Solution of the written exam.

Representação de grupos 1-2020-2.
April 30th, 2021.
The two types are merged in this solution.
(1) Find all the group homomorphisms $Q_{8} \rightarrow \mathbb{C}^{*}$.

Solution. $G=Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$ with $i^{2}=j^{2}=$ $k^{2}=-1, i j=k, j i=-k$. The derived subgroup of G is $N=$ $G^{\prime}=\langle-1\rangle=\{-1,1\}$ and $G / G^{\prime} \cong C_{2} \times C_{2}$. Every homomorphism $\varphi: G \rightarrow \mathbb{C}^{*}$ is a composition $G \rightarrow G / G^{\prime} \rightarrow \mathbb{C}^{*}$ where the first map $G \rightarrow G / G^{\prime}$ is the canonical projection. Since elements in the same coset modulo G^{\prime} have the same image via φ, we may list the homomorphisms as follows.

	N	$i N$	$j N$	$k N$
ρ_{1}	1	1	1	1
ρ_{2}	1	-1	1	-1
ρ_{3}	1	1	-1	-1
ρ_{4}	1	-1	-1	1

(2) Find all the group homomorphisms $S_{3} \times S_{3} \rightarrow \mathbb{C}^{*}$.

Solution. $G=S_{3} \times S_{3}$. The derived subgroup of G is $N=$ $G^{\prime}=A_{3} \times A_{3}$ and $G / G^{\prime} \cong C_{2} \times C_{2}$. Every homomorphism φ : $G \rightarrow \mathbb{C}^{*}$ is a composition $G \rightarrow G / G^{\prime} \rightarrow \mathbb{C}^{*}$ where the first map $G \rightarrow G / G^{\prime}$ is the canonical projection. Since elements in the same coset modulo G^{\prime} have the same image via φ, we may list the homomorphisms as follows.

	N	$((12), 1) N$	$(1,(12)) N$	$((12),(12)) N$
ρ_{1}	1	1	1	1
ρ_{2}	1	-1	1	-1
ρ_{3}	1	1	-1	-1
ρ_{4}	1	-1	-1	1

(3) Let χ be an irreducible character of a finite group A and let ψ be an irreducible character of a finite group B.
(a) Prove that the map

$$
\begin{aligned}
\eta= & \eta(\chi, \psi): A \times B \rightarrow \mathbb{C}, \\
& (a, b) \mapsto \chi(a) \psi(b)
\end{aligned}
$$

is an irreducible character of $A \times B$.
Solution. Note that

$$
\begin{array}{ll}
\tilde{\chi}: A \times B \rightarrow \mathbb{C}, & \widetilde{\chi}((a, b)):=\chi(a), \\
\widetilde{\psi}: A \times B \rightarrow \mathbb{C}, & \widetilde{\psi}((a, b)):=\psi(b),
\end{array}
$$

are irreducible characters of $A \times B$ by inflation. Therefore $\eta=\widetilde{\chi} \cdot \widetilde{\psi}$ is a character of G, being a product of characters. To prove that η is irreducible we need to show that $[\eta, \eta]=1$.

$$
\begin{aligned}
{[\eta, \eta] } & =\frac{1}{|G|} \sum_{g \in G} \eta(g) \overline{\eta(g)}=\frac{1}{|A \times B|} \sum_{(a, b) \in G} \chi(a) \psi(b) \overline{\chi(a) \psi(b)} \\
& =\frac{1}{|A|} \frac{1}{|B|} \sum_{a \in A, b \in B} \chi(a) \overline{\chi(a)} \psi(b) \overline{\psi(b)} \\
& =\frac{1}{|A|} \sum_{a \in A} \chi(a) \overline{\chi(a)} \cdot \frac{1}{|B|} \sum_{b \in B} \psi(b) \overline{\psi(b)} \\
& =[\chi, \chi] \cdot[\psi, \psi]=1 \cdot 1=1
\end{aligned}
$$

