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I started writing about the first brick, and
the second brick, and then by the third brick

it all started to come and I couldn’t stop.

They thought I was crazy, and they
kept kidding me, but here it all is. 1

1[Robert Pirsig, Zen and the Art of Motorcycle Maintenance]
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1. Abstract
Given a finite non-cyclic group G, a “cover” of G is a family H of proper

subgroups of G such that
⋃
H∈HH = G. A “normal cover” of G is a

cover H of G with the property that gHg−1 ∈ H for every H ∈ H,
g ∈ G. Define the “covering number” σ(G) of G to be the smallest size of

a cover of G, and the “normal covering number” γ(G) of G to be the
smallest number of conjugacy classes of a normal cover of G. If G is

cyclic we pose σ(G) = γ(G) =∞, with the convention that n <∞ for
every integer n. In this Ph.D. thesis we study these two invariants.
Andrea Lucchini and Eloisa Detomi conjectured that if G is a finite

non-abelian group such that σ(G) < σ(G/N) for every non-trivial normal
subgroup N of G then G is “monolithic”, i.e. admits a unique minimal
normal subgroup. In this thesis we deal with this conjecture and give a

partial reduction to the almost-simple case. This requires good lower and
upper bounds for the covering number of monolithic groups, which we

prove along the way. We give an asymptotic estimate for the number of
covering numbers of monolithic groups G with non-abelian minimal
normal subgroup N such that G/N is cyclic. We also compute the
covering number of a direct product of groups, and also its normal

covering number in case the factors do not admit isomorphic abelian
quotients. We prove several upper bounds for γ(G) and deal with the
following conjecture, formulated by me and Attila Maróti: if G is any
non-cyclic finite group and p is the largest prime divisor of |G| then

γ(G) ≤ p + 1. We reduce the conjecture to the almost-simple case and
deal with alternating groups, sporadic groups and some linear groups.
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2. Sommario
Dato un gruppo finito non ciclico G, un “ricoprimento” di G è una
famiglia H di sottogruppi propri di G tale che

⋃
H∈HH = G. Un

“ricoprimento normale” di G è un ricoprimento H di G tale che
gHg−1 ∈ H per ogni H ∈ H, g ∈ G. Definiamo “numero di

ricoprimento” σ(G) di G come la più piccola cardinalità di un
ricoprimento di G, e definiamo “numero di ricoprimento normale” γ(G)
di G come il più piccolo numero di classi di coniugio di un ricoprimento

normale di G. Se G è ciclico poniamo σ(G) = γ(G) =∞, con la
convenzione che n <∞ per ogni intero n. In questa tesi di dottorato

studiamo questi due invarianti. Andrea Lucchini ed Eloisa Detomi hanno
congetturato che se G è un gruppo finito non abeliano tale che

σ(G) < σ(G/N) per ogni sottogruppo normale non banale N di G allora
G è “monolitico”, cioè ammette un unico sottogruppo normale minimale.

In questa tesi affrontiamo questa congettura e diamo una riduzione
parziale al caso almost-simple. Questo richiede buone stime da sopra e da
sotto per il numero di ricoprimento dei gruppi monolitici, che trattiamo

strada facendo. Diamo una stima asintotica del numero di numeri di
ricoprimento di gruppi monolitici G con sottogruppo normale minimale
N non abeliano tale che G/N è ciclico. Calcoliamo inoltre il numero di

ricoprimento di un prodotto diretto di gruppi, e il suo numero di
ricoprimento normale nel caso i fattori non ammettano quozienti abeliani

isomorfi. Dimostriamo varie stime dall’alto per γ(G) e affrontiamo la
seguente congettura, formulata da me e Attila Maróti: se G è un qualsiasi

gruppo finito non ciclico e p è il più grande divisore primo di |G| allora
γ(G) ≤ p + 1. Riduciamo la congettura al caso almost-simple e trattiamo

i gruppi alterni, i gruppi sporadici e alcuni tra i gruppi lineari.
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3. Basics and technical results

The following basic definitions and results will be used througout the thesis without pointing to
this section for explainations. We give [Rob] as a reference. Let G be a finite group.

0.1. H ≤ G will mean that H is a subgroup of G, and H EG will mean that H is a normal subgroup
of G. “H < G (respectively H CG)” will mean “H ≤ G (respectively H EG) and H 6= G”.

0.2 (Supplement, complement). Let H ≤ G, N EG. We say that H is a supplement of N in G,
or that H supplements N in G, if HN = G. We say that H is a complement of N in G, or that
H complements N in G, if H supplements N and H ∩N = {1}. Note that if H complements N in
G then G/N ∼= H, and G is isomorphic to the semidirect product N oH given by the conjugation
action of H on N .

0.3 (Normal core). If H ≤ G, HG will denote the normal core of H in G, i.e. the intersection
HG :=

⋂
g∈G g

−1Hg. It is a normal subgroup of G contained in H with the following universal
property: if N EG then N ⊆ H if and only if N ⊆ HG. HG coincides with the kernel of the action
of G of right (respectively, left) multiplication on the set {Hg | g ∈ G} (respectively, {gH | g ∈ G}).

0.4 (Commutator subgroup). G′ will denote the commutator subgroup , or derived subgroup,
of G. It is the subgroup of G generated by the commutators, i.e. the elements of the form
[a, b] := aba−1b−1, where a, b ∈ G. G′ is a characteristic subgroup of G with the following universal
property: if N is a normal subgroup of G then G/N is abelian if and only if G′ ⊆ N .

0.5 (Frattini subgroup). Φ(G) will denote the Frattini subgroup of G, the intersection of the
maximal subgroups of G. It is a characteristic subgroup of G with the following universal property:
if N is a normal subgroup of G then NH 6= G for every H < G if and only if N ⊆ Φ(G). If K EG
and K ≤ H ≤ G then the factor group H/K is called “Frattini” if H/K E Φ(G/K), it is called
“non-Frattini” otherwise. Recall that the Frattini subgroup of a finite group is always nilpotent.

0.6 (Minimal normal subgroup). A normal subgroup N of G is said to be a minimal normal
subgroup of G if N 6= {1} and N does not contain non-trivial normal subgroups of G different
from N . Any minimal normal subgroup of G is of the type Tm = T × . . .× T (m times) where T is
a simple group. Recall that if T is a simple group then Aut(Tm) = GL(m, |T |) if T is abelian and
Aut(Tm) ∼= Aut(T ) o Sym(m) if T is non-abelian.

0.7 (Socle). The socle of G, denoted soc(G), is the subgroup of G generated by the minimal normal
subgroups of G. soc(G) is a characteristic subgroup of G, equal to the direct product of some of its
minimal normal subgroups.

0.8 (Monolithic group). G is said to be monolithic if it admits exactly one minimal normal
subgroup. In other words, G is monolithic if and only if soc(G) is a minimal normal subgroup of G.

0.9 (Transitive group). G is said to be transitive (of degree n) if it admits a subgroup (of index n)
with trivial normal core. Equivalently, there exists a subgroup H of G of index n such that the
action of right multiplication of G on the set {Hg | g ∈ G} is faithful.
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0.10 (Imprimitivity block). A “(imprimitivity) (G-)block” of an action of G on a set X is a subset
B ⊆ X with the property that for every g ∈ G, either Bg = B or Bg ∩B = ∅. Clearly, X and {x} -
for every x ∈ X - are always blocks, and they will be called the trivial blocks. G is said to be
imprimitive if it admits a non-trivial block.

0.11 (Invariant partition). Suppose G acts on a set X. A G-invariant partition of X is a
partition U of X such that U g ∈ U for every U ∈ U , g ∈ G. If G acts transitively then every
G-invariant partition of X has the form {Bg | g ∈ G} where B is a G-block.

0.12 (Primitive group). G is said to be primitive (of degree n) if it admits a maximal subgroup (of
index n) with trivial normal core. Equivalently, there exists a subgroup H of G of index n such that
the action of right multiplication of G on the set {Hg | g ∈ G} is faithful and does not admit
non-trivial blocks. If G is a primitive group, soc(G) can only be of one of the following types:

• (Type I) An abelian minimal normal subgroup of G;
• (Type II) A non-abelian minimal normal subgroup of G;
• (Type III) The product of exactly two non-abelian minimal normal subgroups of G.

In primitive groups of type I or III the minimal normal subgroups have a common complement,
which is a maximal subgroup.

0.13 (Composition factor). A composition factor of a finite group G is a quotient H/K where
H,K are subnormal subgroups of G, K CH and H/K is a simple group. Observe that a finite
solvable group is precisely a finite group all of whose composition factors are abelian.

0.14 (Chief factor). A chief factor of a finite group G is a quotient H/K where K EG and H/K
is a minimal normal subgroup of G/K. Observe that a nilpotent finite group is precisely a finite
group all of whose chief factors are central. We say that H/K is “complemented” if it is
complemented in G/K, i.e. if there exists a subgroup R ≤ G containing K such that RH = G and
R ∩H = K. Recall that an abelian chief factor of a finite group is non-Frattini if and only if it is
complemented, and in this case each supplement is in fact a complement and a maximal subgroup.

0.15. CFSG will mean “Classification of the Finite Simple Groups”, for which we refer to [Atl].

3.1. Notations.

• If m is a positive integer, ω(m) will denote the number of distinct prime factors of m, and
π(m) will denote the number of prime numbers belonging to {1, . . . ,m}.
• If G is a finite group, m(G) will denote the minimal index of a proper subgroup of G.
• If G is a primitive monolithic group, `G(soc(G)) will denote the minimal index of a proper

supplement of the socle soc(G) of G.
• Let G be a finite non-cyclic group. A “cover” of G will be a family H of proper subgroups

of G with the property that
⋃
H∈HH = G. A “minimal cover” will be a cover H with |H|

smallest possible. A “normal cover” will be a cover H with the property that for every
H ∈ H, g ∈ G we have g−1Hg ∈ H. We define

– σ(G) to be the size of a minimal cover of G.
– γ(G) to be the smallest number of conjugacy classes of a normal cover of G.
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4. Introduction

From now on every considered group will be assumed to be finite, unless specified otherwise.
Given a non-cyclic group G, call σ(G) - the covering number of G - the smallest number of
proper subgroups of G whose union equals G. Note that there always exist minimal covers
consisting of maximal subgroups. This notion has been introduced the first time by Cohn in 1994
[Cohn]. We usually call cover of G a family of proper subgroups of G which covers G, and
minimal cover of G a cover of G consisting of exactly σ(G) elements. If G is cyclic then σ(G) is
not well defined because no proper subgroup contains any generator of G; in this case we define
σ(G) =∞, with the convention that n <∞ for every integer n.

Remark 0.16. If N is a normal subgroup of a group G then σ(G) ≤ σ(G/N), since every cover of
G/N can be lifted to a cover of G.

Given a family H of subsets of a group G which covers G, we say that H is “irredundant” if⋃
H3K 6=H K 6= G for every H ∈ H. Clearly every minimal cover is irredundant, but the converse is

false. Actually the notion of irredundant cover is much weaker than that of minimal cover: for
example, if n is a positive integer then the cover of C2

n consisting of its non-trivial cyclic subgroups
is irredundant of size 2n − 1 while C2

n has an epimorphic image isomorphic to C2 × C2 so
σ(C2

n) = 3.
We are interested in groups with finite covering number. The following result implies that in order
to study the behaviour of the function which assigns to each group its covering number it is enough
to consider finite groups.

Theorem 0.17 (Neumann 1954). Let G be an infinite group covered by a finite family H of cosets
of subgroups of G, and suppose that H is irredundant. Then every H ∈ H has finite index in G.

Proof. For a proof see Lemma 4.17 in [Neu]. �

Indeed, if H is a minimal cover of G then by the Theorem
⋂
H∈HH has finite index in G, hence its

normal core N has also finite index and

σ(G/N) ≤ |H| = σ(G) ≤ σ(G/N),

thus σ(G) = σ(G/N). In other words we are reduced to consider the covering number of the finite
group G/N .
Assume we want to compute the covering number of a group G. If there exists N EG with
σ(G) = σ(G/N) then we may consider as well the quotient G/N instead of G. This leads instantly
to the following definition.

Definition 0.18 (σ-elementary groups). We say that a group G is “σ-elementary” if
σ(G) < σ(G/N) for every non-trivial normal subgroup N of G.

Clearly, every group has a σ-elementary epimorphic image with the same covering number. It
follows that the structure of the σ-elementary groups is of big interest. It was studied by Lucchini
and Detomi in [DLpr]. They conjectured that every non-abelian σ-elementary group is monolithic
(Conjecture 1.28).
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4.1. New results obtained in the thesis.
In this Ph.D. thesis the following results are obtained.

(1) σ(Alt(5) o C2) = 57 (Theorem 2.71, cf. [Gar2]) and if G is a non-abelian σ-elementary
group such that σ(G) ≤ 56 then G is either affine or almost-simple (Corollary 2.16).

(2) The σ-elementary groups G with σ(G) ≤ 25 are listed in Table 1 below, which assigns to
each integer 3 ≤ k ≤ 25 the list of σ-elementary groups with covering number k. In
particular, it follows that there are no groups with covering number belonging to
{19, 21, 22, 25} (7 and 11 are not new: 7 was considered by Tomkinson [Tom], 11 by
Lucchini and Detomi [DLpr]). This is what I proved in my master thesis (cf. [Gar1]).

(3) Let G be the family of monolithic groups G with non-abelian socle such that G/ soc(G) is
cyclic. Then there exists a constant C such that for every x ∈ N,
|{σ(G) | G ∈ G, σ(G) ≤ x} ≤ C

√
x (Theorem 2.21).

(4) If H1, H2 are two non-trivial groups then H1 ×H2 is either abelian or not σ-elementary,
indeed either σ(H1 ×H2) = min(σ(H1), σ(H2)) or there exists a prime p such that Cp is an
epimorphic image of both H1, H2 and σ(H1 ×H2) = p+ 1 (Theorem 2.22). This is the
content of a joint work with A. Lucchini [GL].

(5) We obtain quite general upper bounds for σ(G) when G is a monolithic group with
non-abelian socle (Theorem 2.28 and Proposition 2.29).

(6) If all the non-abelian minimal sub-normal subgroups of a σ-elementary group G are either
isomorphic to M11 or to Alt(n) where n ≥ 30 admits a prime divisor smaller than or equal
to 4
√
n then G is monolithic (Theorem 2.49). This is an instance of a more general result

(Theorem 2.32).
(7) We give bounds and in some cases the exact value of σ(G) when G is a primitive

monolithic group with socle of the form Alt(n)m and G/ soc(G) cyclic (Theorem 2.50).
This is part of a joint work with A. Maróti [GM] and my paper [Gar2].

Given a non-cyclic group G, call γ(G) - the normal covering number of G - the smallest number
of conjugacy classes of proper subgroups of G needed to cover G. In this thesis the following results
are obtained.

(8) If the two groups H1, H2 have no common abelian factor group then

γ(H1 ×H2) = min(γ(H1), γ(H2)).

(Theorem 3.6).
(9) We prove several upper bounds for γ(G) (Propositions 3.7, 3.8, 3.9).

(10) Let G be a non-cyclic group, and suppose that whenever X is an almost simple section of
G and X/ soc(X) is cyclic, one of the following holds:
• soc(X) is either alternating or sporadic,
• X = PSL(n, q) or X = PGL(n, q) for some integer n and some prime-power q.

Then γ(G) ≤ p+ 1, where p is the largest prime divisor of |G| (Theorem 3.11).
(11) There exists a constant C such that for any group G, γ(G) ≤ Cp log(p), where p is the

largest prime divisor of |G| (Theorem 3.16).
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σ Groups
3 C2 × C2

4 C3 × C3, Sym(3)
5 Alt(4)
6 C5 × C5, D10, AGL(1, 5)
7 ∅
8 C7 × C7, D14, 7 : 3, AGL(1, 7)
9 AGL(1, 8)
10 32 : 4, AGL(1, 9),Alt(5)
11 ∅
12 C11 × C11, 11 : 5, D22, AGL(1, 11)
13 Sym(6)
14 C13 × C13, D26, 13 : 3, 13 : 4, 13 : 6, AGL(1, 13)
15 SL(3, 2)
16 Sym(5),Alt(6)
17 24 : 5, AGL(1, 16)
18 C17 × C17, D34, 17 : 4, 17 : 8, AGL(1, 17)
19 ∅
20 C19 × C19, AGL(1, 19), D38, 19 : 3, 19 : 6, 19 : 9
21 ∅
22 ∅
23 M11

24 C23 × C23, D46, 23 : 11, AGL(1, 23)
25 ∅

Table 1. The list of σ-elementary groups G with 3 ≤ σ(G) ≤ 25.





CHAPTER 1

Known facts about the covering number

1. Some preliminary remarks and results

Lemma 1.1. Let G be a group, H,A1, . . . , An subgroups of G such that H(A1 ∩ . . . ∩ An) = G. Let
A := A1 ∪ . . . ∪ An. Then |G| · |H ∩ A| = |H| · |A|.

Proof. Consider the function ϕ : H × A→ G given by (h, a) 7→ ha. For ` ∈ G we have
(h, a) ∈ ϕ−1(`) if and only if ha = `, i.e. `a−1 = h ∈ H, in particular a ∈ H`. This means that
(h, a) is determined by the choice of a in H`, so ϕ−1(`) is in bijective correspondence with H` ∩ A.
Now write ` = kx with k ∈ H, x ∈ A1 ∩ . . . ∩ An and obtain H` ∩ A = (H ∩ A)x. In particular
|ϕ−1(`)| = |H ∩ A| for every ` ∈ G and the result follows. �

The following lemma is one of our main tools in the study of the covering number.

Lemma 1.2 ([Tom], Lemma 3.2). Let G be a group, let N be a proper normal subgroup of G, and
let U1, . . . , Uh, V1, . . . , Vk be proper subgroups of G such that U1, . . . , Uh contain N , V1, . . . , Vk
supplement N , and β1 ≤ . . . ≤ βk, where βi = |G : Vi| for i = 1, . . . , k.

If U1 ∪ . . . ∪ Uh ∪ V1 ∪ . . . ∪ Vk = G and U1 ∪ . . . ∪ Uh 6= G then β1 ≤ k.

Moreover, if β1 = k then β1 = . . . = βk = k and Vi ∩ Vj ≤ U1 ∪ . . .∪Uh for every i 6= j in {1, . . . , k}.
Proof. We follow the proof of Tomkinson. Write |U1 ∪ . . . ∪ Uh| = γ|G|. Note that γ < 1. Fix

i ∈ {1, . . . , k}. Since ViN = G Lemma 1.1 implies

|Vi ∩ (U1 ∪ . . . ∪ Uh)| = γ|Vi| =
γ

βi
|G|.

