
Problem set 2. Representação de grupos 1, 2020-2. This counts as 15
percent of the grade, as did the first problem set. The written exam (online)
will count as 70 percent of the grade.

The base field is always C.

1. Problem 1 (5 points)

Let A := S5 and let B be the subgroup of A consisting of the elements
that fix the points 4 and 5, so that B ∼= S3. Let N be the alternating group
of degree 5, so that N EA. Consider the group

G := {(a, b) ∈ A×B : a ≡ b mod N}.

This group has order |G| = |S5| · |S3|/2 = 360 = 23 · 32 · 5 and it has 12
conjugacy classes. Setting x := (12), y := (123), z := (1234), w := (12)(34),
t := (12345), s := (123)(45), representatives of the conjugacy classes of G
are (1, 1), (1, y), (y, 1), (w, 1), (t, 1), (x, x), (y, y), (z, x), (s, x), (w, y), (t, y),
(t, y−1). Compute the character table of G.

Solution. An element (a, b) ∈ G has centralizer equal to

CG((a, b)) = G ∩ (CA(a)× CB(b))

= {(r, s) ∈ CA(a)× CB(b) : r ≡ s mod N}.

Set H := CA(a) × CB(b). If H is not contained in G then, since G is a
normal subgroup of A × B (the index is 2), GH is a subgroup of A × B
properly containing H hence GH = A×B. This implies that

2|G| = |A×B| = |GH| = |G||H|/|G ∩H|

hence |G∩H| = |H|/2. The only case in which H is contained in G is when a
is a 5-cycle and b is a 3-cycle. With this information, and doing inflation on
the two factors, we can deduce the first 8 irreducible characters. Moreover
χ3χ4 and χ3χ6 are irreducible, so we can choose them to be χ9 and χ10.
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1 2 20 15 24 30 40 90 60 30 24 24
G 1 1y y1 w1 t1 xx yy zx sx wy ty ty−1

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 1 −1 −1 1 1 1
χ3 2 −1 2 2 2 0 −1 0 0 −1 −1 −1
χ4 4 4 1 0 −1 2 1 0 −1 0 −1 −1
χ5 4 4 1 0 −1 −2 1 0 1 0 −1 −1
χ6 5 5 −1 1 0 1 −1 −1 1 1 0 0
χ7 5 5 −1 1 0 −1 −1 1 −1 1 0 0
χ8 6 6 0 −2 1 0 0 0 0 −2 1 1
χ9 8 −4 2 0 −2 0 −1 0 0 0 1 1
χ10 10 −5 −2 2 0 0 1 0 0 −1 0 0
χ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ a b
χ12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ c d

χ3χ8 12 −6 0 −4 2 0 0 0 0 2 −1 −1

We have [χ3χ8, χi] = 0 for i = 1, . . . , 10 and [χ3χ8, χ3χ8] = 2, therefore
χ3χ8 = χ11 + χ12. Using this and the second orthogonality relation, we
find that χ11(1) = χ12(1) = 6. Now, the value of χ11(g) and χ12(g) for
g corresponding to columns 1, . . . , 10 can be calculated in the same way,
via the second orthogonality relation and the fact that χ11 + χ12 = χ3χ8,
keeping in mind that such elements g are conjugate to their inverse, so their
character values χi(g) are real numbers.

1 2 20 15 24 30 40 90 60 30 24 24
G 1 1y y1 w1 t1 xx yy zx sx wy ty ty−1

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 1 −1 −1 1 1 1
χ3 2 −1 2 2 2 0 −1 0 0 −1 −1 −1
χ4 4 4 1 0 −1 2 1 0 −1 0 −1 −1
χ5 4 4 1 0 −1 −2 1 0 1 0 −1 −1
χ6 5 5 −1 1 0 1 −1 −1 1 1 0 0
χ7 5 5 −1 1 0 −1 −1 1 −1 1 0 0
χ8 6 6 0 −2 1 0 0 0 0 −2 1 1
χ9 8 −4 2 0 −2 0 −1 0 0 0 1 1
χ10 10 −5 −2 2 0 0 1 0 0 −1 0 0
χ11 6 −3 0 −2 1 0 0 0 0 1 a b
χ12 6 −3 0 −2 1 0 0 0 0 1 c d

χ3χ8 12 −6 0 −4 2 0 0 0 0 2 −1 −1

We are left to calculate χi(ty) and χi(ty
−1) for i = 11, 12. Note that

ty−1 is conjugate to the inverse of ty, therefore χi(ty
−1) = χi(ty). This
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implies that b = a and d = c. The fact that [χ11, χ1] = [χ12, χ1] = 0 implies
that a + b = −1 = c + d, so since χ3χ8 = χ11 + χ12, we obtain that a = d
and b = c. Finally, the fact that the two last columns are orthogonal implies
that 7 + 2aa = 0, and since a+ a = −1, we find 7 + 2a(−1− a) = 0, hence

a = −1±i
√
15

2 . Up to exchanging the roles of χ11 and χ12, we can choose
either of these to be a. The character table is the following.