(b) Prove that if χ_{1}, χ_{2} are irreducible characters of A, ψ_{1}, ψ_{2} are irreducible characters of B and the pair $\left(\chi_{1}, \psi_{1}\right)$ is distinct from the pair $\left(\chi_{2}, \psi_{2}\right)$, then

$$
\eta\left(\chi_{1}, \psi_{1}\right) \neq \eta\left(\chi_{2}, \psi_{2}\right)
$$

Solution. Let $\eta_{i}=\eta\left(\chi_{i}, \psi_{i}\right)$ for $i=1,2$. We have

$$
\begin{aligned}
{\left[\eta_{1}, \eta_{2}\right] } & =\frac{1}{|G|} \sum_{g \in G} \eta_{1}(g) \overline{\eta_{2}(g)}=\frac{1}{|A \times B|} \sum_{(a, b) \in G} \chi_{1}(a) \psi_{1}(b) \overline{\chi_{2}(a) \psi_{2}(b)} \\
& =\frac{1}{|A|} \frac{1}{|B|} \sum_{a \in A, b \in B} \chi_{1}(a) \overline{\chi_{2}(a)} \psi_{1}(b) \overline{\psi_{2}(b)} \\
& =\frac{1}{|A|} \sum_{a \in A} \chi_{1}(a) \overline{\chi_{2}(a)} \cdot \frac{1}{|B|} \sum_{b \in B} \psi_{1}(b) \overline{\psi_{2}(b)} \\
& =\left[\chi_{1}, \chi_{2}\right] \cdot\left[\psi_{1}, \psi_{2}\right]=0,
\end{aligned}
$$

being at least one of $\left[\chi_{1}, \chi_{2}\right]$ and $\left[\psi_{1}, \psi_{2}\right]$ equal to zero. This implies that $\eta_{1} \neq \eta_{2}$.
(c) Using a counting argument, prove that every irreducible character of $A \times B$ is equal to $\eta(\chi, \psi)$ for some $\chi \in \operatorname{Irr}(A)$ and some $\psi \in \operatorname{Irr}(B)$.

Solution. Denote by k_{X} the number of irreducible characters of the group X, which also equals the number of conjugacy classes of X. The characters $\eta\left(\chi_{1}, \chi_{2}\right)$ constructed above are $k_{A} k_{B}$ irreducible characters of $G=A \times B$. On the other hand we know that $k_{A \times B}=k_{A} k_{B}$, since the number of irreducible characters of a finite group equals the number of its conjugacy classes and, if $a \in A$ and $b \in B$, the conjugacy class of (a, b) in G is precisely $a^{A} \times b^{B}$. Therefore the characters constructed above are all the irreducible characters of G.
(4) Compute the irreducible character degrees of $A_{4} \times A_{4}$. [Attention: I am not asking for the whole character table, just the irreducible character degrees!]

Solution. The irreducible character degrees of A_{4} are $1,1,1,3$. By the above item, the irreducible characters of $A_{4} \times A_{4}$ are all the products $\chi_{i}(1) \chi_{j}(1)$ where χ_{i}, χ_{j} are irreducible characters of A_{4}, therefore they are 1 (9 times), 3 (6 times) and 9 (1 time).
(5) Compute the irreducible character degrees of $Q_{8} \times Q_{8}$. [Attention: I am not asking for the whole character table, just the irreducible character degrees!]

Solution. The irreducible character degrees of Q_{8} are $1,1,1,1,2$. By the above item, the irreducible character degrees of $Q_{8} \times Q_{8}$ are all the products $\chi_{i}(1) \chi_{j}(1)$ where χ_{i}, χ_{j} are irreducible characters of Q_{8}, therefore they are 1 (16 times), 2 (8 times) and 4 (1 time).
(6) The group $G=S_{5}$ has the following character table.

