Prova escrita de Representação de grupos 1, semestre 2020-2.

30 de abril de 2021.
Respostas não motivadas não serão consideradas.
The base field is always \mathbb{C}.
(1) (1 point) Find all the group homomorphisms $S_{3} \times S_{3} \rightarrow \mathbb{C}^{*}$, where S_{3} is the symmetric group of degree 3 .
(2) (2.5 points) Let χ be an irreducible character of a finite group A and let ψ be an irreducible character of a finite group B.
(a) (1 point) Prove that the map

$$
\begin{aligned}
\eta= & \eta(\chi, \psi): A \times B \rightarrow \mathbb{C} \\
& (a, b) \mapsto \chi(a) \psi(b)
\end{aligned}
$$

is an irreducible character of $A \times B$.
(b) (1 point) Prove that if χ_{1}, χ_{2} are irreducible characters of A, ψ_{1}, ψ_{2} are irreducible characters of B and the pair $\left(\chi_{1}, \psi_{1}\right)$ is distinct from the pair $\left(\chi_{2}, \psi_{2}\right)$, then

$$
\eta\left(\chi_{1}, \psi_{1}\right) \neq \eta\left(\chi_{2}, \psi_{2}\right)
$$

(c) (0.5 points) Using a counting argument, prove that every irreducible character of $A \times B$ is equal to $\eta(\chi, \psi)$ for some $\chi \in \operatorname{Irr}(A)$ and some $\psi \in \operatorname{Irr}(B)$.
(3) (1 point) Using the previous item, compute the irreducible character degrees of $Q_{8} \times Q_{8}$, where Q_{8} is the quaternion group of order 8. [Attention: I am not asking for the whole character table, just the irreducible character degrees!]
(4) (1.5 points) The symmetric group $G=S_{5}$ has the following character table.

	1	10	20	30	24	15	20
S_{5}	1	(12)	(123)	(1234)	(12345)	$(12)(34)$	$(123)(45)$
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	1	-1
χ_{3}	4	2	1	0	-1	0	-1
χ_{4}	4	-2	1	0	-1	0	1
χ_{5}	5	1	-1	-1	0	1	1
χ_{6}	5	-1	-1	1	0	1	-1
χ_{7}	6	0	0	0	1	-2	0

Decompose the following class functions and determine whether they are characters or not.

$$
\begin{aligned}
& f_{3}(x)=\left|\left\{g \in G: g^{4}=x\right\}\right| \\
& f_{2}(x)=\left|\left\{g \in G: g^{5}=x^{4}\right\}\right|
\end{aligned}
$$

(5) (1 point) Complete the following character table of the group G, where the top line contains the sizes of the conjugacy classes of the conjugacy class representatives x_{1}, \ldots, x_{9}.

	1	18	8	2	3	18	8	6	8
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
χ_{1}	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	1	1	1
χ_{3}	2	0	-1	2	2	0	-1	2	-1
χ_{4}	2	0	2	-1	2	0	-1	-1	-1
χ_{5}	2	0	-1	-1	2	0	-1	-1	2
χ_{6}	2	0	-1	-1	2	0	2	-1	-1
χ_{7}	3	-1	0	3	-1	1	0	-1	0
χ_{8}									
χ_{9}									

(6) (1 point) Count the normal subgroups of the group in the previous item and compute their sizes.
(7) (1 point) Let G be a finite group of even order and assume that there exists an irreducible G-module of dimension $n=|G| / 3$. Prove that $G \cong S_{3}$
(8) (1 point) G acts on itself by conjugation. Let χ be the corresponding permutation character and let 1_{G} be the trivial character of G. Prove that $\left[\chi, 1_{G}\right]$ equals the number of conjugacy classes of G. Is χ irreducible?

