$.

Uma transformação linear bijetora é também chamada isomorfismo linear.

1.1. Exemplos.

Exemplo 1. Projeção ortogonal. Vimos que, se $W \leq \mathbb{R}^n$ e $v \in \mathbb{R}^n$, a projeção ortogonal de v sobre W é dada por $A(A^TA)^{-1}A^Tv$ sendo A uma matriz que tem como colunas os vetores de uma base de W. Definindo $B:=A(A^TA)^{-1}A^T$, podemos considerar a transformação linear $P:\mathbb{R}^n \to \mathbb{R}^n$ definida por P(v):=Bv. O significado disso é que P é uma função que associa a todo vetor $v \in \mathbb{R}^n$ a sua projeção ortogonal sobre W. Observe que o núcleo de P (igual ao espaço-solução de Bx=0) é exatamente W^{\perp} (o conjunto dos vetores ortogonais a todo vetor em W) e a imagem de P é exatamente W, pois $P(v) \in W$ para todo $v \in V$ e P(w)=w para todo $w \in W$.

Se $W \neq \mathbb{R}^n$ então $W^{\perp} \neq \{0\}$ e P não é bijetora, pois P(u) = 0 para todo $u \in W^{\perp}$, logo a matriz que representa P tem determinante igual a 0. Se $W = \mathbb{R}^n$ então P é a identidade e a sua matriz é $\mathbb{1}_n$ e tem determinante 1.

Exemplo 2. Rotação em torno da origem. No plano \mathbb{R}^2 , a rotação de um ângulo θ em torno da origem é uma transformação linear bijetora T. A matriz que representa T é a matriz 2×2 que tem como colunas os vetores e_1 e e_2 rotacionados de θ , ou seja

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} \cos(\theta)x - \sin(\theta)y \\ \sin(\theta)x + \cos(\theta)y \end{array}\right).$$

O determinante da matriz que representa T vale $\cos^2(\theta) + \sin^2(\theta) = 1$. Observe que $\ker(T) = \{0\}$ e $\operatorname{Im}(T) = \mathbb{R}^2$.

Exemplo 3. Reflexão por uma reta passante pela origem. No plano \mathbb{R}^2 , a reflexão pela reta y=x é uma transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ que é facilmente descrita como T(x,y)=(y,x). Em outras palavras,

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} y \\ x \end{array}\right).$$

O determinante da matriz que representa T vale -1. Observe que $\ker(T) = \{0\}$ e $\operatorname{Im}(T) = \mathbb{R}^2$.

Rotação e reflexão são exemplos de isometrias (lineares), ou seja transformações que preservam a distância. Isso é porque uma transformação $T:\mathbb{R}^n\to\mathbb{R}^n$ representada pela matriz A preserva o comprimento dos vetores se e somente se ||T(v)||=||v|| para todo $v\in\mathbb{R}^n$, ou seja $(Av)^T(Av)=v^Tv$ (aqui X^T indica a transposta de X) para todo $v\in\mathbb{R}^n$, e usando a formula $(AB)^T=B^TA^T$, isso pode ser escrito como $v^TA^TAv=v^Tv$ para todo $v\in\mathbb{R}^n$ e é equivalente a dizer que $A^TA=\mathbb{1}_n$, ou seja as colunas de A formam uma base ortonormal de \mathbb{R}^n (uma base ortonormal é uma base ortogonal cujos vetores têm comprimento 1). As matrizes acima que representam a rotação e a reflexão pela reta y=x satisfazem $A^TA=\mathbb{1}_2$. Observe que a projeção ortogonal sobre um espaço W em geral não é uma isometria pois os vetores de W^\perp são levados para 0. Observe também que uma isometria linear é em particular necessariamente bijetora, pois se $A^TA=\mathbb{1}_n$ então A é inversível, sendo $A^{-1}=A^T$.

Um exemplo de isometria não linear é a translação, $f: \mathbb{R}^n \to \mathbb{R}^n$, f(v) = v + w, sendo $w \in \mathbb{R}^n$ um vetor fixado e não nulo. Observe que tal função não é linear. Em outras palavras, se $w \neq 0$ então f preserva a distância mas não é linear.

Exemplo 4. Homotetia centrada na origem. No espaço \mathbb{R}^n , uma homotetia centrada na origem é uma transformação linear dada pela multiplicação por um escalar constante λ , ou seja $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(v) = \lambda v$. A matriz que representa T é a matriz diagonal cujos elementos diagonais são todos iguais a λ . Por exemplo, $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(v) = \lambda v$ pode ser escrito como

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right)=\left(\begin{array}{c} \lambda x\\\lambda y\\\lambda z\end{array}\right)=\left(\begin{array}{ccc} \lambda &0&0\\0&\lambda&0\\0&0&\lambda\end{array}\right)\left(\begin{array}{c} x\\y\\z\end{array}\right).$$

O determinante da matriz que representa T vale λ^n . Se $\lambda \neq 0$, T é bijetora (pois $\lambda^n \neq 0$) mas é isometria se e somente se $\lambda = \pm 1$, pois $||T(v)|| = ||\lambda v|| = |\lambda| \cdot ||v||$. Se $\lambda = 0$ então T é a transformação identicamente nula, T(v) = 0 para todo $v \in \mathbb{R}^n$.

1.2. Transformações injetoras, sobrejetoras, isomorfismos. Uma função $f:X\to Y$ é dita

- injetora se toda vez que $x_1, x_2 \in X$ e $f(x_1) = f(x_2)$, então $x_1 = x_2$. Em outras palavras, se $x_1, x_2 \in X$ e $x_1 \neq x_2$ então $f(x_1) \neq f(x_2)$;
- sobrejetora se para todo $y \in Y$ existe $x \in X$ tal que f(x) = y;
- bijetora se é injetora e sobrejetora, ou seja se para todo $y \in Y$ existe um único $x \in X$ tal que f(x) = y. Neste caso, temos a função inversa $f^{-1}: Y \to X$ que manda $y \in Y$ no único elemento $x \in X$ tal que f(x) = y.

Exemplo. Considere v_1, v_2 linearmente independentes em \mathbb{R}^3 , $W := [v_1, v_2] < V = \mathbb{R}^3$ e $T : V \to V$ a projeção ortogonal sobre W. Então obviamente $T(v) \in W$ para todo $v \in V$, logo T não é sobrejetora, pois sendo $\dim(W) = 2$ e $\dim(V) = 3$, existem vetores de V fora de W, e se $u \in V - W$ então não existe nenhum $v \in V$ tal que T(v) = u. Além disso, T não é injetora, pois T(v) = 0 para todo $v \in W^{\perp}$, e $\dim(W^{\perp}) = 1$, ou seja existem infinitos vetores v tais que T(v) = 0.

Exemplo. Seja $V = \mathbb{R}^2$. A transformação linear $T: V \to V$ definida por T(x,y) = (y,x) é linear, se trata da reflexão pela reta y = x em \mathbb{R}^2 . Ela é injetora e sobrejetora. Isso é facilmente mostrado observando que $T \circ T = \mathrm{id}_V$. Segue que se $v \in V$ então v = T(T(v)) logo T é sobrejetora, e se $v_1, v_2 \in V$ são tais que $T(v_1) = T(v_2)$ então aplicando T aos dois lados desta equação obtemos $v_1 = T(T(v_1)) = T(T(v_2)) = v_2$. Em particular, a função inversa de T é a própria T.

Uma transformação linear bijetora é também chamada de *isomorfismo linear*, ou mais simplesmente, isomorfismo.

Proposição 1. Se $T:V\to W$ é um isomorfismo linear, então a função inversa $T^{-1}:W\to V$ também é um isomorfismo linear.

Demonstração. T^{-1} é linear pois

• se $w_1, w_2 \in W$ existem $v_1, v_2 \in V$ tais que $T(v_1) = w_1, T(v_2) = w_2$ logo

$$T^{-1}(w_1+w_2) = T^{-1}(T(v_1)+T(v_2)) = T^{-1}(T(v_1+v_2)) = v_1+v_2 = T^{-1}(w_1)+T^{-1}(w_2),$$

• se $\lambda \in \mathbb{R}$ e $w \in W$ então existe $v \in V$ tal que T(v) = wlogo

$$T^{-1}(\lambda w) = T^{-1}(\lambda T(v)) = T^{-1}(T(\lambda v)) = \lambda v = \lambda T^{-1}(w).$$

Por outro lado T^{-1} é obviamente bijetora, logo é um isomorfismo linear. \Box

Queremos um critério para determinar se uma transformação linear é injetora e/ou sobrejetora, e/ou um isomorfismo.

Proposição 2. A transformação linear $T: V \to W$ é injetora se e somente se $\ker(T) = \{0\}$.

DEMONSTRAÇÃO. Suponha T injetora e seja $v \in \ker(T)$, então T(v) = 0 = T(0), logo v = 0. Segue que $\ker(T) = \{0\}$. Vice-versa, suponha $\ker(T) = \{0\}$, vamos mostrar que T é injetora. Sejam $v_1, v_2 \in V$ tais que $T(v_1) = T(v_2)$, então $T(v_1 - v_2) = T(v_1) - T(v_2) = 0$, logo $v_1 - v_2 \in \ker(T) = \{0\}$, e isso implica $v_1 - v_2 = 0$, ou seja $v_1 = v_2$.

Proposição 3. Sejam $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ e $T: V \to W$ uma transformação linear, e seja A a matriz $m \times n$ que representa T, ou seja T(v) = Av para todo $v \in V$. Seja p o posto de A.

- T é injetora se e somente se p = n.
- T é sobrejetora se e somente se p = m.
- $T \notin um \ isomorfismo \ se \ e \ somente \ se \ n = m \ e \ det(A) \neq 0.$

DEMONSTRAÇÃO. Seja k a dimensão do núcleo de A e seja p o posto de A, que é também igual à dimensão da imagem de T. Temos a equação k+p=n. Pela proposição anterior, T é injetora se e somente se k=0, ou seja p=n. Além disso, T é sobrejetora se e somente se a imagem de T é igual ao codomínio, ou seja p=m. Para que T seja um isomorfismo, ou seja injetora e sobrejetora, precisamos ter k=0 e p=m, ou seja n=m e A tem posto igual a n=m, em outras palavras A é inversível.

Observe em particular que se T é uma transformação linear $\mathbb{R}^n \to \mathbb{R}^n$, ou seja o domínio e o codomínio de T têm a mesma dimensão, então a matriz A que representa T é uma matriz quadrada $n \times n$ e segue do resultado acima (aplicado ao caso n=m) que neste caso T é injetora se e somente se é sobrejetora, se e somente se é bijetora, se e somente se $\det(A) \neq 0$.