Therefore

|Vi − (U1 ∪ . . . ∪ Uh)| =
1− γ
βi
|G|.

Since G− (U1 ∪ . . . ∪ Uh) = (V1 ∪ . . . ∪ Vk)− (U1 ∪ . . . ∪ Uh), we have

|(V1 ∪ . . . ∪ Vk)− (U1 ∪ . . . ∪ Uh)| = (1− γ)|G|,
so since G− (U1 ∪ . . . ∪ Uh) ⊆

⋃k
i=1(Vi − (U1 ∪ . . . ∪ Uh)),

(1− γ)|G| ≤ (1− γ)|G|( 1

β1

+ . . .+
1

βk
).

Since 1− γ > 0 we obtain 1 ≤
∑k

i=1
1
βi
≤ k

β1
, so β1 ≤ k.

If β1 = k then β1 = . . . = βk = k and the sets Vi − (U1 ∪ . . . ∪ Uh) are pairwise disjoint. That is,
Vi ∩ Vj ⊆ U1 ∪ . . . ∪ Uh for every i 6= j in {1, . . . , k}. �

13
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Lemma 1.3. Let G be a non-cyclic group.

(1) Write G = H1 ∪ . . . ∪Hn as union of n = σ(G) proper subgroups. Let βi := |G : Hi| for
i = 1, . . . , n and suppose that β1 ≤ . . . ≤ βn. Then β1 < σ(G).

(2) Let M be a minimal cover of G consisting of maximal subgroups. If N is a proper normal
subgroup of G and β is the minimal index of a proper supplement of N in G belonging to
M then β < σ(G).

Proof. We prove (1). Since 1 ∈ H1 ∩ . . . ∩Hn we clearly have

|G| <
n∑
i=1

|Hi| = |G|
n∑
i=1

1

βi
≤ |G|n

β1

.

The result follows.
We prove (2). If all members of M are supplements of N the result follows from (1). If not, the
result follows from Lemma 1.2. �

It is easy to prove that no group can be written as union of two proper subgroups, in other words
σ(G) > 2 for every group G. The case σ(G) = 3 was considered for the first time by Scorza:

Theorem 1.4 (Scorza 1926 [Sco]). Let G be a group. Then σ(G) = 3 if and only if there exists
N EG such that G/N ∼= C2 × C2.

With the results we have listed so far, this theorem is easy to prove, and even better, we prove the
following result. I am grateful to professor Boaz Tsaban who pointed this out to me.

Theorem 1.5 (Scorza’s theorem revisited). Let p be the smallest prime divisor of the order of the
finite group G. Then σ(G) = p+ 1 if and only if there exists N EG with G/N ∼= Cp × Cp.

Proof. Recall the following well-known fact: if p is the smallest prime divisor of the size of a
finite group G then every subgroup of G of index p is normal in G. Now, (⇐) is clear since
σ(Cp × Cp) = p+ 1. Let us prove (⇒). Suppose G = H1 ∪H2 ∪ . . . ∪Hp+1 is the union of p+ 1
proper subgroups, and let βi := |G : Hi| for i = 1, 2, . . . , p+ 1, with β1 ≤ β2 ≤ . . . ≤ βp+1. Since p is
the smallest prime divisor of |G|, Lemma 1.3 implies that β1 = p so H1 is normal in G. Lemma 1.2
applied to U1 = H1, h = 1, V1 = H2, V2 = H3, . . . , Vk = Hp+1, k = p implies that
β2 = . . . = βp+1 = p, therefore G/H1 ∩H2

∼= Cp × Cp. �

We sometimes call the following fact “the intersection argument”.

Lemma 1.6. Let G be a non-cyclic group, and let M be a minimal cover of G consisting of maximal
subgroups. Let H be a maximal subgroup of G such that σ(H) > σ(G). Then H ∈M. In particular:

(1) if H is non-normal in G then σ(G) > |G : H|.
(2) if N is a non-Frattini abelian minimal normal subgroup of G and σ(G) < σ(G/N) then

σ(G) ≥ c+ 1, where c is the number of complements of N in G.

Proof. H =
⋃
M∈MM ∩H is a union of less than σ(H) subgroups, so at least one of them

must be unproper (by definition of σ(H)): H ∩M = H for some M ∈M, thus H = M , H being
maximal. Every conjugate of H is a maximal subgroup of G isomorphic to H, thus if H is not
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normal then in every minimal cover of G there are all the |G : H| conjugates of H. In particular
σ(G) ≥ |G : H|, and this inequality is in fact strict by 3.1. This proves (1).
(2) follows easily from (1) and the well-known fact that the complements of an abelian minimal
normal subgroup are maximal subgroups. �

For example, σ(Sym(6)) was computed in [S6] in the following way:

Example 1.7. Sym(6) is covered by Alt(6) and the twelve subgroups isomorphic to Sym(5), so
σ(Sym(6)) ≤ 13. Since σ(Sym(5)) = 16 > 13 ≥ σ(Sym(6)), Lemma 1.6 implies that the twelve
subgroups isomorphic to Sym(5) belong to every minimal cover of Sym(6) consisting of maximal
subgroups. Since their union is not Sym(6), we deduce that σ(Sym(6)) = 13.

The argument of Example 1.7 will be generalized in Proposition 2.37 (4).

Lemma 1.8. Let G be a non-cyclic group. If M is a minimal cover of G consisting of maximal
subgroups and g is a central element of prime order p which does not belong to every M ∈M then
N :=

⋂
K∈MK EG, G/N ∼= Cp × Cp and σ(G) = σ(G/N) = p+ 1.

Proof. Let L := 〈g〉, and let U := {M ∈M | M 6⊇ L}. Since L is central, each M ∈ U is
normal of index p. By Lemma 1.2 |U| ≥ p and if M1,M2 are two distinct elements of U then
G/M1 ∩M2

∼= Cp × Cp, so p ≤ |U| ≤ σ(G) ≤ p+ 1, therefore since no member of U contains g we
have |U| = p and σ(G) = p+ 1. Let M be the unique element of M−U . By Lemma 1.2
M1 ∩M2 ⊆M , so M is normal of index p. If there would exist an element of M not containing
M1 ∩M2 then since M1,M2 contain M1 ∩M2 by Lemma 1.2 we would have 2 + p ≤ σ(G) = p+ 1, a
contradiction. It follows that G/N ∼= Cp × Cp. �

We now deduce from the discussion above some basic properties of σ-elementary groups.

Proposition 1.9. Let G be a σ-elementary group.

(1) The Frattini subgroup of G is trivial: Φ(G) = {1}.
(2) If G is abelian then there exists a prime p such that G ∼= Cp × Cp.
(3) If G is non-abelian then Z(G) = {1}.
(4) If G is nilpotent then it is abelian.

Proof. Let us prove (1). Let M be a minimal cover of G consisting of maximal subgroups.
Then {M/Φ(G) | M ∈M} is a cover of G/Φ(G) of size σ(G), therefore
σ(G/Φ(G)) ≤ σ(G) ≤ σ(G/Φ(G)), i.e. σ(G) = σ(G/Φ(G)) and the result follows as G is
σ-elementary.
Let us prove (2). By (1) and the structure theorem of finite abelian groups, G is a direct product of
elementary abelian groups. Let p be a prime for which G admits two copies of Cp in a
decomposition (i.e. admits Cp × Cp as an epimorphic image). Then by Lemma 1.6
p+ 1 ≤ σ(G) ≤ σ(Cp × Cp) = p+ 1, so σ(G) = p+ 1 and G ∼= Cp × Cp.
(3) follows easily from Lemma 1.8, and since any nilpotent group has non-trivial center, (4) follows
from (3). �
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1.1. The nilpotent case.

Corollary 1.10. Let G a non-cyclic nilpotent group. Then σ(G) = p+ 1 where p is the smallest
prime divisor of |G| such that the Sylow p-subgroup of G is not cyclic.

Proof. Let G/N be a σ-elementary epimorphic image of G such that σ(G) = σ(G/N). Since
G is nilpotent, G/N is also nilpotent and Proposition 1.9 implies G/N ∼= Cq × Cq for some prime
divisor q of |G|, in particular σ(G) = q + 1 and the Sylow q-subgroup of G is not cyclic. Now let P
be a Sylow p-subgroup of G. Since P is a non-cyclic p-group (in particular nilpotent), σ(P ) = p+ 1
by Proposition 1.9, and since P is an epimorphic image of G, q + 1 = σ(G) ≤ σ(P ) = p+ 1, thus
q = p by minimality of p. �

2. On the structure of σ-elementary groups

Recall that if G is any group, a G-group is a group A endowed with a homomorphism
f : G→ Aut(A). If a ∈ A and g ∈ G, the element f(g)(a) is usually denoted ag if no ambiguity is
possible.

Definition 1.11. Let G be a group, and let A,B be two G-groups.

• A,B are said to be G-isomorphic (written A ∼=G B) if there exists an isomorphism
ϕ : A→ B such that aϕg = agϕ for every g ∈ G.
• A,B are said to be G-equivalent (written A ∼G B) if there exist isomorphisms

ϕ : A // B , Φ : Gn A // GnB

such that the following diagram commutes:

{1} // A //

ϕ

��

Gn A //

Φ

��

G // {1}

{1} // B // GnB // G // {1}

Example 1.12. Suppose A,B are G-isomorphic via ϕ : A→ B. Then they are G-equivalent via
Φ : Gn A→ GnB defined by (ga)Φ := gaϕ.

Recall that if B is a G-group then a 1-cocycle between G and B is a map β : G→ B such that
(gh)β = (gβ)hhβ for any g, h ∈ G. The set of 1-cocycles between G and B is denoted Z1(G,B).

Note that if β ∈ Z1(G,B) then the map ν : G→ Aut(B) defined by bν(g) := bgg
β

= (gβ)
−1
bg(gβ) is a

homomorphism which makes B a G-group. It will be denoted Bβ. Note that if B is abelian then
Bβ
∼=G B.

Lemma 1.13. Let A,B be two G-groups. They are G-equivalent if and only if there exists a
1-cocycle β ∈ Z1(G,B) such that A ∼=G Bβ.

Proof. If A ∼G B via ϕ : A→ B and Φ : Gn A→ GnB define β ∈ Z1(G,B) by
gβ := g−1gΦ. If A ∼=G Bβ via ϕ define Φ : Gn A→ GnB by (ga)Φ := ggβaϕ. �

Corollary 1.14. Two abelian G-groups are G-equivalent if and only if they are G-isomorphic.
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If A is a G-group denote by CG(A) the centralizer of A in G, i.e.
CG(A) := {g ∈ G | ag = a ∀a ∈ A}. Note that if A,B are two G-isomorphic groups then
CG(A) = CG(B).

Example 1.15. Let T1 = T2 = T be a non-abelian group with trivial center, and let G := T1 × T2.
G-conjugation gives T1 × {1} and {1} × T2 the structure of G-groups. Observe that
CG(T1 × {1}) = {1} × T2 and CG({1} × T2) = T1 × {1}, in particular T1 × {1} and {1} × T2 are not
G-isomorphic. But they are G-equivalent: define

ϕ : T1 × {1} → {1} × T2, (t, 1) 7→ (1, t),

Φ : Gn (T1 × {1})→ Gn ({1} × T2), (x, y) ∗ (t, 1) 7→ (x, y) ∗ (1, y−1xt).

In other words, {1}×T2
∼=G (T1×{1})β where β ∈ Z1(G, {1}×T2) is defined by (x, y)β := (1, y−1x).

P. Jiménez-Seral and J. P. Lafuente [SerLaf] proved the following very interesting and useful result:

Proposition 1.16. Let A,B be two chief factors of a group G, with the structure of G-groups
given by conjugation. They are G-equivalent if and only if either A,B are G-isomorphic between
them or A,B are G-isomorphic to the two minimal normal subgroups of a primitive epimorphic
image of type III of G.

Let A = H/K be a chief factor of a group G. Recall that H/K is called “Frattini” if
H/K ⊆ Φ(G/K). Denote by:

• IG(A) the set of elements of G which induce by conjugation an inner automorphism of A;
• RG(A) the intersection of the normal subgroups N of G contained in IG(A) with the

property that IG(A)/N is non-Frattini and G-equivalent to A.

The quotient IG(A)/RG(A) is called the A-crown of G. Let us list some of its properties.

Proposition 1.17 ([DLpr], Proposition 4). Let A be a chief factor of a group G. If R 6= I then
I/R = soc(G/R) is a direct product of δG(A) minimal normal subgroups G-equivalent to A. If
R = I set δG(A) = 0. If δG(A) ≥ 2 then any two different minimal normal subgroups of G/R have a
common complement, which is a maximal subgroup of G/R. Every chief series of G contains
exactly δG(A) non-Frattini chief factors G-equivalent to A. In particular, in a chief series passing
through R and I, the unique non-Frattini chief factors G-equivalent to A are those between R and
I. In particular, if H/K is a non-Frattini chief factor of G then H/K ∼G A if and only if
KR < HR ≤ I.

Now we will list and prove some of the facts proved by Lucchini and Detomi in [DLpr] about
σ-elementary groups.

Proposition 1.18 ([DLpr], Proposition 7). Let N be a non-solvable normal subgroup of a group
G. Then σ(G) ≤ |N | − 1. In particular, if N is complemented in G by a maximal subgroup then
σ(G) = σ(G/N).

Proof. The idea is to prove that
⋃

16=n∈N CG(n) = G. If there exists g ∈ G such that ng 6= n

for every 1 6= n ∈ N then 〈g〉 acts fixed-point-freely on N , and this contradicts the fact that N is
non-solvable (cf. [Wfpf], and note that this result relies on CFSG).
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Let now M be a maximal subgroup of G complementing N , and suppose by contradiction
σ(G) < σ(G/N) = σ(M). By Lemma 1.6 |N | = |G : M | ≤ σ(G) ≤ |N | − 1, a contradiction. �

2.1. Abelian minimal normal subgroups.

Lemma 1.19. Let A,B be two abelian minimal normal subgroups of a group G, with the structure of
G-groups given by conjugation. If A,B have a common complement M in G then they are
G-isomorphic.

Proof. Note that M ∩ AB is a common complement of A,B in AB, indeed by the Dedekind
rule A(M ∩ AB) = AM ∩ AB = G ∩ AB = AB and (M ∩ AB)B = MB ∩ AB = G ∩ AB = AB,
and (M ∩ AB) ∩ A = (M ∩ A) ∩ AB = {1} ∩ AB = {1},
(M ∩ AB) ∩B = (M ∩B) ∩ AB = {1} ∩ AB = {1}. Since A,B are abelian, and A ∩B = {1},
AB ∼= A×B is abelian and M ∩ AB E AB. The (canonical) G-isomorphism is given by
A ∼=G AB/(M ∩ AB) ∼=G B. �

Proposition 1.20 ([DLpr], Proposition 10). Let G be a group. If V is a complemented normal
abelian subgroup of G and V ∩ Z(G) = {1} then σ(G) ≤ 2|V | − 1. In particular, if V is a minimal
normal subgroup, then σ(G) ≤ 1 + q + . . .+ qn where q = |EndG(V )| and |V | = qn.

Proof. Let H be a complement of V in G. The idea is to show that G is covered by the family
{Hv | v ∈ V } ∪ {CH(v)V | 1 6= v ∈ V }. We omit the details. �

Corollary 1.21. Let G be a non-abelian σ-elementary group, and let N be an abelian minimal
normal subgroup of G. Then δG(N) = 1 and N is the unique abelian minimal normal subgroup of G.

Proof. By Proposition 1.9 (1) and (3), Φ(G) = Z(G) = {1}. Suppose by contradiction that
δG(N) ≥ 2. By a result in [AGco], the number c of complements of N in G is

c = |Der(G/N,N)| = |EndG/N(N)|δG(N)−1|Der(G/CG(N), N)| ≥
≥ |EndG/N(N)| · |Der(G/CG(N), N)| ≥ 2|N |.

Since σ(G) < σ(G/N), by Lemma 1.6 and Proposition 1.20

2|N | < c+ 1 ≤ σ(G) < 2|N |,

a contradiction. We conclude that δG(N) = 1. Assume now by contradiction that W is an abelian
minimal normal subgroup of G such that W 6= N . Since δG(N) = 1, W and N are not
G-equivalent, in particular they do not have a common complement by Lemma 1.19. Observe that
N has at least |N | complements, W has at least |W | complements, σ(G) < σ(G/N) and
σ(G) < σ(G/W ). We deduce from Lemma 1.6 and Proposition 1.20 that

min{2|N |, 2|W |} ≤ |N |+ |W | ≤ σ(G) < min{2|N |, 2|W |},

a contradiction. �
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2.2. The solvable case. Tomkinson [Tom, Theorem 2.2] computed the covering number of
solvable groups:

Theorem 1.22 (Tomkinson). If G is a solvable non-cyclic group then σ(G) = q + 1 where q is the
order of the smallest chief factor of G with more than one complement.

Let us re-interpret and re-prove this result using the notion of σ-elementary group. We first recall a
very useful result of Gaschütz about solvable groups.

Theorem 1.23 (Gaschütz [Gasc]). Let G be a solvable group acting faithfully and irreducibly on
an elementary abelian p-group V . Then every chief factor of G has size strictly smaller than |V |.

Theorem 1.24. If G is a solvable non-abelian and σ-elementary group then σ(G) = | soc(G)|+ 1,
G/ soc(G) is cyclic, soc(G) is complemented in G, the complements of soc(G) in G are pairwise
conjugated and a minimal cover of G consists of soc(G) together with its | soc(G)| complements.

Proof. We argue by induction on |G|. By Corollary 1.21 G is monolithic, i.e. soc(G) is a
minimal normal subgroup of G. The inequality | soc(G)|+ 1 ≤ σ(G) follows then from Proposition
1.9(1) and Lemma 1.6, since the conjugacy classes of complements of soc(G) have size | soc(G)|.
Suppose G/ soc(G) is non-cyclic. Then by the induction hypothesis there exists a chief factor V of
G/ soc(G) such that | soc(G)|+ 1 ≤ σ(G) < σ(G/ soc(G)) = |V |+ 1. It follows that | soc(G)| < |V |,
and this contradicts Theorem 1.23. Therefore G/ soc(G) is cyclic. Let k = | soc(G)|, and let
{M1,M2, . . . ,Mk} be a conjugacy class of complements of soc(G) in G. Fix i 6= j in {1, . . . , k}.
Since Mi,Mj are maximal and cyclic, Mi ∩Mj E 〈Mi,Mj〉 = G so Mi ∩Mj = {1}. It follows that

| soc(G) ∪M1 ∪ . . . ∪Mk| = | soc(G)|+ | soc(G)| · (|G|/| soc(G)| − 1) = |G|,
therefore {soc(G),M1, . . . ,Mk} is a cover of G consisting of | soc(G)|+ 1 subgroups, and hence
σ(G) = | soc(G)|+ 1. In particular if c denotes the number of complements of soc(G) in G then
Lemma 1.6 implies that | soc(G)|+ 1 ≤ c+ 1 ≤ σ(G) = | soc(G)|+ 1, hence c = | soc(G)|, i.e. the
complements of soc(G) in G are pairwise conjugated. �

2.3. The main conjecture.

Theorem 1.25. Let G be a non-abelian σ-elementary group, and let N be a minimal normal
subgroup of G. Then δG(N) = 1. In particular the minimal normal subgroups of G are pairwise
non-G-equivalent.