	1	10	20	30	24	15	20
S_{5}	1	(12)	(123)	(1234)	(12345)	$(12)(34)$	$(123)(45)$
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	1	-1
χ_{3}	4	2	1	0	-1	0	-1
χ_{4}	4	-2	1	0	-1	0	1
χ_{5}	5	1	-1	-1	0	1	1
χ_{6}	5	-1	-1	1	0	1	-1
χ_{7}	6	0	0	0	1	-2	0

Decompose the following class functions and determine whether they are characters or not.

$$
\begin{aligned}
& f_{1}(x)=\left|\left\{g \in G: g^{3}=x\right\}\right| . \\
& f_{2}(x)=\left|\left\{g \in G: g^{5}=x^{4}\right\}\right| . \\
& f_{3}(x)=\left|\left\{g \in G: g^{4}=x\right\}\right| . \\
& f_{4}(x)=\left|\left\{g \in G: g^{3}=x^{3}\right\}\right| .
\end{aligned}
$$

Solution. The values of the functions f_{1}, \ldots, f_{4} are easily calculated by counting.

	1	10	20	30	24	15	20
S_{5}	1	(12)	(123)	(1234)	(12345)	$(12)(34)$	$(123)(45)$
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	1	-1
χ_{3}	4	2	1	0	-1	0	-1
χ_{4}	4	-2	1	0	-1	0	1
χ_{5}	5	1	-1	-1	0	1	1
χ_{6}	5	-1	-1	1	0	1	-1
χ_{7}	6	0	0	0	1	-2	0
--	--	--	--	--	--	--	--
f_{1}	21	3	0	1	1	1	0
f_{2}	25	25	1	25	0	25	1
f_{3}	56	0	2	0	1	0	0
f_{4}	21	3	21	1	1	1	3

We compute their decompositions using the first orthogonality relation. Specifically, if $f_{i}=\sum_{j=1}^{7} m_{j} \chi_{j}$ for $i=1,2,3,4$, then $m_{\ell}=\left[f_{i}, \chi_{\ell}\right]$ for $\ell=1, \ldots, 7$.
(a) $f_{1}=\chi_{1}+\chi_{3}+\chi_{5}+\chi_{6}+\chi_{7}$. It is a character, since it is a linear combination of irreducible characters for which all the coefficients are non-negative integers and they are not all zero.
(b) $f_{2}=12 \chi_{1}-5 \chi_{2}+5 \chi_{3}-3 \chi_{4}+8 \chi_{6}-5 \chi_{7}$. It is not a character, since it is a linear combination of irreducible characters for which not all the coefficients are non-negative.
(c) $f_{3}=\chi_{1}+\chi_{2}+2 \chi_{3}+2 \chi_{4}+2 \chi_{5}+2 \chi_{6}+3 \chi_{7}$. It is a character, since it is a linear combination of irreducible characters for which all the coefficients are non-negative integers and they are not all zero.
(d) $f_{4}=5 \chi_{1}+3 \chi_{2}+4 \chi_{3}+4 \chi_{4}-2 \chi_{5}-3 \chi_{6}+\chi_{7}$. It is not a character, since it is a linear combination of irreducible characters for which not all the coefficients are non-negative.
(7) Complete the following character table of the group G, where the top line contains the sizes of the conjugacy classes of the conjugacy class representatives x_{1}, \ldots, x_{10}.

	1	12	32	3	3	12	12	6	3	12
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
χ_{1}	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	-1	1	1	-1
χ_{3}	2	0	-1	2	2	0	0	2	2	0
χ_{4}	3	-1	0	-1	3	1	-1	-1	-1	1
χ_{5}	3	-1	0	3	-1	-1	1	-1	-1	1
χ_{6}	3	1	0	-1	3	-1	1	-1	-1	-1
χ_{7}	3	1	0	3	-1	1	-1	-1	-1	-1
χ_{8}	3	-1	0	-1	-1	1	1	-1	3	-1
χ_{9}										
χ_{10}										

Solution. The irreducible character $\chi_{8} \chi_{2}$ is different from χ_{i}, $i=1, \ldots, 8$, therefore we can choose $\chi_{9}:=\chi_{8} \chi_{2}$.