1 2 20 15 24 30 40 90 60 30 24 24
G 1 1y y1 w1 t1 xx yy zx sx wy ty ty−1

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 1 −1 −1 1 1 1
χ3 2 −1 2 2 2 0 −1 0 0 −1 −1 −1
χ4 4 4 1 0 −1 2 1 0 −1 0 −1 −1
χ5 4 4 1 0 −1 −2 1 0 1 0 −1 −1
χ6 5 5 −1 1 0 1 −1 −1 1 1 0 0
χ7 5 5 −1 1 0 −1 −1 1 −1 1 0 0
χ8 6 6 0 −2 1 0 0 0 0 −2 1 1
χ9 8 −4 2 0 −2 0 −1 0 0 0 1 1
χ10 10 −5 −2 2 0 0 1 0 0 −1 0 0

χ11 6 −3 0 −2 1 0 0 0 0 1 −1+i
√
15

2
−1−i

√
15

2

χ12 6 −3 0 −2 1 0 0 0 0 1 −1−i
√
15

2
−1+i

√
15

2

2. Problem 2 (1 point)

Let M be the character table of a finite group G. After seeing M as a
square matrix, compute the determinant of M .

Solution. By the second orthogonality relation, MT ·M is a diagonal
matrix with diagonal entries the sizes of the centralizers of conjugacy class
representatives, |CG(xi)|, i = 1, . . . , k. Now, recall that χ(g) = χ(g−1) for
every g ∈ G and every irreducible character χ, therefore the column of x−1j
is the conjugate of the column of xj . This implies that the matrix M is

obtained by switching the column of xj with the column of x−1j , for every
j = 1, . . . , k. This amounts to t swaps, where t is the number of 2-element
subsets {xi, xj} of {x1, . . . , xk} such that xj is conjugate to x−1i but not to

xi. Therefore det(M) = (−1)t det(M). It follows that

k∏
j=1

|CG(xi)| = det(MT ·M) = det(MT ) · det(M)

= det(M) · det(M) = (−1)t det(M)2.

It follows that

det(M) = ±it ·

√√√√ k∏
j=1

|CG(xj)|.
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The sign ± is not determined since when writing the character table we are
free to choose the order in which to write the rows and the columns, and a
permutation of the rows and/or the columns results in a potential change
of sign of the determinant.

3. Problem 3 (1 point)

Let Sn be the symmetric group of degree n. Consider the wreath product
G := Sn oS2, that is, the semidirect product (Sn×Sn)o 〈ε〉 where ε = (12),
S2 = 〈ε〉 = {1, ε}, and the action is given by (x, y)ε := (y, x). Prove that in
the character table of G all the entries are integers.

Solution. When we proved that in the character tables of symmetric
groups every entry is an integer, the only thing we used was that in the
symmetric group every element g is conjugate to gk whenever k is coprime
to the order of g, since these two elements have the same cycle structure.
Therefore it is enough to prove that for every element g ∈ G and every
integer k coprime to the order of g, the elements g and gk are conjugate in
G. There are two types of elements in G: the elements of Sn × Sn and the
elements of the coset (Sn × Sn)ε. Let g ∈ G.

If g = (x, y) ∈ Sn × Sn then the order of g is the least common multiple
of the order of x and the order of y, so k is coprime to both. This implies
that x and xk have the same cycle structure in Sn, so they are conjugate in
Sn, and the same holds for y and yk. Choosing g, h ∈ Sn with g−1xg = xk

and h−1yh = yk, we obtain that (g, h)−1(x, y)(g, h) = (g−1xg, h−1yh) =
(xk, yk) = (x, y)k.

Now assume g ∈ G lies in the coset (Sn × Sn)ε, so that g = (x, y)ε ∈ G
for some x, y ∈ Sn. We claim that the conjugacy class of g = (x, y)ε is
precisely

C = {(a, b)ε ∈ G : ab is conjugate to xy in Sn}.

To prove this, note that a typical conjugate of (x, y)ε is of the form
((x, y)ε)h where either h = (r, s) ∈ Sn × Sn or h = (r, s)ε ∈ (Sn × Sn)ε. We
have

((x, y)ε)(r,s) = (r−1xs, s−1yr)ε,

((x, y)ε)(r,s)ε = ((r−1xs, s−1yr)ε)ε = (s−1yr, r−1xs)ε.

In both cases we obtain elements of type (a, b)ε with ab conjugate to xy in
Sn. Therefore the conjugacy class of g in G is contained in C.