Proof. If N is abelian the result is Corollary 1.21. So suppose N is non-abelian. If δG(N) ≥ 2
then there exists a maximal subgroup M of G such that M/MG is a common complement of the
two minimal normal subgroups NMG/MG and HMG/MG of G/MG, primitive of type III. In
particular M ∩N ⊆MG and M ∩H ⊆MG. Now, if N ∩MG 6= {1} then by minimality
N ⊆MG ⊆M , a contradiction, and similarly for H. This implies that M complements both N and
H in G, so since G/N ∼= M we have σ(G) < σ(G/N) = σ(M), thus by Lemma 1.6 |N |+ 1 ≤ σ(G),
contradicting Proposition 1.18. �

Let us examine an important consequence of this fact.
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Proposition 1.26. If G is a non-abelian σ-elementary group and N1, . . . , Nk are minimal normal
subgroups of G such that soc(G) = N1 × . . .×Nk then Xi := G/RG(Ni) is a monolithic group with
socle G-equivalent to Ni for every i ∈ {1, . . . , k} and G is a subdirect product of X1, . . . , Xk, in
other words the canonical map G→ X1 × . . .×Xk is injective.

Proof. The fact that Xi is monolithic with socle G-equivalent to Ni is clear from Proposition
1.17 and Theorem 1.25. Consider the canonical map

G→ X1 × . . .×Xk.

Its kernel is R := RG(N1) ∩ . . . ∩RG(Nk). We want to prove that R = {1}. Suppose by
contradiction that R 6= {1}, and let N be a minimal normal subgroup of G contained in R. Then
there exists i ∈ {1, . . . , k} such that N ∼G Ni, and Proposition 1.17 implies that
RG(Ni)N 6= RG(Ni), contradicting N ⊆ R ⊆ RG(Ni). �

Definition 1.27. Let G be a non-abelian σ-elementary group, and let N be a minimal normal
subgroup of G. The quotient G/RG(N) will be called the primitive monolithic group
associated to N .

A natural question arises: how far is G from being a monolithic group? No example of a
non-σ-elementary non-abelian non-monolithic group is known.

Conjecture 1.28 (Lucchini, Detomi [DLpr]). Every non-abelian σ-elementary group is
monolithic.



CHAPTER 2

The new results about the covering number

1. Technical results deduced from the CFSG

In the following Lemma we collect some useful technical results about finite simple groups deduced
from the CFSG.

Lemma 2.1. There exists an universal constant C such that for every non-abelian simple group S,

(1) 2|Out(S)| < m(S),
(2) |Out(S)| ≤ C log(m(S)) and
(3) m(S)2 ≤ |S|.

Proof. By inspection, using tables 5.1 in [KL] and Table 1 in [DaLdp] (about m(S) see
[Coo]). �

2. General notations for monolithic groups

We will use the following notations when necessary (the main reference is [BEcl, Remark 1.1.40]).

Notations 2.2. Let G be a monolithic group with socle N = soc(G) = S1 × · · · × Sm, where
S1, . . . , Sm are pairwise isomorphic non-abelian simple groups. X := NG(S1)/CG(S1) is an
almost-simple group with socle S := S1CG(S1)/CG(S1) ∼= S1. The minimal normal subgroups of
Sm = S1 × . . .× Sm are precisely its factors, S1, . . . , Sm. Since automorphisms send minimal
normal subgroups to minimal normal subgroups, it follows that G acts on the m factors of N . Let
ρ : G→ Sym(m) be the homomorphism induced by the conjugation action of G on the set
{S1, . . . , Sm}. K := ρ(G) is a transitive permutation group of degree m. By [BEcl, Remark
1.1.40.13] G embeds in the wreath product X oK. Let L be the subgroup of X generated by the
following set:

S ∪ {x1 · · ·xm | ∃k ∈ K : (x1, . . . , xm)k ∈ G}.
Let T be a normal subgroup of X containing S and contained in L with the property that L/T has
prime order if L 6= S, and T = L if L = S. Let c : L→ L/T be the canonical projection.

2.1. Maximal subgroups of primitive monolithic groups.

Definition 2.3 ([BEcl], Definition 1.1.37). Let G =
∏n

i=1 Si be a direct product of groups. A
subgroup H of G is said to be “diagonal” (respectively, “full diagonal”) if each projection
πi : H → Si is injective (respectively, an isomorphism).

21
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2.4. What follows is part of the O’Nan-Scott theorem (reference: [BEcl, Remark 1.1.40]). Let G be
a primitive monolithic group with non-abelian socle N = Sm. Let H be a maximal subgroup of G
such that N 6⊆ H, i.e. HN = G, i.e. H supplements N . Suppose N ∩H 6= {1}, i.e. H does not
complement N . Since N is the unique minimal normal subgroup of G and H is a maximal subgroup
of G not containing N , H = NG(N ∩H). In the following let X := NG(S1)/CG(S1) (it is an almost
simple group with socle S1CG(S1)/CG(S1) ∼= S). There are two possibilities for the intersection
N ∩H:

(1) Product type. Suppose the projections H → Si are not surjective. Then there exists a
subgroup M of S such that NX(M) supplements S in X and elements a2, . . . , am ∈ S such
that H ∩N equals

M ×Ma2 × . . .×Mam .

(2) Diagonal type. Suppose the projections H → Si are surjective. Then there exists an
H-invariant partition ∆ of {1, . . . ,m} into blocks for the action of H on {1, . . . ,m} such
that H ∩N equals ∏

D∈∆

(H ∩N)πD

and for each D ∈ ∆ the projection (H ∩N)πD is a full diagonal subgroup of
∏

i∈D Si.

The following is Lemma 2.1 in [DaLpm].

Lemma 2.5. Let G be a primitive monolithic group with non-abelian socle, and let us use Notations
2.2. Let V be a maximal subgroup of X supplementing S, and let M := V ∩ S. Then NG(Mm) is a
maximal subgroup of G supplementing soc(G).

Proposition 2.6. Let G be a primitive monolithic group, and let N be its socle. If N is abelian
then `G(N) = |N |. Suppose N is non-abelian, and write N = Sr with S a non-abelian simple group.
Let H be a maximal subgroup of G supplementing N .

• If H complements N then |G : H| = |N | = |S|r.
• If H has product type, H = NG(M ×Ma2 × . . .×Mar) for some subgroup M of S of the

form V ∩S where V is a maximal subgroup of X supplementing S, then |G : H| = |S : M |r.
• If H has diagonal type, H = NG(∆), where ∆ is a product of r/c diagonal subgroups of

length c, a divisor of r larger than 1, then |G : H| = |S|r−r/c.
Moreover `G(N) ≥ m(S)r.

Proof. Suppose N is abelian. Since G is primitive, N is non-Frattini, so it is complemented
and each of its complements have index `G(N) = |N |.
Suppose N is non-abelian. The three listed facts in the statement follow easily from the fact that
|G : H| = |N : H ∩N |. Now let us prove that `G(N) ≥ m(S)r. Since m(S)r ≤ |S : M |r for every
proper subgroup M of S, we are reduced to show that m(S)r ≤ |S|r−r/c for every divisor c > 1 of r,
and for this it is enough to show that m(S)r ≤ |S|r/2, i.e. m(S)2 ≤ |S|. This is true by Lemma
2.1(3). �
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2.2. The cyclic quotient case. Let G be a primitive monolithic group with G/ soc(G) cyclic,
and let us use Notations 2.2. Call πG : G→ G/soc(G), πX : X → X/S the natural projections.

Lemma 2.7. X/S is cyclic and L = X. More precisely, let g ∈ G be such that πG(g) generates
G/soc(G), and write g = (x1, . . . , xm)δ with x1, . . . , xm ∈ X, δ ∈ Sym(m) an m-cycle. Then
πX(x1xδ(1) · · ·xδ(m−1)) generates X/S and |G| = |S|m ·m · |X/S|.

Proof. NG(S1)/soc(G) is a subgroup of G/soc(G), hence cyclic, and it projects onto
NG(S1)/S1CG(S1) = X/S. Thus X/S is cyclic. Let x ∈ X be such that X/S = 〈xS〉. For
i = 1, . . . ,m write xi = six

ki for si ∈ S and ki ∈ N. Let k :=
∑m

i=1 ki. Note that there exist
s′1, . . . , s

′
m ∈ S such that gm = (s′1, . . . , s

′
m)(xk, . . . , xk). Therefore (xk, . . . , xk)soc(G) generates

G ∩Xm/soc(G). Since NG(S1) ⊆ Xm ∩G, this implies that xkS = πX(xk) generates X/S, and the
result follows. �

We may assume that there exists g ∈ G such that 〈g soc(G)〉 = G/ soc(G) and g has the form
(1, . . . , 1, x)δ where δ = (1 . . .m) ∈ K and x ∈ X is such that X/S = 〈xS〉.
Indeed, let (x1, . . . , xm)δ ∈ G generate G modulo soc(G), where x1, . . . , xm ∈ X and δ ∈ K is an
m-cycle. Up to conjugate by a suitable element of Sym(m) we may assume that δ is the m-cycle
(1 . . .m). We want to find y1, . . . , ym ∈ Aut(S) such that ((x1, . . . , xm)δ)(y1,...,ym) = (1, . . . , 1, x)δ as
required. We have

((x1, . . . , xm)δ)(y1,...,ym) = (y−1
1 x1, . . . , y

−1
m xm)(y2, . . . , ym, y1)δ =

= (y−1
1 x1y2, y

−1
2 x2y3, . . . , y

−1
m−1xm−1ym, y

−1
m xmy1)δ.

It suffices to choose y1 = 1, y2 = x−1
1 , y3 = (x1x2)−1, ..., ym = (x1 · · · xm−1)−1, and x = x1 · · ·xm.

3. Determining small σ-elementary groups

We start by listing some known results.

Proposition 2.8 ([DLcr] Proposition 11). Let A be a chief factor of a group G and let X be a
direct product of minimal normal subgroups G-equivalent to A. If H is a subgroup of G such that
HX = HRG(A) = G then H = G.

Definition 2.9 ([DLpr], Definition 15). Let X be a monolithic primitive group with socle N . If Ω
is an arbitrary union of cosets of N in X define σΩ(X) to be the smallest number of supplements of
N in X needed to cover Ω. Define

(1) σ∗(X) := min{σΩ(X) | Ω =
⋃
i

ωiN, 〈Ω〉 = X}.

This useful notion provides a lower bound of a σ-elementary group in terms of the primitive
monolithic groups associated to its minimal normal subgroups. The following is the best lower
bound known so far.
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Proposition 2.10 ([DLpr], Proposition 16). Let G be a non-abelian σ-elementary group, and let
soc(G) = N1 × . . .×Nn, X1, . . . , Xn the primitive monolithic groups associated to N1, . . . , Nn

respectively. Then
σ∗(X1) + . . .+ σ∗(Xn) ≤ σ(G).

Proof. Let M be a minimal cover of G. For i ∈ {1, . . . , n} define

M¬Ni := {M ∈M | M 6≥ Ni}.
Note that each M¬Ni is non-empty (otherwise every M ∈M would contain Ni, so
σ(G) = σ(G/Ni)). Moreover if i 6= j then M¬Ni ∩M¬Nj = ∅. Indeed, if M ∈M does not contain
Ni and Nj with i 6= j then NiMG/MG and NjMG/MG are minimal normal subgroups of the
primitive groups G/MG, in particular Ni ∼G Nj, contradicting Theorem 1.25.
We are reduced to prove that |M¬Ni | ≥ σ∗(Xi) for i = 1, . . . , n. Fix i ∈ {1, . . . , n}, and let N := Ni,
X := Xi, R := RG(N) and π : G→ G/R = X the canonical projection. Let Mi :=M−M¬Ni and

Ω :=
⋃

g∈G−
⋃
M∈Mi

M

π(g).

Since M is a minimal cover of G we have Ω 6= ∅. Moreover, Ω is a union of cosets of N in X.
Suppose 〈Ω〉 = H < X is a proper subgroup of X. Then G is covered by Mi ∪ {π−1(H)}, and each
element of this family contains Ni, so |Mi|+ 1 ≤ σ(G) < σ(G/Ni) ≤ |Mi|+ 1, contradiction. We
deduce that 〈Ω〉 = X.
Since σΩ(X) ≥ σ∗(X), it is enough to prove that |M¬Ni | ≥ σΩ(X). By Proposition 2.8 every
M ∈M¬Ni contains R, so M/R is a maximal subgroup of X supplementing Ni. Clearly, as⋃
M∈M¬Ni

M covers G−
⋃
M∈Mi

M , we have that
⋃
M∈M¬Ni

M/R covers Ω. Therefore

|M¬Ni | = |{M/R | M ∈M¬Ni}| ≥ σΩ(X). �

This yields a couple of interesting corollaries. For a primitive monolithic group X with socle N
denote by `X(N) the minimal index of a proper supplement of N in X.

Corollary 2.11. Let X be a primitive monolithic group. Then

σ∗(X) ≥ `X(soc(X)).

In particular, if G is a non-abelian σ-elementary group and N1, . . . , Nn are its minimal normal
subgroups, X1, . . . , Xn are the primitive monolithic groups associated to N1, . . . , Nn respectively then

n∑
i=1

`Xi(Ni) ≤
n∑
i=1

σ∗(Xi) ≤ σ(G).

In particular, for every i ∈ {1, . . . , n} Xi has a primitivity degree at most σ(G).

Proof. Let N := soc(G), x ∈ X, and let M be a supplement of N in X such that
xN ∩M 6= ∅. Then |xN ∩M | = |N ∩M | = |xN |/|X : M | ≤ |xN |/`X(N), therefore we need at
least `X(N) supplements of N to cover xN . �

The following result was proved for the first time in [Bha].
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Corollary 2.12. For every fixed positive integer k, the set of σ-elementary groups G with
σ(G) = k is finite.

Proof. Let G be a σ-elementary group, and write soc(G) = N1 × . . .×Nn. Let X1, . . . , Xn be
the primitive monolithic groups associated to N1, . . . , Nn respectively. By Proposition 1.26 G
embeds in X1 × . . .×Xn, so in order to conclude it suffices to bound the number of possibilities for
n and each Xi in terms of σ(G). By Corollary 2.11

n ≤
n∑
i=1

`Xi(Ni) ≤
n∑
i=1

σ∗(Xi) ≤ σ(G).

Since there are finitely many primitive groups with a given primitivity degree, the result follows. �

Corollary 2.13. Let H be a σ-elementary group and let N be a non-abelian minimal normal
subgroup of H. Let G be the primitive monolithic group associated to N . If G/N has prime-power
order then H is monolithic.

Proof. Suppose that |G/N | is a power of the prime p. Note that if N is non-abelian, N = Sr

for some non-abelian simple group S, then considering the (transitive!) conjugation action of G on
the r direct factors of N we find that r must be a power of p. If G/N is non-cyclic then
σ(G/N) = p+ 1 by Proposition 1.9, so Proposition 2.6 implies that

σ(H) ≤ σ(G) ≤ σ(G/N) = p+ 1 ≤ 2p ≤ `G(N),

thus H = G by Corollary 2.11. Suppose now that G/N is cyclic. In particular G/N admits only
one maximal subgroup. In other words, a subgroup K of G generates G modulo N if and only if it
contains an element g ∈ G with the property that 〈gN〉 = G/N . This implies that
σ(G) ≤ σ∗(G) + ω(|G/N |) = σ∗(G) + 1. The result follows by Corollary 2.11. �

The following is Lemma 18 in [DLpr].

Lemma 2.14. Let N be a normal subgroup of a group X. If a set of subgroups of X covers a coset
yN of N in X, then it also covers every coset yαN with α prime to |y|.

Proof. Let s be an integer such that sα ≡ 1 mod |y|. As s is prime to |y|, by Dirichlet’s
theorem there exist infinitely many primes in the arithmetic progression {s+ |y|n | n ∈ N}; we
choose a prime p > |X| in {s+ |y|n | n ∈ N}. Clearly, yp = ys. As p is prime to |X|, there exists an
integer r such that pr ≡ 1 mod |X|. Hence, if yN ⊆ ∪i∈IMi, for every g ∈ yαN we have that
gp ∈ (yα)pN = (yα)sN = yN ⊆ ∪i∈IMi and therefore also g = (gp)r belongs to ∪i∈IMi. �

Lemma 2.15. Let G be a monolithic group with non-abelian socle N . Then there exists a set
{g1N, . . . , gkN} generating G/N with the property that

σ(〈gi, N〉) ≤ σ∗(G) + ω(|giN |G/N)

for every i ∈ {1, . . . , k}, where |giN |G/N denotes the order of giN in G/N .
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Proof. There exists a set {g1N, . . . , gkN} generating G/N with the property that σ∗(G) is
realized by the union g1N ∪ . . . ∪ gkN . In particular for i ∈ {1, . . . , k} we have σG(giN) ≤ σ∗(G). If
H is a proper supplement of N in G then H ∩ 〈gi, N〉 is a proper supplement of N in 〈gi, N〉,
therefore σ〈gi,N〉(giN) ≤ σG(giN) ≤ σ∗(G). By Lemma 2.14, in order to cover 〈gi, N〉 with proper
subgroups it suffices to use a family of proper subgroups covering giN and the maximal subgroups
containing N . We obtain that σ(〈gi, N〉) ≤ σG(giN) + ω(|giN |G/N) ≤ σ∗(G) + ω(|giN |G/N). �

Corollary 2.16. Let H be a non-abelian σ-elementary group and assume that σ(H) ≤ 56. Then
H is primitive and monolithic.