1.3. Exercícios.

(1) (Livro 7.1(1,4)) Mostre que as seguintes transformações $\mathbb{R}^2 \to \mathbb{R}^2$ não são lineares encontrando explicitamente um vetor v e um escalar λ tais que $T(\lambda v) \neq \lambda T(v)$.

$$T(x,y) = (x+1,y+1),$$
 $T(x,y) = (|x|,|y|).$

- (2) Encontre a matriz A da transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ tal que T(1,0)=(2,3) e T(0,1)=(3,2).
- (3) Encontre a matriz A da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(2,1)=(1,1) e T(1,1)=(0,1).
- (4) (Livro 7.1 (15)) Determine a dimensão de núcleo e imagem de $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} 3x + y - 2z\\-3x - y + 2z\end{array}\right).$$

Calcule também a matriz que representa ${\cal T}.$

(5) Determine a matriz que representa as seguintes transformações lineares $\mathbb{R}^3 \to \mathbb{R}^3$. Para cada transformação determine se é bijetora e determine uma base do núcleo e da imagem da transformação (ou seja, núcleo e espaço-coluna da matriz que representa a transformação).

$$T_{1}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}, \quad T_{2}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x \\ y \end{pmatrix}, \quad T_{3}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ 0 \\ x-y \end{pmatrix}.$$

$$T_{4}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ x \\ y \end{pmatrix}, \quad T_{5}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x-y+z \\ 2y \end{pmatrix}, \quad T_{6}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x-y-z \\ 2y \\ y+z \end{pmatrix}.$$

- (6) Considere a transformação $T: \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz é $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, ou seja a reflexão pela reta y = x em \mathbb{R}^2 . Quais são os vetores $v \in \mathbb{R}^2$ tais que T(v) = -v? Quais são os vetores $v \in \mathbb{R}^2$ tais que T(v) = v? O que significa isso geometricamente?
- (7) Sejam $v_1 = (1, 1, 0), v_2 = (0, 1, 1), W := [v_1, v_2] < \mathbb{R}^3$. Determine a matriz associada à transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^3$ definida pelo fato que T(v) é exatamente a projeção ortogonal de v sobre W. Depois disso, verifique que $A^2 = A$, determine uma base de $\ker(T)$ e de $\operatorname{Im}(T)$ e observe que $\ker(T) = W^{\perp}$ e $\operatorname{Im}(T) = W$.
- (8) Calcule a matriz A que representa a reflexão pela reta de equação y=2x em \mathbb{R}^2 . Calcule $\det(A)$ e verifique que $A^2=\mathbb{1}_2$.
- (9) Descreva as transformações lineares $\mathbb{R} \to \mathbb{R}$.
- (10) Se $v \in \mathbb{R}^n$ é um vetor fixado, a transformação $T : \mathbb{R}^n \to \mathbb{R}$, $T(x) = v \cdot x$ (produto escalar), é linear. Qual é a matriz que representa T? A transformação T é injetora? É sobrejetora?
- (11) Diga se as seguintes transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$, $T_2: \mathbb{R}^3 \to \mathbb{R}^2$, $T_3: \mathbb{R}^3 \to \mathbb{R}^2$ são injetoras e/ou sobrejetoras.

$$T_1\left(\begin{array}{c}x\\y\end{array}\right):=\left(\begin{array}{c}x-y\\x+y\\y-x\end{array}\right),\ T_2\left(\begin{array}{c}x\\y\\z\end{array}\right):=\left(\begin{array}{c}x-y+z\\2x+z\end{array}\right),\ T_3\left(\begin{array}{c}x\\y\\z\end{array}\right):=\left(\begin{array}{c}x-y-z\\x-y-z\end{array}\right).$$

- (12) Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ é dita idempotente se T(T(v)) = T(v) para todo $v \in \mathbb{R}^n$. Por exemplo, a projeção ortogonal sobre $W \leq \mathbb{R}^n$ é idempotente (por quê?). Uma transformação linear idempotente pode ser bijetora?
- (13) Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ é dita involutória se T(T(v)) = v para todo $v \in \mathbb{R}^n$. Por exemplo, a reflexão pela reta y = x em \mathbb{R}^2 é involutória (por quê?). Mostre que uma transformação linear involutória é necessariamente bijetora.

2. Diagonalização.

Considere uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$, representada por uma matriz quadrada A, ou seja T(v) = Av para todo $v \in \mathbb{R}^n$.

DEFINIÇÃO (Autovetores, autovalores). Um autovetor de T é um vetor não nulo $0 \neq v \in \mathbb{R}^n$ tal que $T(v) = \lambda v$ para um oportuno escalar λ , chamado autovalor de T (associado a v).

Em outras palavras, os autovetores de T são os vetores não nulos cuja imagem por meio de T é um múltiplo escalar deles. Por exemplo, se $0 \neq v \in \ker(T)$ então $T(v) = 0 = 0 \cdot v$ logo v é autovetor com autovalor associado igual a 0. Outro exemplo: se T é a projeção ortogonal sobre $W \leq \mathbb{R}^n$ então os vetores $w \in W$ têm a propriedade $T(w) = w = 1 \cdot w$, e os vetores $v \in W^{\perp}$ têm a propriedade $T(v) = 0 = 0 \cdot v$. Segue que todos os vetores de W e todos os vetores de W^{\perp} são autovetores: os vetores de W têm autovalor 1, os vetores de W^{\perp} têm autovalor 0.

Por exemplo, a transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ definida por T(x,y)=(y,x) tem v=(1,-1) como autovetor com autovalor associado $\lambda_1=-1$, pois T(v)=

 $T(1,-1) = (-1,1) = -(1,-1) = v = \lambda_1 v$. Além disso, w = (1,1) é autovetor com autovalor associado $\lambda_2 = 1$, pois $T(w) = T(1,1) = (1,1) = 1 \cdot (1,1) = \lambda_2 w$.

DEFINIÇÃO (Transformação diagonalizável). A transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ é dita diagonalizável se existe uma base $\{v_1, \ldots, v_n\}$ de \mathbb{R}^n tal que v_i é autovetor de T para todo $i=1,\ldots,n$. Ou seja T é diagonalizável se \mathbb{R}^n admite uma base que consiste de autovetores de T. Uma matriz quadrada A é dita diagonalizável se a transformação linear $v \mapsto Av$ é diagonalizável.

Observe que para que uma transformação seja diagonalizável, é necessário que o seu domínio seja igual ao contradomínio.

Por exemplo, $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (y,x) é diagonalizável pois $\{(1,-1),(1,1)\}$ é uma base de \mathbb{R}^2 e consiste de autovetores.

Suponha que $T: \mathbb{R}^n \to \mathbb{R}^n$, com matriz associada A (de formato $n \times n$) seja diagonalizável. Seja $\{v_1, \ldots, v_n\}$ uma base de \mathbb{R}^n que consiste de autovetores de T e seja P a matriz quadrada cujas colunas são v_1, \ldots, v_n (nesta ordem). É claro que $v_i = Pe_i$ para todo $i = 1, \ldots, n$, sendo $\{e_1, \ldots, e_n\}$ a base canônica de \mathbb{R}^n . Se λ_i é o autovalor associado a v_i então $\lambda_i Pe_i = \lambda_i v_i = Av_i = APe_i$ e multiplicando a esquerda por P^{-1} obtemos que $P^{-1}APe_i = \lambda_i e_i$. Isso significa exatamente que $P^{-1}AP$ é a matriz diagonal D cujos elementos diagonais são os autovalores de T,

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Uma reformulação disso é que, escrevendo um qualquer $v \in \mathbb{R}^n$ como $a_1v_1 + \ldots + a_nv_n$, as coordenadas de T(v) na base $\{v_1, \ldots, v_n\}$ são $\lambda_1 a_1, \ldots, \lambda_n a_n$ e são obtidas multiplicando $P^{-1}AP$ pelo vetor coluna $(a_1, \ldots, a_n)^T$. Em outras palavras, $P^{-1}AP$ representa T na base $\{v_1, \ldots, v_n\}$.

Precisamos de um critério para determinar se uma transformação linear T é diagonalizável.

Primeiro, precisamos achar os autovalores de T. Se $v \in \mathbb{R}^n$ é um autovetor com autovalor λ então $T(v) = \lambda v$, assim $Av = \lambda v$ e isso pode ser escrito $Av - \lambda v = 0$, ou seja $(A - \lambda \mathbb{1}_n)v = 0$. Como v é um vetor não nulo, isso implica que $\det(A - \lambda \mathbb{1}_n) = 0$.

DEFINIÇÃO 5 (Polinômio característico). O polinômio característico da matriz A, de formato $n \times n$, é o polinômio $P_A(X) := \det(A - X\mathbb{1}_n)$.

Os autovalores de A são exatamente as raízes do polinômio característico de A.

Suponha agora de conhecer os autovalores de $A, \lambda_1, \ldots, \lambda_k$, assim

$$P_A(X) = (X - \lambda_1)^{m_1} (X - \lambda_2)^{m_2} \cdots (X - \lambda_k)^{m_k}.$$

Considere um autovalor qualquer, $\lambda = \lambda_i$.

- O número m_i , ou seja o expoente de $X \lambda$ na fatoração de $P_A(X)$, é chamado multiplicidade algébrica de λ e indicado com $m_a(\lambda)$.
- O autoespaço de λ é o núcleo de $A \lambda \mathbb{1}_n$, $V_{\lambda} = \ker(A \lambda \mathbb{1}_n)$.

• A dimensão de V_{λ} é chamado multiplicidade geométrica de λ e indicado com $m_q(\lambda)$, ou seja $m_q(\lambda) = \dim(\ker(A - \lambda \mathbb{1}_n))$.

Observe que, se λ é um autovalor de A, então $m_g(\lambda) \geq 1$ pois a matriz $A - \lambda \mathbb{1}_n$ tem determinante igual a 0, logo o seu núcleo é não trivial, ou seja $m_g(\lambda) = \dim(\ker(A - \lambda \mathbb{1}_n)) \geq 1$.

Além disso, vale sempre a desigualdade

$$m_g(\lambda) \le m_a(\lambda)$$
.

Teorema (Critério de diagonalizabilidade). A matriz quadrada A é diagonalizável sobre \mathbb{R} se e somente se os autovalores são todos reais e a multiplicidade algébrica de cada autovalor é igual à sua multiplicidade geométrica.

Demonstração. Para que A seja diagonalizável, é necessário e suficiente que exista uma base de autovetores. Obviamente, autovetores com o mesmo autovalor pertencem ao mesmo auto-espaço. Segue que uma base de autovetores é formada juntando as bases dos auto-espaços, que então precisam ter dimensão igual à multiplicidade algébrica do relativo autovalor. \Box

Corolário. Se os autovalores são todos reais e as multiplicidades algébricas são todas iguais a 1 (ou seja, os autovalores são dois a dois distintos), então A é diagonalizável.

Demonstração. Temos $m_g(\lambda) \leq m_a(\lambda)$ e $m_g(\lambda) \neq 0$, logo se $m_a(\lambda) = 1$ então $m_g(\lambda) = m_a(\lambda) = 1$.