Now consider (a, b)ε ∈ C. We need to prove that (x, y)ε and (a, b)ε are
conjugate in G. The above computation shows that it is enough to find
two elements r, s ∈ Sn with the property that a = r−1xs and b = s−1yr.
Since ab conjugate to xy in Sn, there exists r ∈ Sn with ab = r−1xyr. Let
s := yrb−1 = x−1ra. We have

a = r−1xyrb−1 = r−1xs, b = a−1r−1xyr = s−1yr.
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We need to understand the power gk = ((x, y)ε)k. We have

gk =

{
(xy, xy)k/2 if k is even,

(xy, xy)(k−1)/2(x, y)ε if k is odd.

This implies that what we need to show is that xy and (xy)k are conjugate
in Sn, i.e. that they have the same cycle structure. For this, it is enough to
show that k is coprime to the order of xy. But this is clear since k is coprime
to the order of g = (x, y)ε, so it is also coprime to the order of g2 = (xy, xy),
which equals the order of xy ∈ Sn.

4. Problem 4 (1 point)

Let χ be a (not necessarily irreducible) character of a finite group G.
Let x1, . . . , xk be representatives for the k conjugacy classes of G. Prove

that
∑k

i=1 χ(xi) is an integer.

Solution. G acts on itself by conjugation, and g ∈ G has precisely
|CG(g)| fixed points in this action. Call ψ the permutation character of this
action. Then ψ(xi) = |CG(xi)| for every i = 1, . . . , k. If χ is irreducible,
then it appears [χ, ψ] times in the decomposition of ψ, in particular [χ, ψ]
is an integer. On the other hand

[χ, ψ] =
1

|G|

k∑
i=1

|G : CG(xi)| · χ(xi) · ψ(xi) =
k∑
i=1

χ(xi).

Now assume that χ is not irreducible, and write χ =
∑k

j=1mjχj with the

mi’s non-negative integers, not all zero. Then we know that
∑k

i=1 χj(xi) is
an integer for every j = 1, . . . , k, so

k∑
i=1

χ(xi) =

k∑
i=1

k∑
j=1

mjχj(xi) =

k∑
j=1

mj

k∑
i=1

χj(xi)

is a sum of integers, so it is an integer.

5. Problem 5 (1 point)

Let χ be an irreducible character of a finite simple group. Show that
χ(1) 6= 2. Can it be χ(1) = 3?

Solution. Assume by contradiction that ρ : G→ GL(V ) is an irreduci-
ble representation of G with character χ and χ(1) = dim(V ) = 2. Note that
ρ is not the trivial homomorphism because the trivial action is not irreduci-
ble, being dim(V ) > 1. This implies that ker(ρ) 6= G so, since G is simple,
ρ is injective. Since G is a group with a nonlinear irreducible character, G
is nonabelian. Since the irreducible character degrees divide the order of G
and χ(1) = 2, the order of G is even, so there exists an element g ∈ G of
order 2.
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Note that ρ2g = ρg2 = ρ1 = 1. If λ ∈ C is an eigenvalue of ρg then

there exists a nonzero vector v ∈ V with vρg = λv, so v = vρ2g = λ2v and

this implies that λ2 = 1, that is, λ = ±1. Since dim(V ) = 2, if ρg is not a
scalar map then its eigenvalues are precisely 1 and −1, each counted once,
in particular det(ρg) = −1, so the homomorphism G → C∗, g 7→ det(ρg) is
non-trivial, contradicting the fact that G is a nonabelian simple group.

If instead ρg is a scalar map then, since ρg 6= 1 (being ρ injective and
ρ1 = 1, g 6= 1), ρg lies in the center of Gρ. But ρ, being an injective group
homomorphism, induces an isomorphism G ∼= Gρ, therefore g must lie in
the center of G, contradicting the fact that G is a nonabelian simple group.

It can be χ(1) = 3, for example the alternating group of degree 5 is a
nonabelian simple group which has an irreducible character of degree 3.

6. Problem 6 (1 point)

Let χ be an irreducible character of a finite group G and let g ∈ G be
an element of order m. Prove that m · χ(1) ≤ |G|.

Solution. Let H := 〈g〉 ≤ G. We need to show that χ(1) ≤ |G|/m =
|G : H|. Consider the restriction χ|H . Being a character of H, it is a sum of
irreducible characters of H. Let ψ be an irreducible character of H which
appears in the decomposition of χ|H , so that [χ|H , ψ] ≥ 1. Recall that ψG is
a character of G of degree ψ(1) · |G : H| = |G : H|, being ψ a linear character
(every irreducible character of an abelian group is linear). Using Frobenius
reciprocity we find that 1 ≤ [χ|H , ψ] = [χ, ψG], which means that χ appears
in the decomposition of ψG, in particular χ(1) ≤ ψG(1) = |G : H|.

Note that the only thing we used in this proof is that H is abelian. So
we obtain the following stronger statement: if H is an abelian subgroup
of a finite group G then every irreducible character degree of G is at most
|G : H|.