Proof. By Corollary 1.21 we may assume that there exists a non-abelian minimal normal
subgroup N of H. Let G be the monolithic group associated to N . If G has a primitivity degree at
most 27 then either `G(soc(G)) ≥ 10 and G/ soc(G) ∈ {C2 × C2, Sym(3), D8} - contradicting the
inequality `G(soc(G)) ≤ σ(H) ≤ σ(G) - or G/ soc(G) is cyclic of prime-power order, so Corollary
2.13 implies H = G. Therefore we may assume that `G(N) ≥ 28. Suppose H has at least two
minimal normal subgroups N1, N2 = N . If N1 is abelian then `X1(N1) + 28 = |N1|+ 28 ≤ σ(H), so
by Proposition 1.20 σ(H)− 28 ≥ |N1| > 1

2
σ(H), thus σ(H) > 56, contradiction. If N1 is

non-abelian then 2 · 28 ≤ σ(H) ≤ 56, so we may assume that σ(H) = 56 and that G has 28 as
primitivity degree, in particular it is almost-simple. The only 28-primitive group Y such that
Y/ soc(Y ) is not of prime-power order is Aut(PSL(2, 27)), so by Corollary 2.13 we may assume
that G = Aut(PSL(2, 27)). In particular G/ soc(G) ∼= C6. Lemma 2.15 implies that either
σ(G) ≤ σ∗(G) + 2, and in this case H = G, or 56 = σ(H) ≥ σ∗(G) ≥ σ(PGL(2, 27))− 3 = 376 (cf.
Appendix B), a contradiction. �

We are now in position to determine some σ-elementary groups with small covering number.
Suppose G is a σ-elementary group with σ(G) ≤ 25. Then G is primitive monolithic and by Lemma
1.3 G has a primitivity degree at most σ(G)− 1 = 24. The results listed in Appendix A and
Appendix B imply that G is one of the groups appearing in Table 1 in the Introduction.
We can also deduce the following.

Theorem 2.17. σ(Alt(5) o C2) = 57 and if G is a non-abelian σ-elementary group such that
σ(G) ≤ 56 then G is either affine or almost-simple.

Proof. The statement about Alt(5) o C2 is Theorem 2.71.
Let G be a group such that σ(G) ≤ 56. Corollary 2.16 implies that G is primitive and monolithic.
Let N := soc(G). The only monolithic primitive non-almost-simple non-affine groups of primitivity
degree at most 55 are Alt(7) o C2, PSL3(2) o C2, which have covering number larger than 56 by
Proposition 2.37, the four subgroups between Alt(5)× Alt(5) and Aut(Alt(5)× Alt(5)) and
Alt(6) o C2.
Two of the subgroups between Alt(5)× Alt(5) and Aut(Alt(5)× Alt(5)) have as quotient over the
socle a non-cyclic 2-group, so they have covering number 3. The other two are Alt(5) o C2 and
(Alt(5)× Alt(5)) o C4. We have σ(Alt(5) o C2) = 57 and Proposition 2.37 implies that
σ((Alt(5)× Alt(5)) o C4) = 126.
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Let now G := Alt(6) o C2. Since Alt(6) has twelve maximal subgroups isomorphic to Alt(5), G has
2 · 62 maximal subgroups isomorphic to H := Alt(5) o C2. If σ(G) < 57 = σ(H) then by Lemma 1.6
we would have σ(G) ≥ 2 · 62, contradiction. Therefore σ(G) ≥ 57. �

3.1. A density result. In this section we show that the density of the values σ(G) for G a
monolithic group with G/ soc(G) cyclic is zero.

Lemma 2.18 (Powers’ density). Let A be a subset of N, and for x ∈ R let

θ(x) := |{n ∈ A | n ≤ x}|.
If there exists a constant C such that log(x)θ(

√
x) ≤ Cθ(x) for every x > 0 then there exists a

constant C ′ such that

|{nk | n ∈ A, k ∈ N, nk ≤ x}| ≤ C ′θ(x)

for every x > 0.

Proof. Let N(x) be the smallest natural number such that 2N(x) > x. Clearly there exists a
constant c such that N(x) ≤ c log(x), and

|{nk | n ∈ A, k ∈ N, nk ≤ x}| ≤ θ(x) + θ(x1/2) + . . .+ θ(x1/N(x))

≤ θ(x) +N(x)θ(x1/2) ≤ C ′θ(x),

where C ′ = 1 + cC. �

Let G be a family of monolithic σ-elementary groups with non-abelian socle, and for G ∈ G let
soc(G) = Sk for S a non-abelian simple group and nσ(G) := m(S)k. By Proposition 2.6 and
Lemma 1.2, nσ(G) ≤ `G(soc(G)) ≤ σ(G). Define

A := {σ(G) | G ∈ G}, B := {nσ(G) | G ∈ G}.

Remark 2.19. Let g(x) be a function such that

|{G ∈ G | nσ(G) = n}| ≤ g(x) ∀n ≤ x.

Then

|{n ∈ A | n ≤ x}| ≤ g(x) · |{n ∈ B | n ≤ x}|.

Let now S be the family of non-altenating non-abelian simple groups non isomorphic to PSL(2, q).

Lemma 2.20. There exists a constant C such that |{1, . . . , x} ∩ {m(S) | S ∈ S}| ≤ C
√
x/ log(x) for

all x ∈ N.

Proof. By inspection, using for example Table 1 in [DaLdp], [Coo] (cf. e.g. the proof of
Lemma 9.1 in [LMkn]). �

Theorem 2.21. Let G be the family of monolithic groups G with non-abelian socle and such that
G/ soc(G) is cyclic. Then there exists a constant C such that for every x > 0,

|{σ(G) | G ∈ G, σ(G) ≤ x}| ≤ C
√
x.
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Proof. Let us use Notations 2.2. In G there are at most |Out(S)| (isomorphism classes of)
groups G with given socle Sk (up to conjugacy, there exists a generator of G/ soc(G) of the form
(1, . . . , 1, x)σ where x ∈ X/S and 〈σ〉 = K), and the number of simple groups S with given m(S) is
bounded by a constant (to see this, observe that the numerical entries in Table 1 of [DaLdp] are
either constants or infinite sequences of strictly increasing positive integers), so by Lemma 2.1 (2)
there exists a positive constant d such that setting g(x) = d log(x) we have

|{G ∈ G | nσ(G) = n} ≤ g(n) ≤ g(x)

for every n ≤ x.
Let A be the family of the alternating groups Alt(n) with n ≥ 5, let P1 be the set of the simple
groups isomorphic to PSL(2, p) with p a prime, and let P2 be the set of simple groups isomorphic
to PSL(2, q) with q a prime-power, not a prime.
Let

G1 := {G ∈ G | k ≥ 1, S ∈ S}, G2 := {G ∈ G | k = 1, S ∈ A},

G3 := {G ∈ G | k = 2, S ∈ A}, G4 := {G ∈ G | k ≥ 3, S ∈ A},

G5 := {G ∈ G | k = 1, S ∈ P1}, G6 := {G ∈ G | k ≥ 2, S ∈ P1} ∪ {G ∈ G | k ≥ 1, S ∈ P2}.
Clearly G equals the disjoint union ∪6

i=1Gi.
In the following discussion recall the inequality nσ(G) ≤ σ(G). Using Lemma 2.18 and Lemma 2.20
we see that

|{nσ(G) | G ∈ G1, σ(G) ≤ x}| ≤ C1

√
x/ log(x).

Using the fact that n3 ≤ σ(Alt(n)), σ(Sym(n)) for n large (cf. [MarS, Theorem 3.1] and [LMkn,
Theorem 9.2]) and the fact that Aut(Alt(n)) = Sym(n) for n large we see that

|{G ∈ G2 | σ(G) ≤ x}| ≤ C2
3
√
x.

Since m(Alt(n)) = n, we clearly have

|{G ∈ G3 | σ(G) ≤ x}| ≤ C3

√
x, |{nσ(G) | G ∈ G4, σ(G) ≤ x}| ≤ C4

3
√
x.

Using the fact that p2/2 ≤ σ(PSL(2, p)), σ(PGL(2, p)) for p a large prime (Theorem A.4), the fact
that Aut(PSL(2, p)) = PGL(2, p) and the Prime Number Theorem we see that

|{G ∈ G5 | σ(G) ≤ x}| ≤ C5

√
x/ log(x).

Using the Prime Number Theorem and Lemma 2.18 we see that

|{nσ(G) | G ∈ G6, σ(G) ≤ x}| ≤ C6

√
x/ log(x).

Using Remark 2.19 we conclude that there exists a constant C such that for any x ∈ N,

|{σ(G) | G ∈ G, σ(G) ≤ x}| ≤ C
√
x.

The proof is completed. �
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4. The covering number of a direct product

If Conjecture 1.28 is true then of course the direct product of two non-trivial groups cannot be
σ-elementary and non-abelian. In this section we deal with this case. The following result was
obtained in [GL], a joint work with A. Lucchini.

Theorem 2.22. Let M be a minimal cover of a direct product G = H1 ×H2 of two groups. Then
one of the following holds:

(1) M = {X ×H2 | X ∈ X} where X is a minimal cover of H1. In this case σ(G) = σ(H1).
(2) M = {H1 ×X | X ∈ X} where X is a minimal cover of H2. In this case σ(G) = σ(H2).
(3) There exist N1 EH1, N2 EH2 with H1/N1

∼= H2/N2
∼= Cp and M consists of the maximal

subgroups of H1 ×H2 containing N1 ×N2. In this case σ(G) = p+ 1.

First let us recall a description of the maximal subgroups of a direct product H1 ×H2.

• We will say that a maximal subgroup M of H1 ×H2 is of standard type if either
M = X1 ×H2 with X1 a maximal subgroup of H1 or M = H1 ×X2 with X2 a maximal
subgroup of H2.
• We will say that a maximal subgroup M of H1 ×H2 is of diagonal type if there exist a

maximal normal subgroup N1 of H1, a maximal normal subgroup N2 of H2 and an
isomorphism φ : H1/N1 → H2/N2 such that M = {(h1, h2) ∈ H1 ×H2 | φ(h1N1) = h2N2}.

By [Suz, Chap. 2, (4.19)], the following holds.

Lemma 2.23. A maximal subgroup of H1 ×H2 is either of standard type or of diagonal type.

Lemma 2.24. Let M = {M1, . . . ,Mσ} be a minimal cover of G = H1 ×H2. If all the subgroups in
M are maximal and M contains a subgroup of diagonal type whose index is a prime number p,
then σ(G) = p+ 1 and all the subgroups in M are normal of index p.

Proof. First notice that ifM contains a maximal subgroup of diagonal type and index p, then
Cp × Cp is an epimorphic image of G and consequently

σ(G) ≤ σ(Cp × Cp) = p+ 1.

We argue by induction on the order of G. We may assume that there exists no nontrivial normal
subgroup N of G such that N ≤M for all M ∈M and N ≤ H1. Otherwise {M1/N, . . . ,Mσ/N}
would be a minimal cover of (H1/N)×H2 containing a maximal diagonal subgroup of index p and
the conclusion follows by induction. For the same reason, there is no nontrivial normal subgroup N
of G such that N ≤M for all M ∈M and N ≤ H2. In particular

Φ(G) = Φ(H1)× Φ(H2) = {1}.

First assume that Z(G) has order divisible by p. This implies that there exists a central subgroup,
say N, of order p, which is contained either in H1 or in H2. Let U be the set of subgroups inM not
containing N . By our assumption U 6= ∅, moreover if M ∈ U , then G = M ×N and in particular
M is a normal subgroup of G and has index p. By Lemma 1.2, p ≤ |U| ≤ σ(G) ≤ p+ 1. Moreover
N is not contained in the union of the subgroups in U , so we must have |U| = p and σ(G) = p+ 1.
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Let M be unique element of M\ U . By Lemma 1.2, M contains the intersection Mi ∩Mj of any
two different subgroups in U , but G/(Mi ∩Mj) ∼= Cp × Cp, so M is a normal subgroup of index p.
Now assume that p does not divide |Z(G)|. Write soc(G) = N1 × · · · ×Nt as a product of minimal
normal subgroups. We may assume that each Ni is contained either in H1 or in H2 and that Ni is
abelian if and only if i < u. Let C =

⋂
1≤i≤tCG(Ni). Since Φ(G) = {1}, the socle of G coincides

with the generalized Fitting subgroup of G and, by the Bender F ∗-Theorem (see for example
[Asch, (31.13)]),

C = CG(socG) = Z(socG) =
∏
i<u

Ni.

Since p does not divide |Z(G)|, if Ni is a p-group, then Ni = [Ni, G] ≤ G′ ∩ C. In particular p does
not divide |C : G′ ∩ C| = |CG′ : G′|. On the other hand p divides |G : G′| = |G : CG′||CG′ : G′|,
hence G/C has Cp as an epimorphic image. Since G/C is a subdirect product of

∏
1≤i≤tG/CG(Ni),

there must exist a minimal normal subgroup N of G which is contained in either H1 or H2 and
with the property that A = G/CG(N) has a chief factor of order p. By our assumption the set U of
the subgroups in M not containing N is non empty. By Lemma 1.2, p+ 1 ≥ σ(G) ≥ |U| ≥ β, with
β = minM∈U |G : M |. Fix a maximal subgroup M in U with |G : M | = β.
If N is abelian, then the subgroups in U are complements of N , hence β = |N |. Moreover N is not
contained in the union of the subgroups in U , hence p+ 1 ≥ σ(G) ≥ |N |+ 1. However p must be a
prime divisor of |A|, but A ≤ GL(N) and this implies p < |N |, a contradiction.
If N is a non-abelian simple group, then Cp is isomorphic to a chief factor of a subgroup of Out(N)
hence p ≤ |Out(N)|. However β = |G : M | = |N : M ∩N | is the index of a proper subgroup of N
and Lemma 2.1 implies β > 2p. But then p+ 1 ≥ β > 2p, a contradiction.
We are left with the case N = S1 × · · · × Sr ∼= Sr where S is a nonabelian simple group. Let
πi : N → Si the projection to the i-th factor of N. Since MN = G and N is a minimal normal
subgroup of G, the maximal subgroup M permutes transitively the minimal normal subgroups
S1, . . . , Sr of N and normalizes M ∩N . This implies that π1(M ∩N) ∼= . . . ∼= πr(M ∩N) so by 2.4
either M ∩N ≤ T1 × · · · × Tr with Ti < Si for each i ∈ {1, . . . , r} or M ∩N ∼= Su with u a proper
divisor of r. Therefore, by Lemma 2.1,

p+ 1 ≥ β = |N : M ∩N | ≥ min{2rqr, |S|r/2}

with q the largest prime divisor of |Out(S)|. Moreover Cp is isomorphic to a chief factor of a
subgroup of Out(N) ∼= Out(S) o Sym(r), so either p divides | Sym(r)|, in which case p ≤ r, or p
divides |OutS| and consequently p ≤ q. Both these cases lead to a contradiction. �

Lemma 2.25. If M is a minimal cover of a group G and N is a normal subgroup of G such that
NM 6= G for each M ∈M, then N ≤M for each M ∈M.

Proof. LetM = {M1, . . . ,Mn}. By our assumption, {M1N, . . . ,MnN} is also a minimal cover
of G. In particular, for each i, there exists xi ∈MiN such that xi /∈MjN if j 6= i. Assume by
contradiction N 6≤Mi and take y ∈ N \Mi : we have xi · g ∈Mi for some g ∈ N and consequently
xi · g · y /∈Mi: this implies xi · g · y ∈Mj for some j 6= i, but then xi ∈MjN, a contradiction. �
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Proposition 2.26. Let X = {X1, . . . , Xσ} be a minimal cover of G = H1 ×H2. If a subgroup of X
is contained in a maximal subgroup of diagonal type whose index is a prime number p, then
σ(G) = p+ 1, Xi is a normal subgroup of index p for each i ∈ {1, . . . , σ} and

⋂
iXi has index p2 in

G.

Proof. For each i ∈ {1, . . . , σ}, let Mi be a maximal subgroup of G containing Xi, chosen is
such a way that Mi is a maximal subgroup of diagonal type and index p when Xi is contained in
such a maximal subgroup. The cover M = {M1, . . . ,Mσ} satisfies the hypothesis of Lemma 2.24,
so σ = p+ 1 and Mi is a maximal normal subgroup of index p for each i ∈ {1, . . . , σ}. Let
N = M1 ∩M2. If, by contradiction, there exists i ∈ {3, . . . , σ} such that Mi does not contain N,
then, by Lemma 1.2, σ ≥ 2 + p. So for each i ∈ {1, . . . , σ}, we have N ≤Mi but then
XiN ≤Mi 6= G, hence N ≤ Xi by Lemma 2.25. In particular {X1/N, . . . , Xσ/N} is a cover of
G/N ∼= Cp × Cp. Since σ(Cp × Cp) = p+ 1 = σ, Xi 6= N for each i ∈ {1, . . . , σ}. �

Proposition 2.27. Let X = {X1, . . . , Xσ} be a minimal cover of G = H1 ×H2. If X contains no
subgroup of diagonal type whose index is a prime number, then either H1 × 1 or 1×H2 is contained
in
⋂

1≤i≤σXi.

Proof. For each i ∈ {1, . . . , σ}, let Mi be a maximal subgroup of G containing Xi. We have
that M = {M1, . . . ,Mσ} is a minimal cover of G given by σ = σ(G) maximal subgroups of G. We
set:

M1 = {M ∈M |M ≥ H2} = {L×H2 | L a maximal subgroup of H1},
M2 = {M ∈M |M ≥ H1} = {H1 × L | L a maximal subgroup of H2},
M3 = M\ (M1 ∪M2).