2.1. Exemplos.

Exemplo 1. Considere $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. O seu polinômio característico é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_2) = \det\left(\begin{array}{cc} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{array}\right) = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2).$$

Segue que os dois autovalores de A são 0 e 2, e são distintos, logo A é diagonalizável. O auto-espaço de 0 é $\ker(A-0\mathbb{1}_2)=\ker(A)$, gerado por (1,-1), assim $m_g(0)=m_a(0)=1$. O auto-espaço de 2 é $\ker(A-2\mathbb{1}_2)$, o núcleo de

$$A-2\mathbb{1}_2=\left(\begin{array}{cc}1&1\\1&1\end{array}\right)-2\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=\left(\begin{array}{cc}-1&1\\1&-1\end{array}\right).$$

O núcleo desta matriz é gerado por (1,1), assim $m_g(2)=m_a(2)=1$. Seja $P:=\begin{pmatrix}1&1\\-1&1\end{pmatrix}$, a matriz cujas colunas são os vetores das bases dos auto-espaços. Então

$$P^{-1}AP = D = \left(\begin{array}{cc} 0 & 0\\ 0 & 2 \end{array}\right).$$

Exemplo 2. Considere $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. O polinômio característico de A é $P_A(\lambda) = \det(A - \lambda \mathbb{1}_2) = (1 - \lambda)^2$, logo o único autovalor de A é $\lambda = 1$ e a sua multiplicidade algébrica é $m_a(1) = 2$. Por outro lado, $m_g(1) = 1$, de fato $m_g(1)$ é a

dimensão de $\ker(A - \mathbb{1}_2)$, ou seja o núcleo da matriz $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, que é gerado pelo vetor (1,0). Segue que A não é diagonalizável.

Exemplo 3. Considere $A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{pmatrix}$. Vamos determinar se A é diagonalizável ou não. O polinômio característico de A é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_3) = \det\begin{pmatrix} 1 - \lambda & 3 & 3\\ 3 & 1 - \lambda & 3\\ -3 & -3 & -5 - \lambda \end{pmatrix}$$

$$= (1 - \lambda)^2 (-5 - \lambda) - 27 - 27 + 9(1 - \lambda) + 9(5 + \lambda) + 9(1 - \lambda)$$

$$= -(\lambda^2 - 2\lambda + 1)(5 + \lambda) + 9(1 - \lambda)$$

$$= -5\lambda^2 - \lambda^3 + 10\lambda + 2\lambda^2 - 5 - \lambda + 9 - 9\lambda$$

$$= -(\lambda^3 + 3\lambda^2 - 4) = -(\lambda - 1)(\lambda^2 + 4\lambda + 4) = -(\lambda - 1)(\lambda + 2)^2.$$

Segue que os autovalores de A são $\lambda_1 = 1$, $\lambda_2 = -2$ e $m_a(1) = 1$, $m_a(-2) = 2$. Vamos determinar bases dos auto-espaços. O auto-espaço de 1 é

$$\ker(A - \mathbb{1}_3) = \ker\left(\begin{array}{ccc} 0 & 3 & 3 \\ 3 & 0 & 3 \\ -3 & -3 & -6 \end{array}\right) = \left[\left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right)\right].$$

Em particular $m_q(1) = 1 = m_a(1)$. O auto-espaço de -2 é

$$\ker(A + 2\mathbb{1}_3) = \ker\begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ -3 & -3 & -3 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Segue que $m_g(-2) = 2 = m_a(-2)$. Logo as multiplicidades algébricas são iguais às multiplicidades geométricas e A é diagonalizável. Sejam então

$$P := \left(\begin{array}{ccc} 1 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right), \qquad D := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

Observe que P é a matriz cujas colunas são os vetores das bases achadas dos autoespaços. Especificamente, a primeira coluna de P é uma base do autoespaço de 1, a segunda e a terceira coluna de P formam uma base do auto-espaço de -2.

Temos que $P^{-1}AP = D$.

Exemplo 4. A matriz $A=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$ (rotação de 90 graus em \mathbb{R}^2) não é

diagonalizável pois o seu polinômio característico $P_A(\lambda) = \lambda^2 + 1$ não tem raízes reais. Geometricamente, é raro que uma matriz de rotação em \mathbb{R}^2 seja diagonalizável, pois uma rotação não costuma mandar um vetor para um múltiplo dele. A única rotação não identica de \mathbb{R}^2 que é diagonalizável é a rotação de 180 graus. Se trata da transformação $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(v) = -v, a sua matriz é $-\mathbb{1}_2$.

2.2. Exercícios.

(1) Para cada uma das seguintes matrizes A, diga se é diagonalizável. Caso o seja, encontre uma matriz inversível P e uma matriz diagonal D tais que $P^{-1}AP = D$.

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -4 & -3 & -3 \\ 5 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 2 \\ 2 & 0 & 2 \\ -2 & -1 & -2 \end{pmatrix}, \begin{pmatrix} 4 & 1 & 2 \\ 2 & 2 & 2 \\ -2 & -1 & 0 \end{pmatrix}.$$

(2) Considere as transformações lineares $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^3$ definidas por

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - 2y + z \\ 2x - 2y + z \\ 2x - 2y + z \end{pmatrix}, \quad T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ -x + 2y \\ -x + y + z \end{pmatrix}.$$

Para i=1,2, determine a matriz A_i associada a T_i (ou seja tal que $T_i(v)=A_iv$ para todo $v\in\mathbb{R}^3$) e determine se A_i é diagonalizável. Caso o seja, encontre uma matriz inversível P_i e uma matriz diagonal D_i tais que $P_i^{-1}A_iP_i=D_i$.

- (3) Mostre que se $W \leq \mathbb{R}^n$ e $T : \mathbb{R}^n \to \mathbb{R}^n$ é a projeção ortogonal sobre W, então T é diagonalizável. Quais são os seus autovalores? Diagonalize T no caso particular $W = [(1,0,-1),(1,2,1)] < \mathbb{R}^3$.
- (4) Diagonalize a reflexão pela reta y = 2x em \mathbb{R}^2 .
- (5) Seja A uma matriz quadrada cujo polinômio característico é $P_A(\lambda) = 2 \lambda^3$. Mostre que A tem posto 3.
- (6) Dê um exemplo de transformação linear T tal que $\ker(T) = \operatorname{Im}(T)$.
- (7) Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear tal que T(T(v)) = v para todo $v \in \mathbb{R}^2$. Mostre que T é diagonalizável.
- (8) Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear tal que T(T(v)) = T(v) para todo $v \in \mathbb{R}^2$. Mostre que T é diagonalizável.

Para resolver os últimos dois itens lembre-se que se T tem autovalores dois a dois distintos, então é diagonalizável.

Segue mais uma lista de exercícios.

(1) Diagonalize as seguintes matrizes.

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right), \qquad \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{array}\right), \qquad \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{array}\right).$$

(2) Encontre os valores de h para os quais as seguintes matrizes são diagonalizáveis.

$$\left(\begin{array}{cc} 2 & h \\ 0 & 2 \end{array}\right), \qquad \left(\begin{array}{ccc} 1 & h & h \\ 0 & 2 & h \\ 0 & 0 & h \end{array}\right), \qquad \left(\begin{array}{ccc} 2h & 1-h & -h \\ h & 1 & -h \\ 2h-1 & 1-h & 1-h \end{array}\right).$$

Na terceira matriz pode usar o fato que um autovalor é h.

- (3) Se A e B são matrizes linha-equivalentes, elas têm necessariamente os mesmos autovalores?
- (4) Se A é uma matriz diagonalizável e B é uma matriz linha-equivalente a B, então B é necessariamente diagonalizável?
- (5) Se A e B são matrizes diagonalizáveis do mesmo tamanho, A+B é necessariamente diagonalizável? E AB é necessariamente diagonalizável?
- (6) Mostre que se a matriz diagonalizável A tem polinômio característico λ^n então A é a matriz nula.
- (7) É verdade que toda matriz inversível é diagonalizável? É verdade que toda matriz diagonalizável é inversível?

3. Potências de matrizes

Seja A uma matriz quadrada $m \times m$. Estamos interessados em calcular as potências A^n da matriz A, ou seja $A^2 = A \cdot A$, $A^3 = A \cdot A \cdot A$, e assim diante. Se a matriz A é diagonal, e n é um número inteiro positivo, obviamente vale a relação

$$A^{n} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{m} \end{pmatrix}^{n} = \begin{pmatrix} \lambda_{1}^{n} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{n} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{m}^{n} \end{pmatrix}.$$

Agora suponha que A não é diagonal, mas é diagonalizável. Então podemos escrever $P^{-1}AP=D$ com D diagonal, logo $A=PDP^{-1}$ e

$$A^{n} = (PDP^{-1})^{n} = PDP^{-1} \cdot PDP^{-1} \cdot \dots \cdot PDP^{-1} = PD^{n}P^{-1}.$$

Por exemplo considere $A=\begin{pmatrix}0&4\\1&0\end{pmatrix}$. Os seus autovalores são 2 e -2, e definindo $P=\begin{pmatrix}2&2\\1&-1\end{pmatrix}$ e $D=\begin{pmatrix}2&0\\0&-2\end{pmatrix}$ obtemos $P^{-1}AP=D$, assim $A=PDP^{-1}$ e $A^n=PD^nP^{-1}$. Segue que

$$\begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}^n = A^n = PD^nP^{-1} = \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & (-2)^n \end{pmatrix} \begin{pmatrix} 1/4 & 1/2 \\ 1/4 & -1/2 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 2(2^n + (-2)^n) & -4((-2)^n - 2^n) \\ 2^n - (-2)^n & 2(2^n + (-2)^n) \end{pmatrix}.$$

Assim conseguimos calcular todas as potências da matriz A.