	1	12	32	3	3	12	12	6	3	12
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
χ_{1}	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	-1	1	1	-1
χ_{3}	2	0	-1	2	2	0	0	2	2	0
χ_{4}	3	-1	0	-1	3	1	-1	-1	-1	1
χ_{5}	3	-1	0	3	-1	-1	1	-1	-1	1
χ_{6}	3	1	0	-1	3	-1	1	-1	-1	-1
χ_{7}	3	1	0	3	-1	1	-1	-1	-1	-1
χ_{8}	3	-1	0	-1	-1	1	1	-1	3	-1
χ_{9}	3	1	0	-1	-1	-1	-1	-1	3	1
χ_{10}										

The order of G is the sum of the sizes of the conjugacy classes,

$$
|G|=1+12+32+3+3+12+12+6+3+12=96
$$

The equality $\sum_{i=1}^{10} \chi_{i}(1)^{2}=|G|=96$ implies that $\chi_{10}(1)=6$. We can now use the orthogonality between the first column and the other columns (which is much easier than using the orthogonality
of rows) to deduce the value of $\chi_{10}(g)$ for all $g \in G$.

	1	12	32	3	3	12	12	6	3	12
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
χ_{1}	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	-1	1	1	-1
χ_{3}	2	0	-1	2	2	0	0	2	2	0
χ_{4}	3	-1	0	-1	3	1	-1	-1	-1	1
χ_{5}	3	-1	0	3	-1	-1	1	-1	-1	1
χ_{6}	3	1	0	-1	3	-1	1	-1	-1	-1
χ_{7}	3	1	0	3	-1	1	-1	-1	-1	-1
χ_{8}	3	-1	0	-1	-1	1	1	-1	3	-1
χ_{9}	3	1	0	-1	-1	-1	-1	-1	3	1
χ_{10}	6	0	0	-2	-2	0	0	2	-2	0

(8) Count the normal subgroups of the group in the previous item and compute their sizes.

Solution. We know that every normal subgroup of G is an intersection of kernels of irreducible characters of G. Recall that if χ is an irreducible character of G then its kernel is

$$
\operatorname{ker}(\chi)=\{g \in G: \chi(g)=\chi(1)\}
$$

Note that $x_{1}=1$ being the only element with 1 conjugate (as seen from the table). We have

- $\operatorname{ker}\left(\chi_{1}\right)=G$, its size is 96 ,
- $\operatorname{ker}\left(\chi_{2}\right)=\{1\} \cup x_{3}^{G} \cup x_{4}^{G} \cup x_{5}^{G} \cup x_{8}^{G} \cup x_{9}^{G}$, its size is $1+32+$ $3+3+6+3=48$,
- $\operatorname{ker}\left(\chi_{3}\right)=\{1\} \cup x_{4}^{G} \cup x_{5}^{G} \cup x_{8}^{G} \cup x_{9}^{G}$, its size is $1+3+3+6+3=16$,
- $\operatorname{ker}\left(\chi_{4}\right)=\{1\} \cup x_{5}^{G}$, its size is $1+3=4$,
- $\operatorname{ker}\left(\chi_{5}\right)=\{1\} \cup x_{4}^{G}$, its size is $1+3=4$,
- $\operatorname{ker}\left(\chi_{6}\right)=\{1\} \cup x_{5}^{G}=\operatorname{ker}\left(\chi_{4}\right)$,
- $\operatorname{ker}\left(\chi_{7}\right)=\{1\} \cup x_{4}^{G}=\operatorname{ker}\left(\chi_{5}\right)$,
- $\operatorname{ker}\left(\chi_{8}\right)=\{1\} \cup x_{9}^{G}$, its size is $1+3=4$,
- $\operatorname{ker}\left(\chi_{9}\right)=\{1\} \cup x_{9}^{G}=\operatorname{ker}\left(\chi_{8}\right)$,
- $\operatorname{ker}\left(\chi_{10}\right)=\{1\}$, its size is 1 .