Then we define the two sets

Ω1 = H1 \

( ⋃
L×H2∈M1

L

)
, Ω2 = H2 \

( ⋃
H1×L∈M2

L

)
If Ω1 = ∅, then G = H1 ×H2 =

⋃
L×H2∈M1

L×H2, hence M =M1. In the same way, if Ω2 = ∅,
then M =M2.
So we may assume Ω1 × Ω2 6= ∅. For i ∈ {1, 2}, let Ki be the intersection of the maximal normal
subgroups of Hi. Notice that Hi/Ki is isomorphic to a direct product of simple groups and Ki is
the smallest subgroup of Hi with this property. To fix our notation assume

H1/K1 =
∏

1≤a≤α

Sa, H2/K2 =
∏

1≤b≤β

Tb

with Sa, Tb simple groups. To each a ∈ A = {1, . . . , α} there corresponds the projection
π1,a : H1 → Sa and to each b ∈ B = {1, . . . , β} there corresponds the projection π2,b : H2 → Tb. For
i ∈ {1, 2}, consider the projection ρi : Hi → Hi/Ki and the image

∆i = {ρi(ω) | ω ∈ Ωi}
of Ωi under this projection.
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By Lemma 2.23, to any M ∈M3 we may associate a triple (a, b, φ) with a ∈ A, b ∈ B and
φ : Sa → Tb a group isomorphism such that

M = M(a, b, φ) = {(h1, h2) ∈ H1 ×H2 | φ(π1,a(h1)) = π2,b(h2)}.
Now let Λ be the set of the triples (a, b, φ) such that M(a, b, φ) ∈M3. By hypothesis, M3 contains
no subgroup of index a prime number; this implies that if (a, b, φ) ∈ Λ, then Sa ∼= Tb is a nonabelian
simple group.
Now fix an element (s1, . . . , sα) ∈ ∆1 and an element x ∈ Ω1 with ρ1(x) = (s1, . . . , sα) and for each
(a, b, φ) ∈ Λ let

U(a, b, φ) = {h ∈ H2 | π2,b(h) ∈ 〈φ(sa)〉}.
Clearly, since Tb is a nonabelian simple group, 〈φ(sa)〉 6= Tb and U(a, b, φ) is a proper subgroup of
H2. Consider the following family of subgroups of H2 :

T = {M | H1 ×M ∈M2} ∪ {U(a, b, φ) | (a, b, φ) ∈ Λ}.
We claim that T is a cover of H2. We have to prove that if h2 ∈ Ω2, then h2 ∈ U(a, b, φ) for some
(a, b, φ) ∈ Λ. Observe that the elements of the set Ω1 ×Ω2 do not belong to any of the subgroups in
M1 or M2, thus the set Ω1 × Ω2 has to be covered by the subgroups in M3. In particular if
h2 ∈ Ω2, then (x, h2) ∈M(a, b, φ) for some (a, b, φ) ∈ Λ. This implies that
π2,b(h2) = φ(π1,a(x)) = φ(sa) ∈ 〈φ(sa)〉, hence h2 ∈ U(a, b, φ) and the claim is proved. But this
implies |M1|+ |M2|+ |M3| = σ(G) ≤ σ(H2) ≤ |T | ≤ |M2|+ |M3| and, consequently, M1 = ∅.
With a similar argument we deduce M2 = ∅. So if M3 6= ∅, then M =M3. By Lemma 1.3 there
exists M ∈M3 with σ(G) ≥ |G : M |+ 1; however |G : M | = |S| for some nonabelian simple group
S which is an epimorphic image of G. This implies σ(G) ≤ σ(S) ≤ |S| = |G : M | ≤ σ(G)− 1, a
contradiction.
Let H1 = H1 × 1 and H2 = 1×H2. We have proved that there exists j ∈ {1, 2}, such that
Hj ≤

⋂
1≤i≤σMi. In particular HjXi ≤Mi for each i ∈ {1, . . . , σ} hence, by Lemma 2.25, we can

conclude Hj ≤
⋂

1≤i≤σXi. �

5. Covering some monolithic groups

Theorem 2.28. Let G be a monolithic group with non-abelian socle, and let us use Notations 2.2.
Assume that X/S is abelian. Let M be a set of maximal subgroups of X supplementing S and such
that

⋃
M∈MM contains a coset xS ∈ L with the property that 〈x, T 〉 = L.

Then σ(G) ≤ 2m−1 +
∑

M∈M |S : S ∩M |m−1.

Unfortunately the hypothesis “X/S abelian” does not seem easy to bypass.

Proof. If L 6= T define

R := {(x1, . . . , xm)k ∈ G | x1 · · ·xm ∈ T}.
Since X/S is abelian, R is a proper subgroup of G.
Let δ ∈ K be an m-cycle, 1 = a1, a2, . . . , am ∈ X and M ∈M. An element (x1, . . . , xm)δ ∈ X oK
normalizes (M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am if and only if

(M ∩ S)aδ−1(1)xδ−1(1) × (M ∩ S)aδ−1(2)xδ−1(2) × · · · × (M ∩ S)aδ−1(m)xδ−1(m) =
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= (M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am ,

if and only if

(2) aδ−1(1)xδ−1(1)a
−1
1 , aδ−1(2)xδ−1(2)a

−1
2 , . . . , aδ−1(m)xδ−1(m)a

−1
m ∈ NX(M ∩ S) = M.

If x1xδ(1) · · ·xδm−1(1) ∈M then there exist a2, . . . , am ∈ X such that (2) is true. Since M
supplements S in X, a2, . . . , am can be chosen in S. Therefore every element (x1, . . . , xm)δ ∈ G
such that δ is an m-cycle and x1xδ(1) · · · xδm−1(1) ∈ xS belongs to a subgroup of G of the form
NG((M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am) where M ∈M and a2, . . . , am ∈ S. It follows that G
is covered by these subgroups together with R (if L 6= T ) and the pre-images through ρ of 2m−1 − 1
maximal intransitive subgroups of K (corresponding to the subsets of {1, . . . ,m} of size from 1 to
[m/2]). �

5.1. The cyclic case: an upper bound.

Proposition 2.29 (An upper bound). Let G be a monolithic group with non-abelian socle, and let
us use Notations 2.2. Suppose that G/ soc(G) is cyclic. Then X/S is cyclic, let x ∈ X be such that
X/S = 〈xS〉. Let X be a family of maximal subgroups of X supplementing S and which cover the
coset xS of S, and let M := {H ∩ S | H ∈ X}. Then

σ(G) ≤ ω(m · |X/S|) +
∑
M∈M

|S : M |m−1.

A cover is provided by the ω(|G/ soc(G)|) = ω(m · |X/S|) normal subgroups of prime index
containing soc(G) and the subgroups of the form NG(M ×Ma2 × . . .×Mam) where M ∈M and
a2, . . . , am ∈ S.

We now prove Proposition 2.29. Call πG : G→ G/ soc(G), πX : X → X/S the canonical
projections.
The elements of G which do not generate G modulo soc(G) are covered by the
ω(|G/ soc(G)|) = ω(|X/S| ·m) maximal subgroups of G of prime index containing soc(G). Let
g = (x1, . . . , xm)δ ∈ G be such that πG(g) generates G/ soc(G), where δ ∈ Sym(m) is an m-cycle.
We may assume that δ is the m-cycle (1 . . .m). We want g to belong to a subgroup of G of the
form NG(M ×Ma2 × · · · ×Mam) where M = H ∩ S for some H ∈ X and a2, . . . , am ∈ S. g belongs
to such a subgroup if and only if

x1a
−1
2 , a2x2a

−1
3 , a3x3a

−1
4 , . . . , amxm ∈ NX(M).

In particular y := x1 · · ·xm ∈ NX(M) and we may choose a2 = x1, a3 = x1x2, . . . ,
am = x1x2 · · · xm−1. By Lemma 2.14 X covers all the elements of X whose image in X/S generates
X/S, so since by Lemma 2.7 πX(y) generates X/S, there exists H ∈ X containing y, in particular
HS = X and H ∩ S =: M is a non-trivial (CFSG) proper subgroup of S, thus since H is maximal
in X and normalizes M , H = NX(M). It follows that G is covered by the maximal subgroups of G
containing soc(G) together with the family

F := {NG(M ×Ma2 × · · · ×Mam) | M ∈M, a2, . . . , am ∈ X}.



34 2. THE NEW RESULTS ABOUT THE COVERING NUMBER

Since every element of F supplements soc(G), its Xm-conjugacy class in X o Cm coincides with its
Sm-class and hence, since Sm ≤ G, it is contained in its G-class. This means that in the definition
of F the elements a2, . . . , am can be taken in S, and this implies the result.

5.2. The cyclic case: a lower bound. The following notion (introduced in [MarS]) is our
main tool to provide lower bounds for the covering number.

Definition 2.30 (Definite unbeatability). Let X be a group. Let H be a set of proper subgroups of
X, and let Π ⊆ X. Suppose that the following four conditions hold for H and Π.

(1) Π ∩H 6= ∅ for every H ∈ H;
(2) Π ⊆

⋃
H∈HH;

(3) Π ∩H1 ∩H2 = ∅ for every distinct pair of subgroups H1 and H2 of H;
(4) |Π ∩K| ≤ |Π ∩H| for every H ∈ H and K < X with K 6∈ H.

Then H is said to be definitely unbeatable on Π.

For Π ⊆ X let σX(Π) be the least cardinality of a family of proper subgroups of X whose union
contains Π. The following lemma is straightforward so we state it without proof.

Lemma 2.31. If H is definitely unbeatable on Π then σX(Π) = |H|.

It follows that if H is definitely unbeatable on Π then |H| = σX(Π) ≤ σ(X).

Theorem 2.32. Let G be a monolithic group with non-abelian socle, and let us use Notations 2.2.
Suppose that G/N is cyclic, generated by γN for γ ∈ G. Let x ∈ X be such that X = 〈x, S〉.
Without loss of generality assume that ρ(γ) = δ = (1, . . . ,m) and that γ = (1, . . . , 1, x)δ. Let X be a
family of maximal subgroups of X supplementing S and let M := {V ∩ S | V ∈ X}, Π ⊆ xS,
C ⊆ X − xS. Let r be the smallest prime divisor of m, and let r′ be the smallest prime divisor of m
such that some element of Π admits a r′-th root in X. Suppose that

(1) NX(M) ∩ Π 6= ∅ for every M ∈M;
(2) NX(M1) ∩NX(M2) ∩ Π = ∅ for every M1 6= M2 in M;
(3) Π ⊆

⋃
M∈MNX(M).

Consider the following condition:

(4) Whenever M ∈M and V is a maximal subgroup of X supplementing S such that
V ∩ S 6∈ M,

(i) |M |m−1 · |NX(M) ∩ Π| ≥ |V ∩ S|m−1 · |V ∩ (Π ∪ C)|,

(ii) If m ≥ 2, |M |m−1 · |NX(M) ∩ Π| ≥ m · |X/S| · |S|m/r,
(iii) If m ≥ 2, |M |m−1 · |NX(M) ∩ Π| ≥ min{zr′(Π), |S|} · |S|m/r′−1,

where zr′(Π) is the number of elements y ∈ X such that yr
′ ∈ Π.

Denote by σNγ(G) the smallest number of supplements of N in G needed to cover Nγ. Suppose
conditions (4)(i), (4)(iii) hold. If m = 1 then |M| ≤ σ(G), if m ≥ 2 then∑

M∈M

|S : M |m−1 ≤ σNγ(G) ≤ σ(G),
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and if X covers xS then∑
M∈M

|S : M |m−1 ≤ σ(G) ≤ ω(m|X/S|) +
∑
M∈M

|S : M |m−1.

Suppose from now on that conditions (4)(i), (4)(ii) hold. Let A,B ⊆ X, and assume that the
following conditions also hold.

(5) X covers xS;
(6) If m ≥ 2 then for every a ∈ A, b ∈ B, α, β ∈ S, 〈aα, bβ〉 ⊇ S;
(7) If m ≥ 2 then C ∩NX(M) = ∅ for every M ∈M;
(8) If m ≥ 2 then whenever V is a maximal subgroup of X supplementing S such that

V ∩ S 6∈ M,

|A| · |B| · |S|m−2 ≥ max{|V ∩ S|m−1 · |V ∩ (Π ∪ C)|,m|X/S| · |S|m/r}
and if C 6= ∅

|C| · |S|m−1 ≥ max{|V ∩ S|m−1 · |V ∩ (Π ∪ C)|,m|X/S| · |S|m/r}.
Then σ(G) =

∑
M∈M |S : M |m−1 + ω(m|X/S|).

Before the proof of Theorem 2.32 we state two lemmas.

Lemma 2.33. Let 1 ≤ k < m be an integer. In the following let the subscripts be identified with
their reductions modulo m, and let b1 := 1, b2, . . ., bm ∈ X, s1, . . ., sm ∈ S. Let M be a proper
non-trivial subgroup of S.
For d ∈ {1, . . . ,m} define xd to be x if d > m− k, and 1 if d ≤ m− k. Let y1, . . . , ym ∈ X. The
element (y1, . . . , ym)γk ∈ X o Sym(m) normalizes M ×Ma2 × · · · ×Mam if and only if

ηd := adydxda
−1
d+k ∈ NX(M), ∀d = 1, . . . ,m.

Moreover in this case
η := η1η1+kη1+2k · · · η1+(m−1)k =

= y1x1y1+kx1+k · · · y1+(m−1)kx1+(m−1)k ∈ NX(M).

Proof. The element

(y1, . . . , ym)γk = (y1, . . . , ym−k, ym−k+1x, . . . , ymx)δk

belongs to NG(M ×Ma2 × · · · ×Mam) if and only if

(My1 ×Ma2y2 × · · · ×Mam−kym−k ×Mam−k+1ym−k+1x × · · · ×Mamymx)δ
k

=

= M ×Ma2 × · · · ×Mam ,

if and only if

Mam−k+1ym−k+1x × · · · ×Mamymx ×My1 ×Ma2y2 × · · · ×Mam−kym−k =

= M ×Ma2 × · · · ×Mam .

In other words:
am−k+1ym−k+1x, am−k+2ym−k+2xa

−1
2 , . . . , amymxa

−1
k ,
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y1a
−1
k+1, a2y2a

−1
k+2, . . . , am−kym−ka

−1
m ∈ NX(M).

This implies the result. �

Lemma 2.34. Let G be as in the hypotheses of Theorem 2.32. Let ` be a divisor of m. The element
(s1, . . . , sm)γ ∈ Nγ normalizes

∆ := {(y1, . . . , ym/`, y
b21
1 , . . . , y

b2,m/`
m/` , . . . , y

b`,1
1 , . . . , y

b`,m/`
m/` ) | y1, . . . , ym/` ∈ S}

if and only if (here b1i = 1 for all i = 1, . . . ,m/`)

b`,m/`smτbi1 = bi−1,m/`s(i−1)m/` ∀i = 2, . . . , `

and
sjbi,j+1 = bi,js(i−1)(m/`)+j ∀i = 2, . . . , `, j = 1, . . . ,m/`− 1.

In particular
s1 · · · smτ = [s1 · · · sm/`−1(b`,m/`smτ)]`.

Moreover for a given b ∈ X,

|{(s1, . . . , sm)γ ∈ NG(∆) | s1 · · · smτ = b}| = z`(b) · |S|m/`−1,

where z`(b) is the number of elements y ∈ X such that y` = b.

Proof. It is a direct computation. The element (s1, . . . , sm)γ belongs to NG(∆) if and only if
for every y1, . . . , ym/` ∈ S the element

(y
b`,m/`smτ

m/` , yx11 , . . . , y
sm/`
m/` , y

b21sm/`+1

1 , . . . , y
b2,m/`s2m/`
m/` , . . . , y

b`,1s(`−1)m/`+1

1 , . . . , y
b`,m/`−1sm−1

m/`−1 )

belongs to ∆, and this leads to the stated conditions.
Using these conditions we see that for every 1 ≤ i ≤ `− 1,

s1 · · · sm/`−1b`,m/`smτ = bi,1s(i−1)m/`+1s(i−1)m/`+2 · · · s(i−1)m/`+m/`−1sim/`b
−1
i+1,1,

and
s1 · · · sm/`−1b`,m/`smτ = b`,1s(`−1)m/`+1 · · · sm−1xmτ.

It follows that
(s1 · · · sm/`−1b`,m/`smτ)` = s1 · · · smτ.

The last statement follows easily from the first two. �

We now prove Theorem 2.32.
For every prime divisor ` of |X/S| which does not divide m write ` = mq + k with q, k integers and
0 < k < m and define (notations are as in Lemma 2.33)

Ω` := {(s1, . . . , sm)γ` | s1x
qx1s1+kx

qx1+k . . . s1+(m−1)kx
qx1+(m−1)k ∈ C}.

Note that since m and k are coprime, {x1, x1+k, . . . , x1+(m−1)k} = {x1, . . . , xm} and so

s1x
qx1s1+kx

qx1+k . . . s1+(m−1)kx
qx1+(m−1)k ∈ x`S.

For every prime divisor ` of m define

Ω` := {(s1, . . . , sm)γ` | s1s1+`s1+2` · · · s1+m−`x ∈ A, s2s2+`s2+2` · · · s2+m−`x ∈ B}.
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Let
Ω1 := {(s1, . . . , sm)γ ∈ G | s1 · · · smx ∈ Π},

L := {NG(M ×Ma2 × · · · ×Mam) | M ∈M, a2, . . . , am ∈ S}.
Moreover, for every prime divisor ` of m|X/S| let H` be the pre-image of 〈γ`N〉 through the
canonical projection G→ G/N = 〈γN〉. Note that H` ⊇ Ω`. Let

H := L ∪ {H` | ` is a prime divisor of m|X/S|},

Ω := Ω1 ∪
⋃

` prime dividing m|X/S|

Ω`.

Let H be a maximal subgroup of G of product type supplementing N , say
H = NG(M ×Ma2 × · · · ×Mam), where M is a subgroup of S such that NX(M) is a maximal
subgroup of X supplementing S and a2, . . . , am ∈ S.

Lemma 2.35. The following facts are true.

(1) |H ∩ Ω1| = |M |m−1 · |NX(M) ∩ Π|.
(2) If ` is a prime dividing |X/S| and not m then either H ∩ Ω` = ∅ or
|H ∩ Ω`| = |M |m−1 · |NX(M) ∩ C|. In particular H ∩ Ω` = ∅ if H ∈ L.

(3) If ` is a prime divisor of m then H ∩ Ω` = ∅.

Proof. An element (s1, . . . , sm)(1, . . . , 1, x)δ ∈ Ω1 belongs to H if and only if

amsmx, s1a
−1
2 , a2s2a

−1
3 , . . . , am−1sm−1a

−1
m ∈ NX(M).

This implies that
s1 ∈Ma2, s2 ∈Ma2a3, . . . , sm−1 ∈Mam−1am,

NX(M) 3 (s1a
−1
2 ) · (a2s2a

−1
3 ) · · · · · (am−1sm−1a

−1
m ) · (amsmx) = s1 . . . smx ∈ Π.

This gives |M | choices for si, i = 1, . . . ,m− 1, and |NX(M) ∩ Π| choices for sm.
Let now ` be a prime dividing |X/S| and not m. Let q and 0 < k < m be the two integers such
that ` = mq + k. By Lemma 2.33, (s1, . . . , sm)γ` ∈ Ω` belongs to H if and only if
adsdx

qxda
−1
d+k ∈ NX(M) for d = 1, . . . ,m, where the subscripts are modulo m, xd = 1 if

1 ≤ d ≤ m− k and xd = x if m− k < d ≤ m. This gives 0 or |M | choices for s1, s1+k, . . . , s1+(m−2)k

and 0 or |NX(M) ∩ C| choices for s1+(m−1)k. So |H ∩ Ω`| is either 0 or |M |m−1 · |NX(M) ∩ C|.
Let now ` be a prime divisor of m. Note that (s1, . . . , sm)γ` belongs to
H = NG(M ×Ma2 × · · · ×Mam) if and only if

(M ×Ma2 × · · · ×Mam)(s1,...,sm−`,sm−`+1x,...,smx)δ` = M ×Ma2 × · · · ×Mam ,

in other words

Mam−`+1sm−`+1x × · · · ×Mamsmx ×M s1 ×Ma2s2 × · · · ×Mam−`sm−` =

= M ×Ma2 × · · · ×Mam ,

in other words
am−`+ism−`+ixa

−1
i ∈ NSn(M) ∀i = 1, . . . , `;

aisia
−1
`+i ∈ NSn(M) ∀i = 1, . . . ,m− `.