3.1. Sequência de Fibonacci. A sequência de Fibonacci é muito famosa na matemática, e é definida da seguinte forma: $F_0=0$, $F_1=1$ e $F_{n+1}=F_{n-1}+F_n$ para todo $n\geq 1$. Os primeiros termos da sequência são $F_2=1$, $F_3=2$, $F_4=3$, $F_5=5$, $F_6=8$, $F_7=13$, $F_8=21$. Escrevendo a condição recursiva em forma matricial, temos

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \dots =$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Seja então $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$. O seu polinômio característico é $P(\lambda)=\lambda^2-\lambda-1$ logo os seus autovalores são $\phi_1=\frac{1}{2}(1+\sqrt{5})$ e $\phi_2=\frac{1}{2}(1-\sqrt{5})$. Diagonalizando, obtemos que $P^{-1}AP=D$ sendo $P=\begin{pmatrix}\phi_1&\phi_2\\1&1\end{pmatrix}$ e $D=\begin{pmatrix}\phi_1&0\\0&\phi_2\end{pmatrix}$, logo, lembrando que $\phi_1-\phi_2=\sqrt{5}$,

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} \phi_{1} & \phi_{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi_{1}^{n} & 0 \\ 0 & \phi_{2}^{n} \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & -\phi_{2}/\sqrt{5} \\ -1/\sqrt{5} & \phi_{1}/\sqrt{5} \end{pmatrix} =$$

$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \phi_{1}^{n+1} - \phi_{2}^{n+1} & \phi_{1}\phi_{2}(\phi_{1}^{n} - \phi_{2}^{n}) \\ \phi_{1}^{n} - \phi_{2}^{n} & \phi_{1}\phi_{2}(\phi_{2}^{n-1} - \phi_{1}^{n-1}) \end{pmatrix}.$$

Deduzimos que

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \phi_1^{n+1} - \phi_2^{n+1} & \phi_1 \phi_2 (\phi_1^n - \phi_2^n) \\ \phi_1^n - \phi_2^n & \phi_1 \phi_2 (\phi_2^{n-1} - \phi_1^{n-1}) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \phi_1^{n+1} - \phi_2^{n+1} \\ \phi_1^n - \phi_2^n \end{pmatrix},$$

e obtemos a famosa formula, que vale para todo $n \geq 0$,

$$F_n = \frac{\phi_1^n - \phi_2^n}{\phi_1 - \phi_2} = \frac{1}{\sqrt{5}} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^n - \left(\frac{\sqrt{5} - 1}{2} \right)^n \right).$$

Se trata de uma formula surprendente porque F_n é um número inteiro para todo n, apesar do termo $\sqrt{5}$.

Exercícios.

(1) Para todo inteiro positivo n, calcule a potência n-esima das seguintes matrizes.

$$A_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix},$$
$$A_{4} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_{5} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (2) Defina $H_0 = 0$, $H_1 = 1$ e $H_{n+1} = 3H_{n-1} + 2H_n$ para todo $n \ge 1$. Encontre uma formula fechada para H_n .
- **3.2. Uma estrutura triangular.** Considere uma estrutura triangular e sejam x,y,z as temperaturas dos 3 lados. A cada novo dia, a temperatura de cada lado fica igual à média aritmética da temperatura dos dois lados adjacentes. O que acontece após muito tempo?

As temperaturas dos lados podem ser representadas por meio de um vetor, (x, y, z). Depois de um dia, o vetor das temperaturas fica igual a ((y + z)/2, (x + z)/2, (x + y)/2). Isso pode ser representado por meio de uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (y+z)/2 \\ (x+z)/2 \\ (x+y)/2 \end{pmatrix} = A\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

Diagonalizando A, obtemos que $P^{-1}AP = D$ sendo

$$D = \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

É claro que após n dias a temperatura dos três lados é dada pelo vetor $A^n v$, sendo v o vetor das temperaturas iniciais. Temos

$$A^{n} = (PDP^{-1})^{n} = PD^{n}P^{-1}$$

$$= \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-1/2)^{n} & 0 & 0 \\ 0 & (-1/2)^{n} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/3 & -1/3 & 2/3 \\ -1/3 & 2/3 & -1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Após muitos dias, ou seja quando $n \to \infty$, temos que $(-1/2)^n \to 0$, logo o vetor das temperaturas fica igual a

$$\lim_{n \to \infty} A^n v = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/3 & -1/3 & 2/3 \\ -1/3 & 2/3 & -1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (x+y+z)/3 \\ (x+y+z)/3 \\ (x+y+z)/3 \end{pmatrix}.$$

Em outras palavras, após muito tempo a temperatura de cada lado fica muito perto da média aritmética entre as três temperaturas iniciais.

Exercício. Considere uma estrutura triangular cujos lados estão inicialmente nas temperaturas x, y, z e após um dia a temperatura de um lado, seja ela x, fica igual à média aritmética entre x e a média aritmética das temperaturas dos outros dois lados y, z, ou seja fica igual a (x + (y + z)/2)/2. O que acontece após muito tempo?

4. Resolução dos exercícios

(1) (Livro 7.1(1,4)) Mostre que as seguintes transformações $\mathbb{R}^2 \to \mathbb{R}^2$ não são lineares encontrando explicitamente um vetor v e um escalar λ tais que $T(\lambda v) \neq \lambda T(v)$.

$$T(x,y) = (x+1,y+1),$$
 $T(x,y) = (|x|,|y|).$

No primeiro caso podemos escolher $v=(0,0),\,\lambda=0$ obtendo $T(\lambda v)=T(0,0)=(1,1)$ mas $\lambda T(v)=0\cdot(1,1)=(0,0).$ No segundo caso podemos escolher $v=(1,1),\,\lambda=-1$ obtendo $T(\lambda v)=T(-1,-1)=(1,1)$ mas $\lambda T(v)=(-1)T(1,1)=(-1)(1,1)=(-1,-1).$

- (2) Encontre a matriz A da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,0)=(2,3) e T(0,1)=(3,2).
 - A matriz de T é a matriz que tem como colunas $T(e_1)$ e $T(e_2)$, ou seja $\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$.
- (3) Encontre a matriz A da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(2,1)=(1,1) e T(1,1)=(0,1).

A transformação T tem a forma

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right),$$

e T(2,1)=(1,1) significa 2a+b=1, 2c+d=1, por outro lado T(1,1)=(0,1) significa a+b=0, c+d=1. Resolvendo obtemos a=1, b=-1, c=0, d=1, ou seja

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

(4) (Livro 7.1 (15)) Determine a dimensão de núcleo e imagem de $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} 3x + y - 2z\\-3x - y + 2z\end{array}\right).$$

Calcule também a matriz que representa T.

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{cc} 3x + y - 2z\\-3x - y + 2z\end{array}\right) = \left(\begin{array}{cc} 3 & 1 & -2\\-3 & -1 & 2\end{array}\right) \left(\begin{array}{c} x\\y\\z\end{array}\right).$$

Como a matriz de T é uma matriz 2×3 de posto 1, o núcleo de T tem dimensão 2 e a sua imagem (o espaço-coluna da matriz) tem dimensão 1 (o posto da matriz).

(5) Determine a matriz que representa as seguintes transformações lineares $\mathbb{R}^3 \to \mathbb{R}^3$. Para cada transformaçõe determine se é bijetora e determine uma base do núcleo e da imagem da transformaçõe (ou seja, núcleo e espaço-coluna da matriz que representa a transformaçõe).

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}, T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x \\ y \end{pmatrix}, T_3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ 0 \\ x-y \end{pmatrix}.$$

$$T_4 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ x \\ y \end{pmatrix}, T_5 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x-y+z \\ 2y \end{pmatrix}, T_6 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x-y-z \\ 2y \\ y+z \end{pmatrix}.$$

Resolução.

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Como o determinante da matriz que representa T_1 vale $2 \neq 0$ temos que T_1 é bijetora, $\ker(T_1) = \{0\}$ e $\operatorname{Im}(T_1) = \mathbb{R}^3$.

$$T_2 \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} z \\ x \\ y \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right).$$

Como o determinante da matriz que representa T_2 vale $1 \neq 0$ temos que T_2 é bijetora, $\ker(T_2) = \{0\}$ e $\operatorname{Im}(T_2) = \mathbb{R}^3$.

$$T_{3}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ 0 \\ x-y \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\ker(T_{3}) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \qquad \operatorname{Im}(T_{3}) = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{bmatrix}.$$

$$T_{4}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\ker(T_{4}) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \operatorname{Im}(T_{4}) = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix}.$$

$$T_{5}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x-y+z \\ 2y \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\ker(T_{5}) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \qquad \operatorname{Im}(T_{5}) = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \end{bmatrix}.$$

$$T_{6}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x-y-z \\ 2y \\ y+z \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Como o determinante da matriz que representa T_6 vale $2 \neq 0$ temos que T_6 é bijetora, $\ker(T_6) = \{0\}$ e $\operatorname{Im}(T_6) = \mathbb{R}^3$.

(6) Considere a transformação $T: \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz é $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, ou seja a reflexão pela reta y = x em \mathbb{R}^2 . Quais são os vetores $v \in \mathbb{R}^2$ tais que T(v) = -v? Quais são os vetores $v \in \mathbb{R}^2$ tais que T(v) = v? O que significa isso geometricamente?

Resolvendo T(v) = -v obtemos

$$\left(\begin{array}{c} -x \\ -y \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} y \\ x \end{array}\right)$$

ou seja -x = y e -y = x. Segue que os vetores v tais que T(v) = -v são os vetores da forma (x, -x) com $x \in \mathbb{R}$ qualquer, ou seja se trata do espaço $[(1, -1)] < \mathbb{R}^2$ gerado por (1, -1).

Resolvendo T(v) = v obtemos

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} y \\ x \end{array}\right)$$

ou seja x=y e y=x. Segue que os vetores v tais que T(v)=v são os vetores da forma (x,x) com $x\in\mathbb{R}$ qualquer, ou seja se trata do espaço $[(1,1)]<\mathbb{R}^2$ gerado por (1,1).

Segue que os vetores da reta [(1,1)] são fixados pela reflexão, sendo [(1,1)] exatamente o eixo da reflexão, e os vetores da reta [(1,-1)] são

invertidos de sinal pela reflexão, sendo ortogonais ao eixo da reflexão: $[(1,-1)] = [(1,1)]^{\perp}$.

(7) Sejam $v_1 = (1,1,0), v_2 = (0,1,1), W := [v_1,v_2] < \mathbb{R}^3$. Determine a matriz A associada à transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^3$ definida pelo fato que T(v) é exatamente a projeção ortogonal de v sobre W. Depois disso, verifique que $A^2 = A$, determine uma base de $\ker(T)$ e de $\operatorname{Im}(T)$ e observe que $\ker(T) = W^{\perp}$ e $\operatorname{Im}(T) = W$.

Seja
$$B$$
 a matriz cujas colunas são v_1 e v_2 , ou seja $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$.

A fórmula da projeção ortogonal sobre W de um vetor $v \in \mathbb{R}^3$ é $T(v) = B(B^TB)^{-1}B^Tv$ e $B^TB = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $(B^TB)^{-1} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}$. Segue que T(v) = Av sendo

$$A = B(B^T B)^{-1} B^T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 & -1/3 \\ -1/3 & 1/3 & 2/3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$
$$\ker(T) = \ker\begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \end{bmatrix} = W^{\perp},$$
$$\operatorname{Im}(T) = \begin{bmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} = W.$$

(8) Calcule a matriz A que representa a reflexão pela reta de equação y = 2x em \mathbb{R}^2 . Calcule $\det(A)$ e verifique que $A^2 = \mathbb{1}_2$.