It is clear from the table that the set $C=\left\{\operatorname{ker}\left(\chi_{i}\right): i=\right.$ $1, \ldots, 10\}$ is closed under intersection. It follows from the above analysis that $|C|=7$, therefore G has precisely 7 normal subgroups.
(9) Complete the following character table of the group G, where the top line contains the sizes of the conjugacy classes of the conjugacy class representatives x_{1}, \ldots, x_{9}.

	1	18	8	2	3	18	8	6	8
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
χ_{1}	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	1	1	1
χ_{3}	2	0	-1	2	2	0	-1	2	-1
χ_{4}	2	0	2	-1	2	0	-1	-1	-1
χ_{5}	2	0	-1	-1	2	0	-1	-1	2
χ_{6}	2	0	-1	-1	2	0	2	-1	-1
χ_{7}	3	-1	0	3	-1	1	0	-1	0
χ_{8}									
χ_{9}									

Solution. The irreducible character $\chi_{7} \chi_{2}$ is different from χ_{i}, $i=1, \ldots, 7$, therefore we can choose $\chi_{8}:=\chi_{7} \chi_{2}$.

	1	18	8	2	3	18	8	6	8
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
χ_{1}	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	1	1	1
χ_{3}	2	0	-1	2	2	0	-1	2	-1
χ_{4}	2	0	2	-1	2	0	-1	-1	-1
χ_{5}	2	0	-1	-1	2	0	-1	-1	2
χ_{6}	2	0	-1	-1	2	0	2	-1	-1
χ_{7}	3	-1	0	3	-1	1	0	-1	0
χ_{8}	3	1	0	3	-1	-1	0	-1	0
χ_{9}									

The order of G is the sum of the sizes of the conjugacy classes,

$$
|G|=1+18+8+2+3+18+8+6+8=72
$$

The equality $\sum_{i=1}^{9} \chi_{i}(1)^{2}=|G|=72$ implies that $\chi_{9}(1)=6$. We can now use the orthogonality between the first column and the other columns (which is much easier than using the orthogonality of rows) to deduce the value of $\chi_{9}(g)$ for all $g \in G$.

	1	18	8	2	3	18	8	6	8
G	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
χ_{1}	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	1	-1	1	1	1
χ_{3}	2	0	-1	2	2	0	-1	2	-1
χ_{4}	2	0	2	-1	2	0	-1	-1	-1
χ_{5}	2	0	-1	-1	2	0	-1	-1	2
χ_{6}	2	0	-1	-1	2	0	2	-1	-1
χ_{7}	3	-1	0	3	-1	1	0	-1	0
χ_{8}	3	1	0	3	-1	-1	0	-1	0
χ_{9}	6	0	0	-3	-2	0	0	1	0

(10) Count the normal subgroups of the group in the previous item and compute their sizes.

Solution. We know that every normal subgroup of G is an intersection of kernels of irreducible characters of G. Recall that if χ is an irreducible character of G then its kernel is

$$
\operatorname{ker}(\chi)=\{g \in G: \chi(g)=\chi(1)\}
$$

Note that $x_{1}=1$ being the only element with 1 conjugate (as seen from the table). We have