38 2. THE NEW RESULTS ABOUT THE COVERING NUMBER

In particular

sisi+`si+2` · · · si+m−`x ∈ NSn(M)ai ∀i = 1, . . . , `.

This implies the result thanks to condition (7). �

Proposition 1.18 implies that the maximal subgroups of G supplementing N are not complements.
So they are either of product type or of diagonal type.
If `, s are two distinct prime divisors of m|X/S| then clearly H` ∩ Ω = Ω` and H` ∩Hs ∩ Ω = ∅.
This together with Lemma 2.35 implies that conditions (1), (2), (3) of Definition 2.30 hold for H if
they hold for L. We now prove that they hold for L.

(1) Ω1 ∩H 6= ∅ for every H ∈ L. This follows from Lemma 2.35 and condition (1).
(2) We show that Ω1 ⊆

⋃
H∈LH. Given (s1, . . . , sm)γ ∈ Ω1, choose M ∈M such that

s1 · · · smx ∈ NX(M) (it exists thanks to condition (2)) and a2 := s1,
a3 := s1s2, . . . , am := s1s2 · · · sm−1. Choose H := NG(M ×Ma2 × · · · ×Mam).

(3) We show that Ω1 ∩NG(M ×Ma2 × · · · ×Mam) ∩NG(K ×Kb2 × · · · ×Kbm) = ∅ for
NG(M ×Ma2 × · · · ×Mam) 6= NG(K ×Kb2 × · · · ×Kbm) belonging to L. If (s1, . . . , sm)γ
belongs to the stated intersection then either s1 · · · smx ∈ NX(M) ∩NX(K) ∩ Π with
M 6= K, contradicting condition (3), or M = K and

si ∈ a−1
i Mai+1 ∩ b−1

i Mbi+1

for i = 1, . . . ,m− 1, where a1 = b1 = 1. This easily implies that Mai = M bi for
i = 2, . . . ,m, contradiction.

We now prove that if conditions (4)(i), (4)(ii) hold then |H ∩ Ω| ≥ |K ∩ Ω| for H ∈ H, K maximal
subgroup of G outside H. Note that this inequality being true implies condition (4) of Definition
2.30 for both H and L since for every prime divisor ` of m|X/S| and every H ∈ L we have
H` ∩ Ω1 = ∅ and H ∩ Ω` = ∅.
We also prove that if conditions (4)(i), (4)(iii) hold then |H ∩ Ω1| ≥ |K ∩ Ω1| for H ∈ H, K
maximal subgroup of G outside H.

(1) Case I: H ∈ L and K is of product type. Let M ∈M and V is a maximal subgroup of S
supplementing S such that V ∩ S 6∈ M. We want to show that

|Ω ∩NG(M ×Ma2 × · · · ×Mam)| ≥ |Ω ∩NG((V ∩ S)× (V ∩ S)b2 × · · · × (V ∩ S)bm)|.

In other words

|M |m−1 · |NX(M) ∩ (Π ∪ C)| ≥ |V ∩ S|m−1 · |V ∩ (Π ∪ C)|.

This follows from condition (4)(i).
(2) Case II: H ∈ L, K is of diagonal type. Let K = NG(∆) be a maximal subgroup of G of

diagonal type and H = NG(M ×Ma2 × · · · ×Mam) ∈ L. If condition (4)(ii) holds then
since |Ω ∩NG(∆)| ≤ |NG(∆)| ≤ m · |X/S| · |S|m/r, we have |Ω ∩H| ≥ |Ω ∩NG(∆)|. By
Lemma 2.34 |Ω1 ∩NG(∆)| ≤ min{zr′(Π), |S|} · |S|m/r′−1, so if condition (4)(iii) holds then
|Ω1 ∩NG(∆)| ≤ |Ω1 ∩H| whenever H ∈ H.
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(3) Case III: H = H` for some prime divisor r of m|X/S|. Note that |H` ∩ Ω| = |Ω`|. If `
divides m then |Ω`| = |A| · |B| · |S|m−2, otherwise |Ω`| = |C| · |S|m−1. The result follows
from condition (8).

Summarizing, if conditions (1), (2), (3), (4)(i), (4)(iii) hold then L is definitely unbeatable on
Ω1 ⊆ Nγ, so |L| ≤ σNγ(G) ≤ σ(G). If further condition (4)(ii) holds and X covers xS then L
covers Nγ, so it covers Nγk for every integer k coprime to m|X/S| (by Lemma 2.14), and H covers
G, so σ(G) ≤ |H| = |L|+ ω(m|X/S|). If also conditions (5), (6), (7), (8) hold then H is definitely
unbeatable on Ω, so σ(G) ≥ |H| and the result follows. The proof of Theorem 2.32 is completed.
Let us give a couple of easy applications of Theorem 2.32 (some of which we need in the proof of
Theorem 2.17).

Observation 2.36. Let K be a minimal cover of the finite group X, so that |K| = σ(X), and let
K1 be a subset of K. Let Ω be a subset of X −

⋃
K∈K1

K. Then |K1|+ σX(Ω) ≤ σ(X), where σX(Ω)
denotes the least number of proper subgroups of X needed to cover Ω.

Proposition 2.37. The following facts hold.

(1) 15m ≤ σ(Alt(7) o Cm) ≤ ω(m) + 15 · 21m−1 + 15m + 7m−1,
8m ≤ σ(PSL(3, 2) o Cm) ≤ ω(m) + 7m + 8m.

(2) 10m ≤ σ(Alt(5)m o C2m) ≤ ω(2m) + 5m + 10m.
(3) If every prime divisor of m belongs to {2, 3} and m 6= 3 then

σ(Alt(5)m o C2m) = ω(2m) + 5m + 10m.
(4) σ(Alt(6)m o C2m) = ω(2m) + 2 · 6m.

Proof. The groups we are considering are monolithic primitive groups G with non-abelian
socle Sm and G/ soc(G) cyclic. Let us use Notations 2.2. In case X = S we have G = S o Cm. In
case S = Alt(n) and X = Sym(n) we have G ∼= Sm o C2m. The upper bounds follow from
Proposition 2.29 and the following facts:

• Alt(7) is covered by 15 subgroups isomorphic to SL(3, 2), 15 subgroups isomorphic to
Sym(5) and one subgroup isomorphic to Alt(6) (cfr. [KR]).
• PSL(3, 2) is covered by the 8 normalizers of the Sylow 7-subgroups and 7 subgroups

isomorphic to Sym(4) (cfr. [BFS]).
• Sym(5)− Alt(5) is covered by the 10 + 5 intransitive maximal subgroups of Sym(5).
• Sym(6)− Alt(6) is covered by the 12 subgroups of Sym(6) isomorphic to Sym(5).

From now on we only deal with the lower bounds.
We prove (1). Let S ∈ {Alt(7), PSL(3, 2)}. If S = Alt(7) let M be a conjugacy class of subgroups
of S isomorphic to PSL(3, 2) (so that |M| = 15), if S = PSL(3, 2) let M be the family of the 8
normalizers of Sylow 7-subgroups of S, and let Π be the set of elements of order 7 in S. Let C = ∅.
Recall that |Alt(7)| = 2520 and |PSL(3, 2)| = 168. Note that:

• |Π| = 720 if S = Alt(7), |Π| = 48 if S = PSL(3, 2);
• if M ∈M then |M ∩ Π| = 48 if S = Alt(7), |M ∩ Π| = 6 if S = PSL(3, 2);
• all the maximal subgroups of S containing elements of Π are isomorphic;
• |Π|/|S| = |M ∩ Π| for every M ∈M, thus two distinct elements of M do not have

elements of Π in common.
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This implies that conditions (1), (2), (3) and (4)(i) of Theorem 2.32 are fulfilled. The result follows
if we can show that condition (4)(iii) is also fulfilled. Since the largest order of an element of S is 7,
rq(Π) ≤ 1, thus we are reduced to show that |M |m−1 · |M ∩ Π| ≥ |Π| · |S|m/r−1 for M ∈M. Since
|Π|/|M ∩ Π| = |S : M |, we need to show that |M |m ≥ |S|m/r, i.e. |M |r ≥ |S|. Since r ≥ 2, this
follows from |S : M |2 ≤ |S|.
We prove (2). The group G = Alt(5)m o C2m is described in Theorem 2.32 when S = Alt(5) and
X = Sym(5). Suppose this holds. Let Π be the set of the (3, 2)-cycles in Sym(5), and let M be the
set of the intransitive maximal subgroups of Alt(5) of type (3, 2). It is easy to see that conditions
(1), (2), (3), (4)(i) of Theorem 2.32 are fulfilled, so we are left with condition (4)(iii). Since the
elements of Π have no square roots nor cubic roots in Sym(5), we may assume that q ≥ 5. It
suffices to prove that 6m−1 · 2 ≥ 2m · 60m/5, which is clearly true.
We prove (3). Suppose that all the prime divisors of m belong to {2, 3}, and let
G := Alt(5)m o C2m. Fix a minimal cover K of G consisting of maximal subgroups. Let K0 be the
family of the maximal subgroups of G of the form NG(M ×Ma2 × · · · ×Mam) with
a2, . . . , am ∈ Alt(5) and M an intransitive maximal subgroup of Alt(5) of type (3, 2). Note that
|K0| = 10m. Since the (3, 2)-cycles are not of the form x2 or x3 for x ∈ Sym(5), by Lemma 2.34 the
only maximal subgroups of G which contain elements of the form (s1, . . . , sm)γ where s1 · · · smx is a
(3, 2)-cycle are the subgroups in K0. In particular K0 ⊂ K. Let A be the set of the (3, 2)-cycles in
Sym(5), let B the set of the 4-cycles in Sym(5) and let C be the set of the 5-cycles in Sym(5) if m
is odd, while if m is even let C = ∅. Moreover, let

Π := {(2354), (4521), (4132), (1253), (4531), (3245), (1352), (2314), (4125), (3541)}.

For any prime divisor ` of 2m let Ω1, Ω`, H`, r, r
′, L be defined as in the proof of Theorem 2.32.

Note that r′ ≥ 3 and |L| = 5m.
Note that if H is a maximal subgroup of G of diagonal type and ` is a prime divisor of 2m then
|H ∩ Ω`| ≤ |H ∩ soc(G)| ≤ |S|m/2. Moreover K ∩ Ω` = ∅ for every maximal subgroup K of product
type and |A| · |B| ≤ |C| · |Alt(5)|. Therefore if H` 6∈ K then the elements of K which intersect Ω`

non-trivially are at least |Ω`|/60m/2 ≥ 20 · 30 · 60m−2/60m/2 = 10 · 60m/2−1. Therefore since the
elements of K0 intersect Ω` trivially we obtain 10 · 60m/2−1 ≤ σ(G)− 10m ≤ 5m + ω(2m),
contradiction. Let K1 := K0 ∪ {H2, H3}. We have proven that K1 ⊂ K.
Let us prove that (*) “L is definitely unbeatable on Ω1”. By Observation 2.36 this implies the
result. Note that conditions (1), (2), (3) of Theorem 2.32 are fulfilled. Using the ideas in the proof
of Theorem 2.32 we see that if conditions (4)(i) and (4)(iii) are also fulfilled then (*) holds.
Let us deal with condition (4)(i). Let M ∈M and let V be a maximal subgroup of Sym(5)
supplementing Alt(5) and such that V ∩ Alt(5) 6∈ M. Note that if V ∩ Π 6= ∅ then
|V ∩ Alt(5)| = 10. The only intransitive maximal subgroups of Alt(5) whose normalizers in Sym(5)
intersect Π non-trivially are the five point stabilizers, which have order 12. If m is even then C = ∅
and |NSym(5)(M) ∩ Π| = |V ∩ Π| = 2 for every M ∈M, hence the result follows. If m 6∈ {5, 7} is
odd then |V ∩ (Π∪C)| = 6 and we have to show that 12m−1 · 2 ≥ 10m−1 · 6, which is true for m ≥ 8.
If m ∈ {5, 7} then |NSym(n)(K) ∩ (Π ∪ C)| = 4 and we have to show that 12m−1 · 2 ≥ 10m−1 · 4,
which is true.
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Let us deal with condition (4)(iii). Since r′ ≥ 3 what we need to show is 2 · 12m−1 ≥ 60m/3, which is
clearly true for m ≥ 3.
We prove (4). The case m = 1 has been discussed in Example 1.7, so let us assume that m ≥ 2.
The group G = Alt(6)m o C2m is described in Theorem 2.32 when S = Alt(6) and X = Sym(6).
Let K be a minimal cover of G. Let K0 be the family of the maximal subgroups of G of product
type NG(M ×Ma2 × · · · ×Mam) where M ∼= Sym(5). Note that |K0| = 12 · 6m−1. By Lemma 1.6
K0 ⊆ K: indeed, every member of K0 is isomorphic to Alt(5)m o C2m so by (2) its covering number
is at least 10m > 12 · 6m−1 + ω(2m) ≥ σ(G).
Let A be the set of the (3, 2)-cycles in Sym(6), let B be the set of the 6-cycles in Sym(6), and let C
be the set of the 3-cycles in Sym(6). For any prime divisor ` of 2m let Ω`, H` be defined as in the
proof of Theorem 2.32. Since no subgroup of Sym(6) intersects both A and B non-trivially,
H ∩ Ω` = ∅ for every prime divisor ` of m and every maximal subgroup H of G of product type.
Let K1 be the family consisting of the members of K0 together with the subgroups H` for ` a prime
divisor of m. If H is a maximal subgroup of G of diagonal type then |H ∩ Ω`| ≤ |H ∩ soc(G)|.
Therefore if ` is a prime divisor of m and H` 6∈ M then in order to cover Ω` we need at least

|Ω`|
|H ∩ soc(G)|

≥ 40 · 360m−1

360m/2
= 40 · 360m/2−1

subgroups. Since the subgroups of product type intersect Ω` trivially we obtain that
40 · 360m/2−1 ≤ σ(G)− 12 · 6m−1 ≤ ω(2m), contradiction. Therefore K1 ⊆ K. If m is even then K1

covers G, thus K1 = K and we are done. Suppose m is odd. Since the subgroups of Sym(6)
isomorphic to Sym(5) do not intersect C, the family K1 does not cover Ω2. Since Ω2 ⊂ H2 and
K1 ∪ {H2} covers G, we obtain σ(G) = |M| = ω(2m) + 2 · 6m. �

5.3. Attacking conjecture 1.28. Let us fix the notations of this section. Whenever H is a
σ-elementary group, we denote by N1, . . . , Nk its minimal normal subgroups, and by G1, . . . , Gk the
primitive monolithic groups associated to N1, . . . , Nk respectively.

Definition 2.38. Let G be a primitive monolithic group with non-abelian socle. We say that G is
“excluded” if it satisfies the following property:

• Whenever H is a non-monolithic σ-elementary group, if i ∈ {1, . . . , k} is such that
σ∗(Gi) ≤ σ∗(Gj) for every j ∈ {1, . . . , k} such that Nj is non-abelian then Gi 6∼= G.

By Corollary 1.21, Conjecture 1.28 is equivalent to the statement that every primitive monolithic
group with non-abelian socle is excluded. So what we need in order to attack Conjecture 1.28 are
sufficient conditions for a monolithic primitive group G to be excluded.
The following lemma is a fair generalization of Corollary 2.13.

Proposition 2.39. Let G be a primitive monolithic group with non-abelian socle. If
σ(G) < 2σ∗(G) then G is excluded.

Proof. Let H be a σ-elementary group. Suppose by contradiction that there exists
i ∈ {1, . . . , k} such that σ∗(Gi) ≤ σ∗(Gj) for every j ∈ {1, . . . , k} such that Nj is non-abelian and
Gi
∼= G. Without loss of generality assume i = 1. By Proposition 2.10 we have
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∗(Gj) ≤ σ(G) < 2σ∗(G), therefore σ∗(Gj) < σ∗(G) for j = 2, . . . , k and by minimality of

σ∗(G) and Corollary 1.21 this implies that either k = 1 (i.e. H is monolithic) or k = 2 and N2 is
abelian. In the latter case, since `G2(N2) = |N2|, Proposition 2.10 implies that

|N2|+ σ∗(G) = `G2(N2) + σ∗(G) ≤ σ(H) ≤ min{σ(G), σ(G2)}.
Now by hypothesis σ(G) < 2σ∗(G), and Proposition 1.20 implies that σ(G2) < 2|N2|. This leads to
a contradiction. �

Proposition 2.40. Let G be a primitive monolithic group with non-abelian socle, and let us use
Notations 2.2. Suppose that X/S is abelian. If L/S is non-cyclic then G is excluded.

Proof. Let K be a minimal covering of L/S. For each K ∈ K define

RK := {(x1, . . . , xm)k ∈ G | x1 · · · xmS ∈ K}.
Since X/S is abelian, RK is a (proper) subgroup of G for each K ∈ K, and since K covers L/S,⋃
H∈HRH = G, so σ(G) ≤ σ(L/S) ≤ |X/S| ≤ |Out(S)| < m(S). If G was not excluded, this would

contradict Corollary 2.11. �

Let G be a monolithic group with non-abelian socle, and let us use Notations 2.2 and Definition
2.9. Let Z be the set of pairs (z, w) in X ×X such that 〈za, wb〉 ⊇ S for every a, b ∈ S. By [KLS],
Z ∩ (S × S) 6= ∅. Let k be a non-m-cycle in K, let O1 = (i1, . . . , ir), O2 = (j1, . . . , js) be two cycles
in the cyclic decomposition of k, and for ρ−1(k) 3 h = (x1, . . . , xm)k, with x1, . . . , xm ∈ X, let
hO1 := xi1 · · ·xir and hO2 := xj1 · · ·xjs .
The following lemma is crucial.

Lemma 2.41. Let Ek := {(hO1 , hO2) | h ∈ ρ−1(k)} ∩ Z. Let r be the smallest prime divisor of m. If
g ∈ ρ−1(k) then σNg(G) ≥ |Ek| · |S|m−m/r−2.