A transformação T pode ser definida da seguinte forma. Seja w=(1,2) e seja $W=[w]<\mathbb{R}^2$. O espaço W é o espaço solução de y=2x em \mathbb{R}^2 . A projeção ortogonal de um generico v=(x,y) sobre W é dada por $P(v)=\frac{v\cdot w}{w\cdot w}w$, logo a componente ortogonal é v-P(v). A transformação T fixa a projeção ortogonal sobre W e troca de sinal a componente ortogonal, em outras palavras

$$T(v) = T(v - P(v) + P(v)) = T(v - P(v)) + T(P(v))$$

= $P(v) - v + P(v) = 2P(v) - v = \frac{2v \cdot w}{w \cdot w} w - v$.

Usando as coordenadas, lembrando que v = (x, y) e w = (1, 2), temos

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \frac{2(x+2y)}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3x/5 + 4y/5 \\ 4x/5 + 3y/5 \end{pmatrix}$$
$$= \begin{pmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Uma outra possibilidade para encontrar a expressão geral de T(v) é observar que o vetor (1,2) é fixado e (2,-1) é trocado de sinal, ou seja (*) T(1,2)=(1,2) e T(2,-1)=(-2,1). Se T(v)=Av para todo $v\in\mathbb{R}^2$

podemos escrever $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ e as condições (*) podem ser escritas $a+2b=1,\ c+2d=2,\ 2a-b=-2,\ 2c-d=1$. Resolvendo temos 2(1-2b)-b=-2 ou seja $b=4/5,\ a=-3/5,\ 2(2-2d)-d=1$ ou seja $d=3/5,\ c=4/5$. Segue que

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} -3/5 & 4/5 \\ 4/5 & 3/5 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

O determinante da matriz A que representa T vale-9/5-16/5=-1e A^2 vale

$$A^{2} = A \cdot A = \begin{pmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{pmatrix} \begin{pmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Isso faz sentido pois $A^2 = \mathbb{1}_2$ significa que aplicar a reflexão T duas vezes é equivalente a não fazer nada, o que geometricamente é coerente.

(9) Descreva as transformações lineares $\mathbb{R} \to \mathbb{R}$.

São representadas por uma matriz 1×1 , ou seja são todas do tipo $T(v) = \lambda v$ para um oportuno $\lambda \in \mathbb{R}$.

(10) Se $v \in \mathbb{R}^n$ é um vetor fixado, a transformação $T : \mathbb{R}^n \to \mathbb{R}$, $T(x) = v \cdot x$ (produto escalar), é linear. Qual é a matriz que representa T? A transformação T é injetora? É sobrejetora?

A matriz A que representa T é v^T , o vetor linha obtido transpondo v. Como a matriz A tem formato $1 \times n$, segue que o seu posto é 0 ou 1. O posto é 0 se e somente se v=0, neste caso T é a transformação linear nula $\mathbb{R}^n \to \mathbb{R}$, que leva todo mundo para 0. Obviamente, a transformação nula $\mathbb{R}^n \to \mathbb{R}$ não é injetora e não é sobrejetora. Se $v \neq 0$ então T não é a transformação nula pois $T(v) = v \cdot v \neq 0$, e a matriz A tem posto 1, igual à dimensão do codomínio de T, logo T é sobrejetora. Como T é injetora se e somente se o posto de A é igual à dimensão do domínio, que é n, obtemos que se $v \neq 0$ então T é injetora se e somente se n=1.

(11) Diga se as seguintes transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$, $T_2: \mathbb{R}^3 \to \mathbb{R}^2$, $T_3: \mathbb{R}^3 \to \mathbb{R}^2$ são injetoras e/ou sobrejetoras.

$$T_1\left(\begin{array}{c}x\\y\end{array}\right):=\left(\begin{array}{c}x-y\\x+y\\y-x\end{array}\right),\ T_2\left(\begin{array}{c}x\\y\\z\end{array}\right):=\left(\begin{array}{c}x-y+z\\2x+z\end{array}\right),\ T_3\left(\begin{array}{c}x\\y\\z\end{array}\right):=\left(\begin{array}{c}x-y-z\\x-y-z\end{array}\right).$$

As matrizes que representam T_1, T_2, T_3 são

$$A_1 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix}.$$

A matriz A_1 tem posto 2, igual à dimensão do domínio de T_1 e diferente da dimensão do codomínio de T_1 (igual a 3) logo T_1 é injetora mas não é sobrejetora. A matriz A_2 tem posto 2, igual à dimensão do codomínio de T_2 e diferente da dimensão do domínio de T_2 (igual a 3) logo T_2 é sobrejetora mas não é injetora. A matriz A_3 tem posto 1, diferente da dimensão do domínio de T_3 (igual a 3) e diferente da dimensão do codomínio de T_3 (igual a 2) logo T_3 não é injetora e não é sobrejetora.

(12) Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ é dita idempotente se T(T(v)) = T(v) para todo $v \in \mathbb{R}^n$. Por exemplo, a projeção ortogonal sobre $W \leq \mathbb{R}^n$

é idempotente (por quê?). Uma transformação linear idempotente pode ser bijetora?

A única transformação linear idempotente bijetora é a identidade. De fato, escrevendo T(v) = Av sendo A uma oportuna matriz $n \times n$, a condição T(T(v)) = T(v) para todo $v \in \mathbb{R}^n$ significa que $A^2v = Av$ para todo $v \in \mathbb{R}^n$, ou seja $A^2 = A$. Se A é inversível então podemos multiplicar os dois membros de $A^2 = A$ à esquerda por A^{-1} e obter $A = \mathbb{1}_n$.

(13) Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ é dita involutória se T(T(v)) = v para todo $v \in \mathbb{R}^n$. Por exemplo, a reflexão pela reta y = x em \mathbb{R}^2 é involutória (por quê?). Mostre que uma transformação linear involutória é necessariamente bijetora.

Escrevendo T(v) = Av sendo A uma oportuna matriz $n \times n$, a condição T(T(v)) = v para todo $v \in \mathbb{R}^n$ significa que $A^2v = v$ para todo $v \in \mathbb{R}^n$, ou seja $A \cdot A = A^2 = \mathbb{1}_n$. Segue que A é inversível (sendo $A^{-1} = A$), ou seja T é inversível, logo T é bijetora.

(14) Para cada uma das seguintes matrizes A, diga se é diagonalizável. Caso o seja, encontre uma matriz inversível P e uma matriz diagonal D tais que $P^{-1}AP = D$.

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -4 & -3 & -3 \\ 5 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 2 \\ 2 & 0 & 2 \\ -2 & -1 & -2 \end{pmatrix}, \begin{pmatrix} 4 & 1 & 2 \\ 2 & 2 & 2 \\ -2 & -1 & 0 \end{pmatrix}.$$

Matriz 1. $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} 1-\lambda & 2\\ 2 & 4-\lambda \end{pmatrix} = (1-\lambda)(4-\lambda) - 4 = \lambda^2 - 5\lambda = \lambda(\lambda-5).$$

Os autovalores são $\lambda_1=0$ e $\lambda_2=5$. São distintos, logo A é diagonalizável. Os autoespaços são

$$V_0 = \ker(A) = \ker\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix},$$

$$V_5 = \ker(A - 5\mathbb{1}_2) = \ker\begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}.$$

MATRIZ 2. $A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} 2 - \lambda & -1 \\ 0 & 3 - \lambda \end{pmatrix} = (2 - \lambda)(3 - \lambda).$$

Os autovalores são $\lambda_1 = 2$ e $\lambda_2 = 3$. São distintos, logo A é diagonalizável. Os autoespaços são

$$V_2 = \ker(A - 2\mathbb{1}_2) = \ker\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix},$$

$$V_3 = \ker(A - 3\mathbb{1}_2) = \ker\begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \qquad D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Matriz 3. $A = \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} 3 - \lambda & 1 \\ -1 & 5 - \lambda \end{pmatrix} = (3 - \lambda)(5 - \lambda) + 1 = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2.$$

O único autovalor é $\lambda_1 = 4$, tem multiplicidade algébrica 2: $m_a(4) = 2$. O seu autoespaco é

$$V_4 = \ker(A - 4\mathbb{1}_2) = \ker\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix},$$

segue que $m_g(4) = \dim(V_4) = 1 \neq m_a(4) = 2$, logo A não é diagonalizável. Matriz 4. $A = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} -1 - \lambda & 1 \\ -1 & 1 - \lambda \end{pmatrix} = (-1 - \lambda)(1 - \lambda) + 1 = \lambda^2 = (\lambda - 0)^2.$$

O único autovalor é $\lambda_1 = 0$, tem multiplicidade algébrica 2: $m_a(0) = 2$. O seu autoespaço é

$$V_0 = \ker(A) = \ker\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix},$$

segue que $m_g(0)=\dim(V_0)=1\neq m_a(0)=2$, logo A não é diagonalizável. Matriz 5. $A=\begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -3 & 1 & 4 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} -1 - \lambda & 1 & 2 \\ 1 & -1 - \lambda & -2 \\ -3 & 1 & 4 - \lambda \end{pmatrix}$$

$$= (1 + \lambda)^2 (4 - \lambda) + 6 + 2 - 6(1 + \lambda) - (4 - \lambda) - 2(1 + \lambda)$$

$$= (\lambda^2 + 2\lambda + 1)(4 - \lambda) - 4 - 7\lambda$$

$$= 4\lambda^2 - \lambda^3 + 8\lambda - 2\lambda^2 + 4 - \lambda - 4 - 7\lambda$$

$$= -\lambda^2 (\lambda - 2).$$

Os autovalores são $\lambda_1=0$ e $\lambda_2=2$, com $m_a(0)=2$ e $m_g(2)=1$. O autoespaço de 0 é

$$V_0 = \ker(A) = \ker\begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -3 & 1 & 4 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \end{bmatrix},$$

segue que $m_q(0) = \dim(V_0) = 1 \neq 2 = m_a(0)$, logo A não é diagonalizável.

Matriz 6.
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} -\lambda & 1 & 2 \\ 2 & 2 - \lambda & 2 \\ 2 & 1 & -\lambda \end{pmatrix}$$

= $\lambda^2 (2 - \lambda) + 4 + 4 - 4(2 - \lambda) + 2\lambda + 2\lambda$
= $-\lambda(\lambda^2 - 2\lambda - 8) = -\lambda(\lambda + 2)(\lambda - 4)$.