- $\operatorname{ker}\left(\chi_{1}\right)=G$, its size is 72 ,
- $\operatorname{ker}\left(\chi_{2}\right)=\{1\} \cup x_{3}^{G} \cup x_{4}^{G} \cup x_{5}^{G} \cup x_{7}^{G} \cup x_{8}^{G} \cup x_{9}^{G}$, its size is $1+8+2+3+8+6+8=36$,
- $\operatorname{ker}\left(\chi_{3}\right)=\{1\} \cup x_{4}^{G} \cup x_{5}^{G} \cup x_{8}^{G}$, its size is $1+2+3+6=12$,
- $\operatorname{ker}\left(\chi_{4}\right)=\{1\} \cup x_{3}^{G} \cup x_{5}^{G}$, its size is $1+8+3=12$,
- $\operatorname{ker}\left(\chi_{5}\right)=\{1\} \cup x_{5}^{G} \cup x_{9}^{G}$, its size is $1+3+8=12$,
- $\operatorname{ker}\left(\chi_{6}\right)=\{1\} \cup x_{5}^{G} \cup x_{7}^{G}$, its size is $1+3+8=12$,
- $\operatorname{ker}\left(\chi_{7}\right)=\{1\} \cup x_{4}^{G}$, its size is $1+2=3$,
- $\operatorname{ker}\left(\chi_{8}\right)=\{1\} \cup x_{4}^{G}=\operatorname{ker}\left(\chi_{7}\right)$,
- $\operatorname{ker}\left(\chi_{9}\right)=\{1\}$, its size is 1 .

It is clear from the above analysis that the set $C=\left\{\operatorname{ker}\left(\chi_{i}\right)\right.$: $i=1, \ldots, 9\}$ has size 8 . The intersections between kernels of irreducible characters belong to C except for $\operatorname{ker}\left(\chi_{3}\right) \cap \operatorname{ker}\left(\chi_{4}\right)=\{1\} \cup x_{5}^{G}$, therefore G has precisely 9 normal subgroups.
(11) Let G be a finite group of even order and assume that there exists an irreducible G-module of dimension $n=|G| / 3$. Prove that $G \cong S_{3}$.

Solution. We know that $\sum_{i=1}^{k} \chi_{i}(1)^{2}=|G|$, where $\chi_{1}, \ldots, \chi_{k}$ are the distinct irreducible characters of G. Note that n is equal to $\chi_{i}(1)$ for some $i \in\{1, \ldots, k\}$. Therefore $|G|^{2} / 9=n^{2} \leq|G|$, so $|G| \leq 9$. But $|G|$ is even and n is an integer, so $|G|$ is divisible by 6 , therefore $|G|=6$ and $n=2$. There are only two groups of order

6 up to isomorphism: C_{6} and S_{3}. However G has an irreducible character of degree $n=2$, so it cannot be abelian, hence $G \cong S_{3}$.
(12) Let χ be a character of the finite group G and assume that $\chi(g)=0$ for every $1 \neq g \in G$. Prove that $|G|$ divides $\chi(1)$.

Solution. Let 1_{G} be the trivial character of G. We know that $m:=\left[\chi, 1_{G}\right]$ is an integer: it is the number of times that 1_{G} appears in the decomposition of χ. However,

$$
m=\left[\chi, 1_{G}\right]=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{1_{G}(g)}=\frac{1}{|G|} \sum_{g \in G} \chi(g)=\frac{\chi(1)}{|G|}
$$

therefore $\chi(1)=m|G|$.
(13) G acts on itself by conjugation. Let χ be the corresponding permutation character and let 1_{G} be the trivial character of G. Prove that $\left[\chi, 1_{G}\right]$ equals the number of conjugacy classes of G. Is χ irreducible?

Solution. The number of fixed points of $g \in G$ acting by conjugation on G is the order of its centralizer, $\left|C_{G}(g)\right|$. Therefore $\chi(g)=\left|C_{G}(g)\right|$. We compute

$$
\begin{aligned}
{\left[\chi, 1_{G}\right] } & =\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{1_{G}(g)}=\frac{1}{|G|} \sum_{g \in G}\left|C_{G}(g)\right| \\
& =\frac{1}{|G|} \sum_{i=1}^{k}\left|G: C_{G}\left(x_{i}\right)\right| \cdot\left|C_{G}\left(x_{i}\right)\right|=k
\end{aligned}
$$

where x_{1}, \ldots, x_{k} are conjugacy class representatives. In particular $\left[\chi, 1_{G}\right]=k>0$, so χ is irreducible if and only if $\chi=1_{G}$, and this happens if and only if $k=1$, i.e. $G=\{1\}$.