Proof. Let

X := {h ∈ Ng | (hO1 , hO2) ∈ Ek}.
Note that if h ∈ Ng, θ, ϕ ∈ X are such that hO1 ≡ θ mod S and hO2 ≡ ϕ mod S then there exists
t ∈ N such that (th)O1 = θ, (th)O2 = ϕ. This implies that |X| ≥ |Ek| · |S|m−2. It is easy to show
that if a2, . . . , am ∈ S and h ∈ ρ−1(k) ∩NG(M ×Ma2 × · · · ×Mam) then hO1 ∈ NX(M)ai1 ,
hO2 ∈ NX(M)aj1 . By the definition of Ek, we deduce that X∩H = ∅ whenever H is a supplement of
N of product type. Since the maximal subgroups of G complementing N intersect Ng in at most
one point, this implies that in order to cover X with supplements of N we need at least
|Ek| · |S|m−2/|S|m/r of them. �

The statement of the following theorem is roughly the following: a primitive monolithic group G
with non-abelian socle (let us use Notations 2.2) is excluded if X/S is abelian and there exists a
family of “big” maximal subgroups of X “not so far” from covering xS and definitely unbeatable
on a subset Π of xS.

Theorem 2.42. Let G be a primitive monolithic group with non-abelian socle, let us use Notations
2.2. Assume that X/S is abelian. Call r the smallest prime divisor of m. Suppose that if m ≥ 2



5. COVERING SOME MONOLITHIC GROUPS 43

then for every x ∈ X such that L = 〈T, x〉 there exist two families M, J of proper subgroups of S
and a subset Π of xS such that:

(0) for every two cosets rS, tS of S in X there exist two elements z ∈ rS, w ∈ tS such that
〈za, wb〉 ⊇ S for every a, b ∈ S. Let Enc := min{|Ek| | k ∈ K non-m-cycle} where Ek is
defined as in Lemma 2.41.

(1) Every element of M∪J is of the form V ∩ S where V is a maximal subgroup of X
supplementing S (so that NX(V ∩ S) = V );

(2)
⋃
M∈MNS〈x〉(M) ⊇ Π and

⋃
M∈J NS〈x〉(M) ⊇ xS − Π;

(3) NS〈x〉(M) ∩ Π 6= ∅ for every M ∈M;
(4) Π ∩NS〈x〉(M1) ∩NS〈x〉(M2) = ∅ for every M1 6= M2 in M;

(5)
∑

M∈M∪J |S : M |m−1 ≤ Enc · |S|m−m/r−2;
(6) |M |m−1|NS〈x〉(M) ∩ Π| ≥ |K|m−1|NS〈x〉(K) ∩ Π| for every M ∈M and for every proper

non-trivial subgroup K of S outside M such that N〈S,x〉(K) is a maximal subgroup of 〈S, x〉
supplementing S;

(7) |M |m−1 · |NS〈x〉(M) ∩ Π| ≥ m · |S〈x〉/S| · |S|m/r for every M ∈M;
(8)

∑
M∈J |S : M |m−1 + 2m−1 <

∑
M∈M |S : M |m−1.

Then G is excluded.

Remark 2.43. Condition (0) of Theorem 2.42 is always fulfilled if X = S by [KLS, Theorem 1.3].
Condition (8) is always fulfilled if J = ∅.

Observation 2.44. Let the hypotheses of Theorem 2.42 hold. For x, y ∈ X let Ex,y be the number
of elements (z, w) ∈ xS × yS with the property that 〈za, wb〉 ⊇ S for every a, b ∈ S. Then
Enc ≥ minx,y∈X Ex,y.

We now prove Theorem 2.42. By Proposition 2.39 it is enough to prove that σ(G) < 2σ∗(G).

Lemma 2.45. σ∗(G) ≥
∑

M∈M |S : M |m−1.

Proof. Fix a family Ω of generators of G/ soc(G) such that σΩ(G) = σ∗(G). By definition of
L, Ω must contain a coset Ng such that, writing g = (x1, . . . , xm)k with k ∈ K, 〈T, x1 · · ·xm〉 = L.
Moreover by Lemma 2.41 and conditions (0), (5) we may assume that k is an m-cycle. Let
x := x1 · · ·xm. By Lemma 2.7 we have

NN〈g〉(S1)/CN〈g〉(S1)

S1CN〈g〉(S1)/CN〈g〉(S1)
∼= 〈xS〉 ⊆ X/S.

We are reduced to prove that σNg(N〈g〉) ≥
∑

M∈M |S : M |m−1, and this follows from Theorem
2.32. �

Lemma 2.45, Theorem 2.28 and condition (8) imply that

σ(G) ≤
∑

M∈M∪J

|S : M |m−1 + 2m−1 < 2σ∗(G).
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5.4. Application: X = S = M11. Let G be a monolithic group with non-abelian socle, and let
us use Notations 2.2. Suppose X = S = M11 and m ≥ 10. Recall that |M11| = 7920. We want to
apply Theorem 2.32 (in case G/ soc(G) is cyclic) and Theorem 2.42 to G.
Let M be the set of all 11 conjugates of the maximal subgroup M10 of M11 together with all 12
conjugates of the maximal subgroup PSL(2, 11) of M11. It is easy to check thatM is a covering for
M11. Let J = ∅.
Let A be the set of elements of order 8 in M11, let B be the set of elements of order 11 in M11, let
C := ∅, and let Π := A ∪B. We have |A| = 1980, |B| = 1440 and |Π| = 1980 + 1440 = 3420.
By [GAP] we know that the maximal subgroups of M11 are: M10, PSL(2, 11), M9 : 2, S5, and
M8 : S3, and that for these we have the following.

• M10 has order 720, it contains 180 elements of order 8 and no element of order 11; no
element of order 8 is contained in two distinct conjugates of M10;
• PSL(2, 11) has order 660, it contains no element of order 8 and 120 elements of order 11;

no element of order 11 is contained in two distinct conjugates of PSL(2, 11);
• M9 : 2 has order 144, it contains 36 elements of order 8 and no element of order 11;
• S5 has order 120, it contains no element of order 8 and no element of order 11;
• M8 : S3 has order 48, it contains 12 elements of order 8 and no element of order 11.

This implies that conditions (1), (2), (3), (4) of Theorem 2.42 are fulfilled. It also implies that
Enc ≥ |A| · |B|. Conditions (5), (6), (7) translate (respectively) as follows:

• 11m + 12m ≤ 1980 · 1440 · 7920m−m/r−2, true for m ≥ 2;
• min{720m−1 · 180, 660m−1 · 120} ≥ max{144m−1 · 36, 120m−1 · 0, 48m−1 · 12}, true for m ≥ 1.
• min{720m−1 · 180, 660m−1 · 120} ≥ m · 7920m/2, true for m ≥ 1;

Thus Theorem 2.42 applies if m ≥ 2. In particular using Corollary 2.13 (to solve the case m = 1)
we obtain that

Proposition 2.46. Let m ≥ 1, and let K be a transitive subgroup of Sym(m). Then M11 oK is
excluded.

Suppose now that G/ soc(G) is cyclic, i.e. G = M11 o Cm. In order to prove that
σ(G) = ω(m) + 11m + 12m for every m ≥ 1 we are left to show that condition (8) of Theorem 2.32
is fulfilled. So suppose m ≥ 2. Condition (8) is reduced to the following inequality:

1980 · 1440 · 7920m−2 ≥ max{144m−1 · 36,m · 7920m/2}.
This is true for every m ≥ 2.

5.5. Application: S = PSL(2, q). Let us use Notations 2.2. Under the hypotheses of
Theorem 2.42, suppose S = PSL(2, q), X ∈ {PSL(2, q), PGL(2, q)}, q ≥ 11 an odd prime power,
m > 5 and r ≥ 5. Recall that |PSL(2, q)| = q(q2 − 1)/2. Write q = pf with p an odd prime, and if
f = 1 suppose that X = S. We want to apply Theorem 2.42 to G. We also want to apply Theorem
2.32 to G in case G/ soc(G) is cyclic and f = 1 (so when checking the requirements of Theorem
2.32 we are assuming f = 1).
Let G act on the projective line, which is a set of size q + 1. If f = 1 let M be the set of all the
q + 1 point stabilizers (which is a conjugacy class of subgroups isomorphic to Cf

p o C(q−1)/2)
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together with the Singer cycles normalizers (a conjugacy class of q(q − 1)/2 maximal subgroups
isomorphic to Dq+1). If f > 1 let M be the family of all the Singer cycles normalizers. It is easy to
check that M is a covering for PSL(2, q) if f = 1, so let J = ∅ in this case. If f > 1 let J be the
family of the q + 1 point stabilizers.
Let A ⊆ PSL(2, q) be a set of (q + 1)(p− 1) elements conjugate to some non-trivial power of the

matrix

(
1 1
0 1

)
. It is a set of elements of order p fixing a unique point on the projective line and

it has the property that (A ∩M) ∪ {1} is a group of order p for every point stabilizer M .

Let A′ be the subset of PGL(2, q) consisting of the diagonal matrices

(
x 0
0 y

)
with x of

multiplicative order q − 1 and xy 6= 1.
Let B be the set of all irreducible elements of PGL(2, q) of order (q + 1)/ε, where ε = 1 if
X = PGL(2, q) and ε = 2 if X = PSL(2, q) (the Singer cycles). Note that |B| = 1

2
q(q − 1)ϕ( q+1

ε
).

Let C = ∅, and put Π = A ∪B if k = 1, Π = B if k > 1.
Note that min{|A|, |A′|} · |B| ≥ |S|.
By [Dlg] the maximal subgroups of PSL(2, q) are the following (for p odd).

• Cf
p o C(q−1)/2 (the point stabilizers);

• Dq−1 if q ≥ 13;
• Dq+1 if q 6= 7, 9 (the Singer cycles);
• PGL(2, q0) for q = q2

0 (two conjugacy classes);
• PSL(2, q0) for q = q`0 where ` is an odd prime;
• Alt(5) for q ≡ ±1 mod (10) where either q = p or q = p2 and p ≡ ±3 mod (10) (two

conjugacy classes);
• Alt(4) for q = p ≡ ±3 mod (8) and q 6≡ ±1 mod (10);
• Sym(4) for q = p ≡ ±1 mod (8) (two conjugacy classes).

The maximal subgroups of PGL(2, q) not containing PSL(2, q) are the following (for p odd).

• Cf
p o Cq−1 (the point stabilizers);

• D2(q−1) for q 6= 5;
• D2(q+1) (the Singer cycles);
• Sym(4) for q = p ≡ ±3 mod (8);
• PGL(2, q0) for q = q`0 with ` an odd prime.

Since no Singer cycle normalizer contains elements of order (q − 1)/ε or p, it follows easily that
condition (0) of Theorem 2.42 is fulfilled for X: consider the pairs (z, w) where z ∈ A,w ∈ B if
X = S, and z ∈ A, w ∈ B or z ∈ A′, w ∈ B if X 6= S.
Since q ≥ 11, no element of Π is contained in a subgroup of the form Alt(5), Alt(4), or Sym(4).
Moreover since (q + 1)/2 and q do not divide q − 1, no element of Π is contained in a subgroup of
the form D2(q−1). Similarly, it is easy to see that no element of A is contained in a Singer cycle
normalizer and no element of B is contained in a point stabilizer. Moreover if M is a Singer cycle
normalizer then |Π ∩M | = |B ∩M | = ϕ((q + 1)/2) where ϕ is Euler’s function, and if M is a point
stabilizer then |Π ∩M | = q − 1.
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This implies that conditions (0), (1), (2), (3), (4) of Theorem 2.42 and conditions (1), (2), (3), (5),
(6), (7) of Theorem 2.32 are fulfilled. Moreover Enc ≥ min{|A|, |A′|} · |B| ≥ |S|.
Let us deal with conditions (5), (6), (7) of Theorem 2.42.

• Condition (5): (q + 1)m + (q(q − 1)/2)m ≤ (q(q2 − 1)/2)m−m/r−1. Since q ≥ 11,
q + 1 ≤ q(q − 1)/2 and since r ≥ 5 we are reduced to show that

2(q(q − 1)/2)m ≤ (q(q2 − 1)/2)4m/5−1.

This is easily seen to be true if m ≥ 8.
• Condition (6) is trivially fulfilled since the right-hand side is always zero.
• Condition (7) is implied by min{(q(q − 1)/2)m−1, (q + 1)m−1} ≥ m · (q(q2 − 1)/2)m/5 (we

used that r ≥ 5), in other words

(q + 1)m−1 ≥ m · (q(q2 − 1)/2)m/5.

Since m1/m ≤ 3/2 we are reduced to show that

q + 1

(q + 1)1/m
≥ (3/2)(q(q2 − 1)/2)1/5.

Since m ≥ 5 we are reduced to (q + 1)5 ≥ (3/2)5(1/2)q(q2 − 1)(q + 1), and this is clearly
implied by q + 1 ≥ (3/2)5(1/2), i.e. q ≥ 5.

This also implies condition (4) of Theorem 2.32. Condition (8) of Theorem 2.32 is implied by

((p/2)(p2 − 1))m−1 ≥ m · ((p/2)(p2 − 1))m/5.

Condition (8) of Theorem 2.42 translates as follows:

(q + 1)m + 2m−1 < (q(q − 1)/2)m.

This is clearly true.
We obtain the following:

Proposition 2.47. Let G be a monolithic group with non-abelian socle, and let us use Notations
2.2. If X ∈ {PSL(2, q), PGL(2, q)}, q ≥ 11 is an odd prime power, and the smallest prime divisor
of m is at least 5, then G is excluded.

6. The main application: S = Alt(n)

In this section we will prove the following result.

Theorem 2.48. Let G be a primitive monolithic group with non-abelian socle, and let us use
Notations 2.2. Suppose that S = Alt(n) for some integer n ≥ 5. Suppose that m ≥ 3 and m 6= 4.
Then G is excluded in each of the following cases:

(1) n ≥ 15 is odd and X = Sym(n).
(2) n ≥ 30 is even and X = Sym(n).
(3) n ≥ 5 is odd with a prime divisor at most 4

√
n and X = Alt(n).

(4) n ≥ 20 is divisible by 4 and X = Alt(n).
(5) n ≥ 20 is congruent to 2 modulo 4 and X = Alt(n).
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The following result follows as a corollary.

Theorem 2.49. Let H be a non-abelian σ-elementary group, and suppose that all the non-abelian
minimal subnormal subgroups of H are either isomorphic to M11 or to Alt(n) where n ≥ 30 admits
a prime divisor smaller than or equal to 4

√
n. Then H is monolithic.

Proof. Let soc(H) = N1 × · · · ×Nk, with N1, . . . , Nk minimal normal subgroups of H, and call
Gi the monolithic primitive group associated to Ni for i = 1, . . . , k. We need to prove that k = 1, so
assume by contradiction that k ≥ 2. Let G := G1, and suppose without loss of generality that N1 is
non-abelian (this assumption is allowed by Corollary 1.21) and σ∗(G) ≤ σ∗(Gi) for every
i ∈ {1, . . . , k} such that Ni is non-abelian. Let us use Notations 2.2 for G. If S = M11 then since
Out(M11) = {1} the result follows by Proposition 2.46, so assume that S = Alt(n) with n ≥ 30
admitting a prime divisor at most 4

√
n. Theorem 2.48 implies that m ∈ {1, 2, 4}. But recall that

G/ soc(G) embeds in X oK, and K is a transitive subgroup of Sym(m). Since X/ soc(X) has order
1 or 2, if |K| is a power of 2 the result follows by Corollary 2.13. If |K| is not a power of 2 then K
is a non-cyclic transitive subgroup of Sym(4), i.e. K ∈ {D8, C2 × C2,Alt(4), Sym(4)}, in particular
σ(H) ≤ σ(G) ≤ σ(K) ≤ 5, and the result follows for example by Corollary 2.16. �

We will also apply Theorem 2.32 and prove the following bounds.

Theorem 2.50. Let G be a primitive monolithic group with non-abelian socle Sm, and let us use
Notations 2.2. Suppose that S = Alt(n) for some integer n ≥ 5 and that G/ soc(G) is cyclic. The
following facts hold.

• Suppose n ≥ 11 is odd and X = Sym(n). Then

σ(G) = ω(2m) +

(n−1)/2∑
i=1

(
n

i

)m
.

• Suppose n ≥ 8 is even and X = Sym(n). Then(
1

2

(
n

n/2

))m
≤ σ(G) ≤ ω(2m) +

(
1

2

(
n

n/2

))m
+

[n/3]∑
i=1

(
n

i

)m
.

In particular, for fixed m, σ(G) ∼
(

1
2

(
n
n/2

))m
as n→∞.

• Suppose n ≥ 27 is odd with a prime divisor at most 4
√
n and X = Alt(n). Then(

n!

(n/p)!pp!

)m
≤ σ(G) ≤ ω(m) +

[n/3]∑
i=1

(
n

i

)m
+

(
n!

(n/p)!pp!

)m
.

• Suppose n > 12 is divisible by 4 and X = Alt(n). Then

1

2

n∑
i=1
i odd

(
n

i

)m
≤ σ(G) ≤ ω(m) +

1

2

n∑
i=1
i odd

(
n

i

)m
+

(
1

2

(
n

n/2

))m
.
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• Suppose n > 12 is congruent to 2 modulo 4 and X = Alt(n). Then

σ(G) = α(m) +

(n/2)−2∑
i=1
i odd

(
n

i

)m
+

1

2m

(
n

n/2

)m
.

Theorem 2.50 summarizes the results proved in [GM] (dealing with the case X = Alt(n)) by Attila
Maróti and myself and in [Gar2] (dealing with the case X = Sym(n)) by myself.
The remaining of this section is devoted to the proof of Theorems 2.48 and 2.50. We will prove
Theorem 2.48 by applying Theorem 2.42, and we will prove Theorem 2.50 by applying Theorem
2.32. Throughout the proof we will use the following fact, proved in [MarP]: the order of a
primitive maximal subgroup of Alt(n) or Sym(n) not containing Alt(n) is at most 2.6n.
Condition (0) of Theorem 2.42 for S = Alt(n) is implied by the following fact if n 6= 6.

Proposition 2.51. Let n ≥ 5, n 6= 6 be an integer, and if n ≥ 8 let ` be a prime such that
n/2 < ` < n− 2 (such a prime exists by the Bertrand-Chebyshev theorem), if n = 5 let ` = 3 and if
n = 7 let ` = 5. Let a, b ∈ Sym(n) have cyclic structures according to the following table.

Case 1 [−,−] Case 2 [+,−] Case 3 [+,+]
n ≥ 5 odd (2, n− 2), (n− 1) (n), (`, n− `) (`), (n)
n ≥ 8 even (`, 2, n− `− 2), (n) (`), (n) (2, n− 2), (`, n− `)

Then 〈a, b〉 ⊇ Alt(n).