Os autovalores são $\lambda_1=0,\ \lambda_2=-2$ e $\lambda_3=4,$ dois a dois distintos, logo A é diagonalizável. Os autoespaços são

$$V_0 = \ker(A) = \ker\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix},$$

$$V_{-2} = \ker(A + 2\mathbb{1}_3) = \ker\begin{pmatrix} 2 & 1 & 2 \\ 2 & 4 & 2 \\ 2 & 1 & 2 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

$$V_4 = \ker(A - 4\mathbb{1}_3) = \ker\begin{pmatrix} -4 & 1 & 2 \\ 2 & -2 & 2 \\ 2 & 1 & -4 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Matriz 7. $A = \begin{pmatrix} -4 & -3 & -3 \\ 5 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} -4 - \lambda & -3 & -3 \\ 5 & 4 - \lambda & 3 \\ 1 & 1 & 2 - \lambda \end{pmatrix}$$

$$= (-4 - \lambda)(4 - \lambda)(2 - \lambda) - 9 - 15 + 3(4 - \lambda) + 15(2 - \lambda) + 3(4 + \lambda)$$

$$= -(4 + \lambda)(\lambda^2 - 6\lambda + 8) + 30 - 15\lambda$$

$$= -4\lambda^2 + 24\lambda - 32 - \lambda^3 + 6\lambda^2 - 8\lambda + 30 - 15\lambda$$

$$= -(\lambda^3 - 2\lambda^2 - \lambda + 2) = -(\lambda - 2)(\lambda^2 - 1) = -(\lambda - 2)(\lambda + 1)(\lambda - 1).$$

Os autovalores são $\lambda_1=2,\ \lambda_2=-1,\ \lambda_3=1,$ dois a dois distintos, logo A é diagonalizável. Os autoespaços são

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} -6 & -3 & -3 \\ 5 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix},$$

$$V_{-1} = \ker(A + \mathbb{1}_3) = \ker\begin{pmatrix} -3 & -3 & -3 \\ 5 & 5 & 3 \\ 1 & 1 & 3 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix},$$

$$V_1 = \ker(A - \mathbb{1}_3) = \ker\begin{pmatrix} -5 & -3 & -3 \\ 5 & 3 & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ -1 & 0 & -1 \end{pmatrix}, \qquad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

MATRIZ 8. $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} -\lambda & -1 & -1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{pmatrix}$$
$$= -\lambda(2 - \lambda)^2 - 1 - 1 + 2 - \lambda + 2 - \lambda + \lambda$$
$$= -\lambda(\lambda^2 - 4\lambda + 4) + 2 - \lambda$$
$$= -(\lambda^3 - 4\lambda^2 + 5\lambda - 2) = -(\lambda - 1)^2(\lambda - 2)$$

Os autovalores são $\lambda_1=1,~\lambda_2=2,$ e as multiplicidades algébricas são $m_a(1)=2,~m_a(2)=1.$ Os autoespaços são

$$V_1 = \ker(A - \mathbb{1}_3) = \ker\begin{pmatrix} -1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} -2 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix},$$

Segue que as multiplicidades geométricas são $m_g(1)=2=m_a(1)$ e $m_g(2)=1=m_a(2)$, logo A é diagonalizável. Temos $P^{-1}AP=D$ sendo

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Matriz 9. $A=\left(\begin{array}{ccc}2&1&2\\2&0&2\\-2&-1&-2\end{array}\right)$. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} 2 - \lambda & 1 & 2 \\ 2 & -\lambda & 2 \\ -2 & -1 & -2 - \lambda \end{pmatrix}$$

= $(2 - \lambda)(-\lambda)(-2 - \lambda) - 4 - 4 - 4\lambda - 2(-2 - \lambda) + 2(2 - \lambda)$
= $-\lambda^3 + 4\lambda - 8 - 4\lambda + 4 + 2\lambda + 4 - 2\lambda$
= $-\lambda^3$.

O único autovalor é $\lambda_1 = 0$, com $m_a(0) = 3$, e o seu autoespaço é

$$V_0 = \ker(A) = \ker\begin{pmatrix} 2 & 1 & 2 \\ 2 & 0 & 2 \\ -2 & -1 & -2 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Segue que $m_q(0) = 1 \neq 3 = m_a(0)$ logo A não é diagonalizável.

MATRIZ 10.
$$A = \begin{pmatrix} 4 & 1 & 2 \\ 2 & 2 & 2 \\ -2 & -1 & 0 \end{pmatrix}$$
. O polinômio característico é

$$P_A(\lambda) = \det \begin{pmatrix} 4 - \lambda & 1 & 2 \\ 2 & 2 - \lambda & 2 \\ -2 & -1 & -\lambda \end{pmatrix}$$

= $(4 - \lambda)(2 - \lambda)(-\lambda) - 4 - 4 + 4(2 - \lambda) + 2\lambda + 2(4 - \lambda)$
= $(4\lambda - \lambda^2)(\lambda - 2) - 4(\lambda - 2) = -(\lambda - 2)(\lambda^2 - 4\lambda + 4) = -(\lambda - 2)^3$

O único autovalor é $\lambda_1 = 2$, com $m_a(2) = 3$, e o seu autoespaço é

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} 2 & 1 & 2 \\ 2 & 0 & 2 \\ -2 & -1 & -2 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Segue que $m_g(2) = 1 \neq 3 = m_a(2)$ logo A não é diagonalizável.

(15) Considere as transformações lineares $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^3$ definidas por

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - 2y + z \\ 2x - 2y + z \\ 2x - 2y + z \end{pmatrix}, \quad T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ -x + 2y \\ -x + y + z \end{pmatrix}.$$

Para i=1,2, determine a matriz A_i associada a T_i (ou seja tal que $T_i(v)=A_iv$ para todo $v\in\mathbb{R}^3$) e determine se A_i é diagonalizável. Caso o seja, encontre uma matriz inversível P_i e uma matriz diagonal D_i tais que $P_i^{-1}A_iP_i=D_i$.

Primeira transformação.

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - 2y + z \\ 2x - 2y + z \\ 2x - 2y + z \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

O polinômio característico é

$$P_{A_1}(\lambda) = \det \begin{pmatrix} 2 - \lambda & -2 & 1\\ 2 & -2 - \lambda & 1\\ 2 & -2 & 1 - \lambda \end{pmatrix}$$

= $(2 - \lambda)(-2 - \lambda)(1 - \lambda) - 4 - 4 + 2(2 + \lambda) + 4(1 - \lambda) + 2(2 - \lambda)$
= $(\lambda^2 - 4)(1 - \lambda) + 4 - 4\lambda = \lambda^2(1 - \lambda)$.

Os autovalores são $\lambda_1=0$ e $\lambda_2=1$, com $m_a(0)=2$ e $m_a(1)=1$. Os autoespaços são

$$V_0 = \ker(A_1) = \ker\begin{pmatrix} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
.

$$V_1 = \ker(A_1 - \mathbb{1}_3) = \ker\begin{pmatrix} 1 & -2 & 1 \\ 2 & -3 & 1 \\ 2 & -2 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Segue que $m_g(0)=2=m_a(0)$ e $m_g(1)=1=m_a(1)$, logo A_1 é diagonalizável. Temos $P_1^{-1}A_1P_1=D_1$ sendo

$$P_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -2 & 1 \end{pmatrix}, \qquad D_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Segunda transformação.

$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ -x+2y \\ -x+y+z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

O polinômio característico é

$$P_{A_2}(\lambda) = \det \begin{pmatrix} -\lambda & 1 & 0 \\ -1 & 2 - \lambda & 0 \\ -1 & 1 & 1 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(-\lambda(2 - \lambda) + 1) = (1 - \lambda)(\lambda^2 - 2\lambda + 1) = -(\lambda - 1)^3$$

O único autovalor é $\lambda_1=1$ com $m_a(1)=3$, o seu autoespaço é

$$V_1 = \ker(A_2 - \mathbb{1}_3) = \ker\begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}.$$

Segue que $m_q(1) = 2 \neq 3 = m_a(1)$, logo A_2 não é diagonalizável.

(16) Mostre que se $W \leq \mathbb{R}^n$ e $T : \mathbb{R}^n \to \mathbb{R}^n$ é a projeção ortogonal sobre W, então T é diagonalizável. Quais são os seus autovalores? Diagonalize T no caso particular $W = [(1,0,-1),(1,2,1)] < \mathbb{R}^3$.

Se $0 \neq w \in W$ então T(w) = w, logo w é autovetor com autovalor associado igual a 1. Se $0 \neq v \in W^{\perp}$ então T(v) = 0, logo v é autovetor com autovalor associado igual a 0. Se B é uma base de W e B' é uma base de W^{\perp} então, sendo $W \cap W^{\perp} = \{0\}$ e $\dim(W) + \dim(W^{\perp}) = n$, temos que $B \cup B'$ é uma base de \mathbb{R}^n e consiste de autovetores. Os autovalores de T são 0 e 1, como acabamos de ver.

Vejamos o caso particular $W=[v_1,v_2]$ sendo $v_1=(1,0,-1),\ v_2=(1,2,1).$ Seja B a matriz cujas colunas são v_1 e v_2 , ou seja $B=\begin{pmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}.$

A fórmula da projeção ortogonal sobre W de um vetor $v \in \mathbb{R}^3$ é $T(v) = B(B^TB)^{-1}B^Tv$ e $B^TB = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$, $(B^TB)^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/6 \end{pmatrix}$. Segue que T(v) = Av sendo

$$A = B(B^T B)^{-1} B^T = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & 1/6 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \end{pmatrix}$$

$$1 \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 0 & -3 \\ 0 & 1/6 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 & -1/3 \\ 0 & 1/2 & 2/3 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & -3 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & 2/3 \end{pmatrix}.$$

O polinômio característico é

$$P_A(\lambda) = (2/3 - \lambda)^3 - 2/27 - (1/3)(2/3 - \lambda)$$

= $(1/27)(8 - 36\lambda + 54\lambda^2 - 27\lambda^3) - 2/27 - 2/9 + \lambda/3$
= $-(\lambda^3 - 2\lambda^2 + \lambda) = -\lambda(\lambda - 1)^2$.

Os autovalores são $\lambda_1=0$ e $\lambda_2=1$. Os autoespaços são

$$V_0 = \ker(A) = \ker\begin{pmatrix} 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & 2/3 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = W^{\perp},$$

$$V_1 = \ker(A - \mathbb{1}_3) = \ker\begin{pmatrix} -1/3 & 1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & -1/3 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \end{bmatrix} = W.$$

Segue que $m_a(0) = m_g(0) = 1$ e $m_a(1) = m_g(1) = 2$ e A é diagonalizável. Temos então $P^{-1}AP = D$ sendo

$$P = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{array}\right), \qquad D = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

(17) Diagonalize a reflexão pela reta y = 2x em \mathbb{R}^2 .

Vimos que essa reflexão tem matriz

$$A = \left(\begin{array}{cc} -3/5 & 4/5 \\ 4/5 & 3/5 \end{array}\right).$$

O seu polinômio característico é

$$P(\lambda) = (-3/5 - \lambda)(3/5 - \lambda) - 16/25 = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1).$$

Os autovalores são -1 e 1. O autoespaço de -1 é

$$V_{-1} = \ker(A + \mathbb{1}_2) = \ker\begin{pmatrix} 2/5 & 4/5 \\ 4/5 & 8/5 \end{pmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

O autoespaço de 1 é

$$V_1 = \ker(A - \mathbb{1}_2) = \ker\begin{pmatrix} -3/5 & 4/5 \\ 4/5 & -2/5 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Segue que

$$\left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array}\right)^{-1} \left(\begin{array}{cc} -3/5 & 4/5 \\ 4/5 & 3/5 \end{array}\right) \left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right).$$

Observe que V_1 é exatamente o eixo da reflexão e $V_{-1}=V_1^{\perp}$. (18) Seja A uma matriz quadrada cujo polinômio característico é $P_A(\lambda)=$ $2-\lambda^3$. Mostre que A tem posto 3.

O grau do polinômio característico de uma matriz $n \times n$ é igual a n, logo no nosso caso A é uma matriz quadrada 3×3 . Para mostrar que A tem posto 3 basta então mostrar que $\det(A) \neq 0$. Mas o polinômio característico $P_A(\lambda)$ é, por definição, $P_A(\lambda) := \det(A - \lambda \mathbb{1}_3)$, em particular $P_A(0) = \det(A)$. No nosso caso $P_A(\lambda) = 2 - \lambda^3$, logo $\det(A) = P_A(0) = 2 - \lambda^3$ $2 - 0^3 = 2 \neq 0.$

(19) Dê um exemplo de transformação linear T tal que $\ker(T) = \operatorname{Im}(T)$.

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}.$$
$$\ker(T) = \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] = \operatorname{Im}(T).$$

(20) Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear tal que T(T(v)) = v para todo $v \in \mathbb{R}^2$. Mostre que T é diagonalizável.

Seja $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a matriz de T, assim T(v) = Av para todo $v \in \mathbb{R}^2$. Como T(T(v)) = v para todo $v \in \mathbb{R}^2$, temos que $A^2 = \mathbb{1}_2$, ou seja

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a^2 + bc & b(a+d) \\ c(a+d) & cd + d^2 \end{array}\right),$$

ou seja $a^2 + bc = 1$, b(a + d) = 0, c(a + d) = 0 e $cd + d^2 = 1$.

Se c=0 então $a^2=1=d^2$ logo $a=\pm 1$ e $d=\pm 1$. Neste caso, os autovalores são exatamente a e d, e se são distintos então A é diagonalizável. Suponha agora que a=d, assim $a+d=\pm 2$ logo b(a+d)=0implica que b = 0 e A é uma matriz diagonal, logo é diagonalizável (toda matriz diagonal é trivialmente diagonalizável).

Suponha agora que $c \neq 0$. Segue que a+d=0 e $a^2-ac=1=a^2+bc$, logo (a+b)c=0 ou seja b=-a. O polinômio característico de A é

$$(a-\lambda)(d-\lambda)-bc=-a^2-(a+d)\lambda+\lambda^2-bc=\lambda^2-1=(\lambda-1)(\lambda+1),$$

logo os autovalores são distintos e A é diagonalizável.

(21) Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear tal que T(T(v)) = T(v) para todo $v \in \mathbb{R}^2$. Mostre que T é diagonalizável.

Seja $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a matriz de T, assim T(v) = Av para todo $v \in \mathbb{R}^2$. Como T(T(v)) = T(v) para todo $v \in \mathbb{R}^2$, temos que $A^2 = A$, ou

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & cd+d^2 \end{pmatrix},$$

ou seja $a^2 + bc = a$, b(a + d) = b, c(a + d) = c e $cd + d^2 = d$.

Se c=0 então $d^2=d$ logo d=0 ou d=1. A mesma coisa vale para a: $a^2=a$ logo a=0 ou a=1. Os autovalores de A são a e d, logo se $a\neq d$ então A é diagonalizável pois tem autovalores dois a dois distintos. Agora suponha a=d. Se a=0 então d=a=0, b=b(a+d)=0 logo A é a matriz nula, em particular diagonal, logo é diagonalizável; se a=1 então d=a=1, b=b(a+d)=2b logo b=0 e A é a matriz identidade, em particular A é diagonal.

Suponha agora que $c \neq 0$. Segue que a+d=1, logo $ad=a(1-a)=a-a^2=bc$. O polinômio característico de A é

$$(a-\lambda)(d-\lambda)-bc=ad-\lambda(a+d)+\lambda^2-bc=\lambda^2-\lambda=\lambda(\lambda-1),$$

logo os autovalores de A são 0 e 1, distintos, logo A é diagonalizável.

(22) Diagonalize as seguintes matrizes.

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right), \qquad \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{array}\right), \qquad \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{array}\right).$$

Primeira matriz. $A=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right)$. O polinômio característico é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_3) = (1 - \lambda)(2 - \lambda)(3 - \lambda)$$

logo os autovalores de A são 1,2,3. Como as multiplicidades algébricas são todas iguais a 1, a matriz é diagonalizável. Os autoespaços são

$$V_1 = \ker(A - \mathbb{1}_3) = \ker\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

$$V_3 = \ker(A - 3\mathbb{1}_3) = \ker\begin{pmatrix} -2 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right), \qquad D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Segunda matriz. $A=\left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{array}\right)$. O polinômio característico é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_3) = (1 - \lambda)^2 (2 - \lambda),$$

logo os autovalores são 1,2 e $m_a(1) = 2$, $m_a(2) = 1$. Os autoespaços são

$$V_1 = \ker(A - \mathbb{1}_3) = \ker\begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & -1 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.$$

Segue que $P^{-1}AP = D$ sendo

$$P = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right), \qquad D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

Terceira matriz. $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$. O polinômio característico

é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_3) = \det\begin{pmatrix} 1 - \lambda & 1 & -1 \\ 1 & 1 - \lambda & 1 \\ -1 & 1 & 1 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)^3 - 2 - 3(1 - \lambda) = 1 - 3\lambda + 3\lambda^2 - \lambda^3 - 5 + 3\lambda$$
$$= -(\lambda^3 - 3\lambda^2 + 4) = -(\lambda + 1)(\lambda^2 - 4\lambda + 4) = -(\lambda + 1)(\lambda - 2)^2.$$

logo os autovalores são -1,2 e $m_a(-1)=1,\ m_a(2)=2.$ Os autoespaços são

$$V_{-1} = \ker(A + \mathbb{1}_3) = \ker\begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \end{bmatrix},$$

$$V_2 = \ker(A - 2\mathbb{1}_3) = \ker\begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix}.$$

Segue que as multiplicidades geométricas são $m_g(-1)=1=m_a(-1)$ e $m_g(2)=2=m_a(2)$, logo A é diagonalizável. Temos $P^{-1}AP=D$ sendo

$$P = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right), \qquad D = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

(23) Encontre os valores de h para os quais as seguintes matrizes são diagonalizáveis.

$$\left(\begin{array}{cc} 2 & h \\ 0 & 2 \end{array}\right), \qquad \left(\begin{array}{cc} 1 & h & h \\ 0 & 2 & h \\ 0 & 0 & h \end{array}\right), \qquad \left(\begin{array}{ccc} 2h & 1-h & -h \\ h & 1 & -h \\ 2h-1 & 1-h & 1-h \end{array}\right).$$

Na terceira matriz pode usar o fato que um autovalor é h

Primeira matriz. $A=\begin{pmatrix}2&h\\0&2\end{pmatrix}$. O polinômio característico é $P_A(\lambda)=(2-\lambda)^2$, logo o único autovalor é 2, e $m_a(2)=2$. A sua multiplicidade geométrica é

$$m_g(2) = \dim (\ker(A - 2\mathbb{1}_2)) = \dim \left(\ker \begin{pmatrix} 0 & h \\ 0 & 0 \end{pmatrix}\right) = 2 - r,$$

sendo r o posto da matriz $\begin{pmatrix} 0 & h \\ 0 & 0 \end{pmatrix}$. É claro que r = 0 se h = 0 e r = 1 se $h \neq 0$, ou seja $m_g(2) = 2$ se h = 0 e $m_g(2) = 1$ se $h \neq 0$. Segue que

 $m_g(2)=m_a(2)$ se e somente se h=0, ou seja A é diagonalizável se e somente se h=0.

Segunda matriz. $A = \begin{pmatrix} 1 & h & h \\ 0 & 2 & h \\ 0 & 0 & h \end{pmatrix}$. O polinômio característico

é $P_A(\lambda) = (1 - \lambda)(2 - \lambda)(h - \lambda)$, logo os autovalores são 1,2,h. Se $h \neq 1,2$ então os três autovalores têm multiplicidade algébrica 1 e A é diagonalizável. Precisamos estudar os casos h = 1 e h = 2.

Se h=1 então $P_A(\lambda)=(1-\lambda)^2(2-\lambda)$ logo os autovalores são 1,2 e $m_a(1)=2,\ m_a(2)=1.$ Como $1\leq m_g(2)\leq m_a(2)=1,$ segue que $m_g(2)=m_a(2)=1.$ A multiplicidade geométrica de 1 é

$$m_g(1) = \dim(\ker(A - \mathbb{1}_3)) = \dim\left(\ker\begin{pmatrix} 0 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}\right) = 2,$$

logo $m_a(1) = 2 = m_a(1)$ e A é diagonalizável.

Se h=2 então $P_A(\lambda)=(1-\lambda)(2-\lambda)^2$ logo os autovalores são 1, 2 e $m_a(1)=1, m_a(2)=2$. A multiplicidade geométrica de 2 vale

$$m_g(2) = \dim(\ker(A - 2\mathbb{1}_3)) = \dim\left(\ker\begin{pmatrix} -1 & 2 & 2\\ 0 & 0 & 2\\ 0 & 0 & 0 \end{pmatrix}\right) = 1,$$

logo $m_g(2) = 1 \neq 2 = m_a(2)$ e A não é diagonalizável.

Em conclusão, A é diagonalizável se e somente se $h \neq 2$.

Terceira matriz.
$$A = \begin{pmatrix} 2h & 1-h & -h \\ h & 1 & -h \\ 2h-1 & 1-h & 1-h \end{pmatrix}$$
. O polinômio

característico é

$$P_A(\lambda) = \det(A - \lambda \mathbb{1}_3) = \det\begin{pmatrix} 2h - \lambda & 1 - h & -h \\ h & 1 - \lambda & -h \\ 2h - 1 & 1 - h & 1 - h - \lambda \end{pmatrix}$$
$$= (2h - \lambda)(1 - \lambda)(1 - h - \lambda) - h(1 - h)(2h - 1) - h^2(1 - h)$$
$$+ h(2h - 1)(1 - \lambda) - h(1 - h)(1 - h - \lambda) + h(1 - h)(2h - \lambda)$$
$$= -\lambda^3 + (h + 2)\lambda^2 + (-2h - 1)\lambda + h.$$

Sabendo que h é autovalor, deduzimos que $P_A(h) = 0$ (isso foi dado como dica) e efetuando a divisão com resto de $P_A(\lambda)$ por $\lambda - h$ obtemos que

$$P_A(\lambda) = -(\lambda - h)(\lambda^2 - 2\lambda + 1) = -(\lambda - h)(\lambda - 1)^2.$$

Segue que os dois autovalores de A são 1 e h. Suponha $h \neq 1$, assim os autovalores são distintos com multiplicidades $m_a(h) = 1$, $m_a(1) = 2$. Como $1 \leq m_g(h) \leq m_a(h) = 1$ temos que $m_g(h) = 1 = m_a(h)$ logo A é diagonalizável se e somente se $m_g(1) = m_a(1)$, em outras palavras se e somente se $m_g(1) = 2$. A multiplicidade geométrica de 1 vale

$$m_g(1) = \dim(\ker(A - \mathbb{1}_3)) = 3 - r$$

sendo r o posto da matriz

$$B = A - \mathbb{1}_3 = \left(\begin{array}{ccc} 2h - 1 & 1 - h & -h \\ h & 0 & -h \\ 2h - 1 & 1 - h & -h \end{array} \right).$$

Precisamos encontrar os valores de h tais que 3-r=2, ou seja os valores de h tais que B tem posto r=1. Se isso acontece, então as colunas de B são proporcionais, e olhando às últimas duas colunas de B, é claro que isso só pode acontecer se for h=0 (lembrando que estamos supondo $h\neq 1$). Por outro lado, se h=0, então B tem posto 1. Deduzimos que, se $h\neq 1$, então A é diagonalizável se e somente se h=0.

Precisamos estudar agora o caso h=1. Neste caso, o polinômio característico é $-(\lambda-1)^3$, logo 1 é o único autovalor de A e a sua multiplicidade algébrica vale 3. A sua multiplicidade geométrica vale

$$m_g(1) = \dim(\ker(A - \mathbb{1}_3)) = \dim\left(\ker\left(\begin{array}{ccc} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{array}\right)\right) = 2.$$

Segue que se h=1 então $m_g(1)=2\neq 3=m_a(1)$ logo A não é diagonalizável.

Em conclusão, A é diagonalizável se e somente se h = 0.

(24) Se A e B são matrizes linha-equivalentes, elas têm necessariamente os mesmos autovalores?

Não, por exemplo sejam $A=\begin{pmatrix}1&1\\1&1\end{pmatrix},\,B=\begin{pmatrix}1&1\\0&0\end{pmatrix}$, são linhaequivalentes pois B é obtida a partir de A fazendo II-I. Por outro lado, elas não têm os mesmos autovalores pois os autovalores de A são 0,2 e os autovalores de B são 0,1.

(25) Se A é uma matriz diagonalizável e B é uma matriz linha-equivalente a B, então B é necessariamente diagonalizável?

Não, por exemplo sejam $A=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}$, são linha-equivalentes pois A é obtida a partir de B fazendo I-II. Por outro lado, A é diagonalizável (sendo diagonal) mas B não é diagonalizável pois o seu único autovalor é 1 e $m_a(1)=2$, $m_q(1)=1$.

(26) Se A e B são matrizes diagonalizáveis do mesmo tamanho, A + B é necessariamente diagonalizável? E AB é necessariamente diagonalizável?

Não, por exemplo

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

(27) Mostre que se a matriz diagonalizável A tem polinômio característico λ^n então A é a matriz nula.

Existem P inversível e D diagonal tais que $P^{-1}AP = D$, pois A é diagonalizável. Os elementos diagonais de D são os autovalores de A. Como o polinômio característico de A é $\lambda^n = (\lambda - 0)^n$, o único autovalor de A é 0, ou seja os elementos diagonais de D são nulos, ou seja D é a matriz

nula: D=0. Segue que $P^{-1}AP=D=0$ e multiplicando a esquerda por P e a direita por P^{-1} ambos os lados obtemos $A = P \cdot 0 \cdot P^{-1} = 0$.

(28) É verdade que toda matriz inversível é diagonalizável? É verdade que toda matriz diagonalizável é inversível?

- $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ é inversível e não diagonalizável, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ é diagonalizável e não inversível.
- (29) Para todo inteiro positivo n, calcule a potência n-esima das seguintes matrizes.

$$A_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad A_2 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \quad A_3 = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right),$$

$$A_4 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

• $A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Diagonalizando, temos $P_1^{-1}A_1P_1 = D_1$ com $P_1 = D_1$ $\frac{1}{2}\begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix}$ e $D_1 = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$, logo

$$A_1^n = (P_1 D_1 P_1^{-1})^n = P_1 D_1^n P_1^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^n & 0 \\ 0 & 1^n \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -(-1)^n & 1 \\ (-1)^n & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (-1)^n + 1 & (-1)^{n+1} + 1 \\ (-1)^{n+1} + 1 & (-1)^n + 1 \end{pmatrix}.$$

Em outras palavras, $A^n = A$ se n é impar e $A^n = \mathbb{1}_2$ se A é par, tratando-se de uma reflexão.

• $A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Diagonalizando, temos $P_2^{-1}A_2P_2 = D_2$ com $P_2 =$ $\frac{1}{2}\begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix}$ e $D_2 = \begin{pmatrix} 0 & 0\\ 0 & 2 \end{pmatrix}$, logo

$$\begin{split} A_2^n &= (P_2 D_2 P_2^{-1})^n = P_2 D_2^n P_2^{-1} = \left(\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 2^n \end{array} \right) \left(\begin{array}{cc} -1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right) \\ &= \left(\begin{array}{cc} 0 & 2^n \\ 0 & 2^n \end{array} \right) \left(\begin{array}{cc} -1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right) = \left(\begin{array}{cc} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{array} \right). \end{split}$$

• $A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Diagonalizando, temos $P_3^{-1}A_3P_3 = D_3$ com $P_3 = D_3$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e $D_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, logo

$$A_3^n = (P_3 D_3 P_3^{-1})^n = P_3 D_3^n P_3^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2^n \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix}.$$

• $A_4=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. Não é diagonalizável. Por outro lado, fazendo $A_4^2=\begin{pmatrix}1&2\\0&1\end{pmatrix}$, $A_4^3=\begin{pmatrix}1&3\\0&1\end{pmatrix}$, percebemos que é provável que seja $A_4^n=\begin{pmatrix}1&n\\0&1\end{pmatrix}$. Isso pode ser mostrado formalmente utilizando o princípio de indução matemática: supondo que seja verdadeiro para n, mostraremos que vale para n+1, da seguinte forma:

$$A_4^{n+1} = A_4 \cdot A_4^n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 \\ 0 & 1 \end{pmatrix}.$$

•
$$A_5 = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
. Diagonalizando, temos $P_5^{-1}A_5P_5 = D_5$ com $P_5 = \begin{pmatrix} -1 & -2 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix}$ e $D_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, logo

$$A_5^n = (P_5 D_5 P_5^{-1})^n = P_5 D_5^n P_5^{-1} = \begin{pmatrix} -1 & -2 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1^n & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 0 & -1/2 & 1/2 \\ 0 & 1 & 0 \\ 1 & 3/2 & 1/2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -2 & 2^n \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1/2 & 1/2 \\ 0 & 1 & 0 \\ 1 & 3/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 2^n & 3 \cdot 2^{n-1} - 2 & 2^{n-1} \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

(30) Defina $H_0=0,\,H_1=1$ e $H_{n+1}=3H_{n-1}+2H_n$ para todo $n\geq 1$. Encontre uma formula fechada para H_n .

$$\begin{pmatrix} H_{n+1} \\ H_n \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} H_n \\ H_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} H_{n-1} \\ H_{n-2} \end{pmatrix} = \dots =$$

$$= \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} H_1 \\ H_0 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Seja então $A=\begin{pmatrix}2&3\\1&0\end{pmatrix}$. Diagonalizando A, obtemos que $P^{-1}AP=D$ sendo $P=\begin{pmatrix}-1&3\\1&1\end{pmatrix}$ e $D=\begin{pmatrix}-1&0\\0&3\end{pmatrix}$, logo

$$\begin{split} A^n &= PD^n P^{-1} = \left(\begin{array}{cc} -1 & 3 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} (-1)^n & 0 \\ 0 & 3^n \end{array} \right) \left(\begin{array}{cc} -1/4 & 3/4 \\ 1/4 & 1/4 \end{array} \right) = \\ &= \frac{1}{4} \left(\begin{array}{cc} (-1)^{n+1} & 3^{n+1} \\ (-1)^n & 3^n \end{array} \right) \left(\begin{array}{cc} -1 & 3 \\ 1 & 1 \end{array} \right) = \frac{1}{4} \left(\begin{array}{cc} (-1)^n + 3^{n+1} & 3(-1)^{n+1} + 3^{n+1} \\ (-1)^{n+1} + 3^n & 3(-1)^n + 3^n \end{array} \right). \end{split}$$

Deduzimos que

$$\begin{pmatrix} H_{n+1} \\ H_n \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} (-1)^n + 3^{n+1} & 3(-1)^{n+1} + 3^{n+1} \\ (-1)^{n+1} + 3^n & 3(-1)^n + 3^n \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} (-1)^n + 3^{n+1} \\ (-1)^{n+1} + 3^n \end{pmatrix}.$$

e obtemos a formula fechada, que vale para todo $n \ge 0$,

$$H_n = \frac{3^n - (-1)^n}{4}.$$

(31) Considere uma estrutura triangular cujos lados estão inicialmente nas temperaturas x, y, z e após um dia a temperatura de um lado, seja ela x, fica igual à média aritmética entre x e a média aritmética das temperaturas dos outros dois lados y, z, ou seja fica igual a (x + (y + z)/2)/2. O que acontece após muito tempo?

As temperaturas dos lados podem ser representadas por meio de um vetor, (x,y,z). Depois de um dia, o vetor das temperaturas fica igual a ((x+(y+z)/2)/2,(y+(x+z)/2)/2,(z+(x+y)/2)/2). Isso pode ser representado por meio de uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x/2 + y/4 + z/4 \\ x/4 + y/2 + z/4 \\ x/4 + y/4 + z/2 \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad A = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix}$$

Diagonalizando A, obtemos que $P^{-1}AP = D$ sendo

$$D = \begin{pmatrix} 1/4 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

É claro que após n dias a temperatura dos três lados é dada pelo vetor $A^n v$, sendo v o vetor das temperaturas iniciais. Temos

$$A^{n} = (PDP^{-1})^{n} = PD^{n}P^{-1}$$

$$= \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} (1/4)^{n} & 0 & 0 \\ 0 & (1/4)^{n} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/3 & -1/3 & 2/3 \\ -1/3 & 2/3 & -1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Após muitos dias, ou seja quando $n\to\infty$, temos que $(1/4)^n\to 0$, logo o vetor das temperaturas fica igual a

$$\lim_{n \to \infty} A^n v = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/3 & -1/3 & 2/3 \\ -1/3 & 2/3 & -1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (x+y+z)/3 \\ (x+y+z)/3 \\ (x+y+z)/3 \end{pmatrix}.$$

Em outras palavras, após muito tempo a temperatura de cada lado fica muito perto da média aritmética entre as três temperaturas iniciais.