Proof. It is easy to see that 〈a, b〉 is a primitive subgroup of Sym(n) containing either a
2-cycle or a `-cycle. By the Jordan theory (cfr. for example [Cam, Theorem 6.15, Exercise 6.6]), if
n ≥ 8 then 〈a, b〉 ⊇ Alt(n). If n ∈ {5, 7} the result follows from the fact that the transitive
subgroups of Sym(n) not containing Alt(n) have order coprime to `. �

Let G be a primitive monolithic group with non-abelian socle, and let us use Notations 2.2. Let
S = Alt(n) for some n ≥ 5, and let Enc be as in the statement of Theorem 2.42. Using Observation
2.44 and Proposition 2.51 it is easy to show that Enc ≥ n!/2 whenever n ≥ 5 and n 6= 6. Therefore
for S = Alt(n), n ≥ 5, n 6= 6, condition (5) of Theorem 2.42 can be substituted with the following:

(5′)
∑

M∈M∪J

|S : M |m−1 ≤ |S|m−m/r−1

We will deal with each case separately. Let us first prove some useful inequalities.

6.1. Inequalities. Recall the famous

Proposition 2.52 (Stirling’s formula). For all positive integers n we have
√

2πn(n/e)ne1/(12n+1) < n! <
√

2πn(n/e)ne1/(12n).

In the following we let n,m be positive integers.

Lemma 2.53. Let a, b be positive integers, with a > b.
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(1) Suppose n is odd. Let K be an intransitive maximal subgroup of Alt(n). If
(n2 − 1)a ≥ 4ae2(a−b)n2b, then |K|a/b ≥ |Alt(n)|.

(2) Suppose n is even. Let K be a maximal imprimitive subgroup of Alt(n) of the form
(Sym(n/2) o Sym(2)) ∩ Alt(n). If na ≥ 2aea−bnb, then |K|a/b ≥ |Alt(n)|.

Proof. We prove only (1), since the proof of (2) is similar. Suppose n is odd. Since the
smallest intransitive maximal subgroups of Alt(n) are the ones of type ((n− 1)/2, (n+ 1)/2), what
we have to prove is the following inequality:

(1/2)a/b((n− 1)/2)!a/b((n+ 1)/2)!a/b ≥ n!/2.

Since e
a/b

6(n−1)+1
+

a/b
6(n+1)+1 ≥ e1/12n for every positive integer n, using Stirling’s formula we see that it is

sufficient to show that

(1/2)a/b((n− 1)/2e)a(n−1)/2b
√

(π(n− 1))a/b((n+ 1)/2e)a(n+1)/2b
√

(π(n+ 1))a/b ≥

≥ (1/2)(n/e)n
√

2πn.

Re-write this as follows:

((n2 − 1)/4e2)a(n−1)/2b(π/2)a/b(n2 − 1)a/2b((n+ 1)/2e)a/b ≥
≥ (1/2)(n/e)n

√
2πn.

In other words:
((n2 − 1)/4e2)an/2b(π(n+ 1)/2)a/b ≥ (1/2)

√
2πn(n/e)n.

Since π(n+ 1)/2 ≥ (1/2)
√

2πn we are reduced to prove that

((n2 − 1)/4e2)an/2b ≥ (n/e)n,

i.e. (n2 − 1)a ≥ (n/e)2b(4e2)a = 4ae2(a−b)n2b. �

The following lemma is shown in the proof of [MarS, Lemma 2.1].

Lemma 2.54. If n ≥ 8 we have
((n/a)!)aa! ≥ ((n/b)!)bb!

whenever a and b are divisors of n with a ≤ b.

Lemma 2.55. Let n 6= 9, 15 be an odd positive integer, and let a ≥ 3 be a proper divisor of n. Then(
n− 1

2

)
!

(
n− 3

2

)
! ≥ (n/a)!a · a!.

Proof. Proceed by inspection for 21 ≤ n ≤ 299, using lemma 2.54. Assume n ≥ 300. Let us
use Stirling’s formula. We are reduced to prove that√

π(n− 1)((n− 1)/2e)(n−1)/2
√
π(n− 3)((n− 3)/2e)(n−3)/2 ≥

≥ 2
√

2πn/a
a
(n/ae)n

√
2πa(a/e)a.

Using the inequalities π ≥
√

2π and n− 3 ≥ a we are reduced to prove that

(n− 1)1/2(n− 1)(n−1)/2(n− 3)(n−3)/2 ≥ 2/(2e)2
√

2πn/a
a
(2n/a)n(a/e)a,
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and using n− 1 ≥ n− 3 we obtain:

(n− 1)1/2(n− 3)n−2 ≥ (2/(4e2))(2πn/a)a/2(2n/a)n(a/e)a.

Using the inequality 3 ≤ a ≤
√
n we obtain:

(n− 1)1/2(n− 3)n−2 ≥ (2/4e2)(2πn/3)
√
n/2(2n/3)n(

√
n/e)

√
n.

Take logarithms and divide by n, obtaining

(1/2n) log(n− 1) + ((n− 2)/n) log(n− 3) ≥ (1/n) log(2/4e2) + (1/2
√
n) log(2π/3)+

+(1/2
√
n) log(n) + log(2n/3) + (1/

√
n) log(

√
n/e).

Since
√
n− 1 ≥ 2/4e2 and (1/2

√
n) log(2π/3) ≤ 1/

√
n we are reduced to show that

log(n− 3) ≥ (2/n) log(n− 3) + (1/
√
n) log(n) + log(2n/3).

Since n ≥ 300 we have that (2/n) log(n− 3) + (1/
√
n) log(n) < 0.37, hence it suffices to show that

log(n− 3) ≥ 0.37 + log(2n/3), i.e. n− 3 ≥ (2/3)e0.37 · n. This is true since (2/3)e0.37 < 0.97. �

Corollary 2.56. Let n ≥ 11 be odd. Then the order of an intransitive maximal subgroup of
Sym(n) (resp. Alt(n)) is bigger than the order of any transitive maximal subgroup of Sym(n) (resp.
Alt(n)) different from Alt(n).

Proof. The imprimitive case follows from Lemma 2.55 noticing that
((n+ 1)/2)!((n− 1)/2)! ≥ ((n− 1)/2)!((n− 3)/2)!, and if n = 15 then
((n+ 1)/2)!((n− 1)/2)! ≥ (n/a)!aa! for a ∈ {3, 5}. By [MarS] the order of a primitive maximal
subgroup of Alt(n) or Sym(n) not containing Alt(n) is at most 2.6n and
((n+ 1)/2)!((n− 1)/2)! ≥ 2.6n. �

In what follows we will use when convenient the following argument. Suppose we want to prove an
inequality of the type

∑k
i=1 a

m
i ≤ bm, where a1, . . . , ak, b are positive integers. If this is true for a

particular m then it is true for every m larger. Indeed, setting a := max{a1, . . . , ak}, we have∑k
i=1 a

m+1
i =

∑k
i=1 aia

m
i ≤ a

∑k
i=1 a

m
i ≤ abm ≤ bm+1.

Lemma 2.57. Let n ≥ 14 be odd and let m ≥ 3, m 6= 4. Let r be the smallest prime divisor of m.
Then

(n−1)/2∑
k=1

(
n

k

)m
≤ (n!/2)m−m/r−1.

Proof. The result is true by inspection for n ≥ 14 and m = 3, and for n ≥ 5 and m = 5.
Suppose m ≥ 6. The result is true by inspection for 14 ≤ n ≤ 28. Assume that n ≥ 29. It is enough
to prove that n−1

2

(
n

(n−1)/2

)m ≤ (n!/2)m/2−1. Since n ≥ 29, n!/2 ≥ 27n/2 and it is enough to show that

2nm+n ≤ 2(7n/2)(m/2−1), i.e. nm+ n ≤ 7nm/4− 7n/2, i.e. m ≥ 6. �

Lemma 2.58. If 1 ≤ k ≤ n then
∑k

i=1

(
n
i

)m ≤ (nk)
m

1−(k/(n−k+1))m
.
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Proof. Note that(
n
k

)m
+
(
n
k−1

)m
+
(
n
k−2

)m
+ · · ·(

n
k

)m = 1 +

(
k

n− k + 1

)m
+

(
k(k − 1)

(n− k + 1)(n− k + 2)

)m
+ · · ·

and we can bound the right-hand side from above by the geometric series

1 +

(
k

n− k + 1

)m
+

(
k

n− k + 1

)2m

+ · · · = 1

1−
(

k
n−k+1

)m .
The result follows. �

Lemma 2.59. If m ≥ 2 and either n ∈ {8, 11, 13, 14} or n ≥ 16 then

2m−1 +

[n/3]∑
i=1

(
n

i

)m
<

(
1

2

(
n

[n/2]

))m
.

Proof. The lemma is easily seen to be true for n ≤ 23. Suppose n ≥ 24. Using Lemma 2.58 we
see that it is enough to show that

(3) 2 +

(
n

[n/3]

)2
1

1− ( [n/3]
[2n/3]+1

)
2 <

(
1

2

(
n

[n/2]

))2

,

and this is true if 2 + (4/3)
(

n
[n/3]

)2
<
(

1
2

(
n
n/2

))2

. It is clearly enough to show that 8
(

n
[n/3]

)2 ≤
(

n
[n/2]

)2
.

It is easy to see that if n ≥ 9 then
(

n
[n/3]+1

)
≥ (3/2)

(
n

[n/3]

)
, so that if 0 ≤ i ≤ [n/2]− [n/3] then(

n
[n/3]+i

)
≥ (3/2)i

(
n

[n/3]

)
. Since n ≥ 24 we have 8(2/3)6 ≤ 1 and [n/3] + 3 ≤ [n/2]. Therefore

8

(
n

[n/3]

)2

≤ 8(2/3)6

(
n

[n/3] + i

)2

≤
(

n

[n/2]

)2

.

�

Lemma 2.60. Let p be a prime divisor of n such that 3 ≤ p ≤ 4
√
n, and let r be the smallest prime

divisor of m. If m ≥ 3 and m 6= 4 then
(

1
2
(n/p)!pp!

)m ≥ (m/2)(n!/2)m/r+1 for every n ≥ 5.

Proof. Since p ≥ 3, (p!/2)m ≥ m/2 so it is enough to show that

1 ≤ ((n/p)!)pm

(n!/2)1+m/r
.

Substituting Stirling’s formula on the right-hand side, we see that it is sufficient to show that

1 ≤ (2π(n/p))pm/2(n/pe)mn

√
2πn

1+m/r
(n/e)n(1+m/r)e(1+m/r)/(12n)2−1−m/r

.

Since n ≥ 5, (2/e1/12n) ≥ 1.9 and it is enough to show that
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(4) 1 ≤ (2π(n/p))pm/2(n/pe)mn

(2πn/(1.9)2)(1/2)(1+m/r)(n/e)n(1+m/r)
.

Suppose first m ≥ 6. Since 3 ≤ p ≤ 4
√
n and r ≥ 2, m ≥ 6, raising to the power 1/m we see that it

is sufficient to prove

1 ≤ (2πn3/4)
3/2

(n3/4/e)
n

(2πn/(1.9)2)(1/2)(1/6+1/2)(n/e)n(1/6+1/2)
.

Re-arranging terms we obtain

(2π/(1.9)2)(1/2)(1/2+1/6)

(2π)3/2
≤ nn/4+9/8−(1/2)(1/6+1/2)(e/n)n/6

en/2
.

This is true for every n ≥ 1.
Suppose now r ≥ 3. Starting from inequality (4), using 3 ≤ p ≤ 4

√
n and r ≥ 3, m ≥ 3 we are

reduced to prove that

1 ≤ (2πn3/4)3/2(n3/4/e)n

(2πn/(1.9)2)(1/2)(1/3+1/3)(n/e)n(1/3+1/3)
.

Re-arranging terms we obtain

(2π/(1.9)2)1/3

(2π)3/2
≤ nn/12+9/8−1/3e−n/3.

This is true for every n ≥ 1. �

Lemma 2.61. If n ≥ 19 is odd and p is an odd prime divisor of n then 3
(

n
[n/3]

)m ≤ ( n!
(n/p)!pp!

)m
.

Proof. The lemma is true for 19 ≤ n ≤ 23 by inspection. Suppose n ≥ 24. By Corollary 2.56
we are reduced to show that 3

(
n

[n/3]

)
≤
(

n
[n/2]

)
. It is easy to see that if n ≥ 9 then(

n
[n/3]+1

)
≥ (3/2)

(
n

[n/3]

)
, so that if 0 ≤ i ≤ [n/2]− [n/3] then

(
n

[n/3]+i

)
≥ (3/2)i

(
n

[n/3]

)
. Since n ≥ 24 we

have [n/3] + 3 ≤ [n/2]. Therefore

3

(
n

[n/3]

)
≤ 3(2/3)3

(
n

[n/3] + 3

)
≤
(

n

[n/2]

)
.

�

Lemma 2.62. Let n be even and let a be the smallest divisor of n larger than 2. If n > 10, then

n((n/a)!)aa! ≤ 2((n/2)!)2.

Proof. If n = 2a, then we must consider the inequality 2a ≤ (a− 1)!. This is clearly true if a
satisfies a > 5, hence if n > 10. This means that we may assume that 3 ≤ a ≤ n/4.
The lemma is true for 10 < n ≤ 28 by inspection. From now on we assume that n ≥ 30.
Applying Stirling’s formula we see that it is sufficient to verify the inequality

n(
√

2π(n/a))
a
(n/ae)nea

2/(12n)
√

2πa(a/e)ae1/(12a) ≤ 2πn(n/2e)ne2/(6n+1).
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After rearranging factors we obtain

2n(2π(n/a))a/2ea
2/(12n)

√
2πa(a/e)ae1/(12a) ≤ an2πe2/(6n+1).

After taking natural logarithms and rearranging terms we obtain

a
( ln(2π)

2
+

lnn

2
+

ln a

2
+

a

12n
− 1
)

+
( ln a

2
+

1

12a
− ln(2π)

2
− 2

6n+ 1

)
≤ n(ln a− ln 2).

By the assumption 3 ≤ a ≤ n/4 and by dividing both sides of the previous inequality by lnn we see
that it is sufficient to prove

a
(

1 +
ln(2π)

2 lnn
+

1

48 lnn
− 1

lnn

)
+
(1

2
+

1

36 lnn
− ln(2π)

2 lnn
− 2

(6n+ 1) lnn

)
≤ n

lnn
(ln a− ln 2).

Since
ln(2π)

2 lnn
+

1

48 lnn
− 1

lnn
< 0

and
1

36 lnn
− ln(2π)

2 lnn
− 2

(6n+ 1) lnn
< 0,

it is sufficient to prove

(5)
a+ 0.5

ln a− ln 2
≤ n

lnn
.

This is true for a = 3, 4, and 5 (provided that n ≥ 30). Hence assume that 7 ≤ a ≤ n/4.
The function x+0.5

lnx−ln 2
increases when x > 6, hence it is sufficient to show inequality (5) in case of the

substitution a = n/4. But that holds for n ≥ 30. The proof of the lemma is now complete. �

Lemma 2.63. Let n be even and let a be the smallest divisor of n larger than 2. Let m ≥ 2. Then
for n > 10 we have the following.

(1) If n is divisible by 4, then(((n/a)!)aa!

2

)m
≤ (((n/2)− 2)!)((n/2)!)

((((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(2) If n is congruent to 2 modulo 4, then(((n/a)!)aa!

2

)m
≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2.

Proof. By Lemma 2.62 it is sufficient to show that both displayed inequalities follow from the
inequality

n((n/a)!)aa! ≤ 2((n/2)!)2.

Indeed, the first displayed inequality becomes(((n/a)!)aa!

2

)m
≤ 8

n2 − 4

((((n/2)− 1)!)(((n/2) + 1)!)

2

)m
.
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Since 2/n ≤ (8/(n2 − 4))
1/2 ≤ (8/(n2 − 4))

1/m
, it is sufficient to see that

(n/2)((n/a)!)aa! ≤ ((n/2)− 1)!((n/2) + 1)!.

But this proves the first part of the lemma since

((n/2)!)2 < ((n/2)− 1)!((n/2) + 1)!.

After rearranging the factors in the second displayed inequality of the statement of the lemma, we
obtain (

((n/a)!)aa!
)m
≤ (8/n2)(n/2)!2m.

By similar considerations as in the previous paragraph, we see that this latter inequality follows
from the inequality n((n/a)!)aa! ≤ 2((n/2)!)2. �

The following lemma is easy to prove.

Lemma 2.64. For n > 12 and m ≥ 2 we have the following.

(1) If n is divisible by 4, then

2.6nm ≤ (((n/2)− 2)!)((n/2)!)
((((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(2) If n is congruent to 2 modulo 4, then

2.6nm ≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2.

Lemma 2.65. (n/2)!4 ≥ n!3/2 for every n ≥ 32 even.

Proof. The result is true by inspection for 32 ≤ n ≤ 42. Suppose n ≥ 44. Applying Stirling
formula we see that it is enough to show that (n/2e)2n(πn)2 ≥ 23/2(n/e)3n/2(2πn)3/4. Since n ≥ 2
we have (πn)2 ≥ 23/2(2πn)3/4, so we are reduced to show that (n/2e)n/2 ≥ 23n/2 = 8n/2, i.e.
n/2e ≥ 8, i.e. n ≥ 44. �

Lemma 2.66. Let m ≥ 2. The following hold.

(1) Let n be divisible by 4 and larger than 8. Then

m(n!/2)m/2 ≤ (((n/2)− 2)!)((n/2)!)
((((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(2) Let n be congruent to 2 modulo 4 and larger than 10. Then

m(n!/2)m/2 ≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2.

Proof. (1) After rearranging the inequality and taking roots we obtain

m2/m(n!/2) ≤
( 8

n2 − 4

)2/m(((n/2)− 1)!((n/2) + 1)!

2

)2

.

Since m2/m ≤ 4 and 8/(n2 − 4) ≤ (8/(n2 − 4))
2/m

, it is sufficient to see that

(n2 − 4)n! ≤ (((n/2)− 1)!((n/2) + 1)!)2.
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Since
(

n
(n/2)−1

)
≤ 2n−1, it is sufficient to prove

(n2 − 4)2n−1 ≤ ((n/2)− 1)!((n/2) + 1)!.

But this is true for n ≥ 12.
(2) After rearranging the inequality and taking roots we see that it is sufficient to show

4m2/m(n/2)4/m(n!/2) ≤ ((n/2)!)4.

Since (m/2)2/m ≤ 2 and (n/2)4/m ≤ (n/2)2, it is sufficient to see that

n2n! ≤ ((n/2)!)4.

Using Lemma 2.65 we see that this is true if n ≥ 10. �

Lemma 2.67. Let r be the smallest prime divisor of m. If n ≥ 20 is even and m ≥ 3, m 6= 4 then
(n/4 + 1)

(
n
n/2

)m ≤ (n!/2)m−m/r−1.

Proof. Suppose first that m 6= 3. Since r ≥ 2 it is enough to show that
(n/4 + 1)

(
n
n/2

)m ≤ (n!/2)m/2−1. Re-arranging terms we obtain (n/4 + 1)(n!/2) ≤ ((n/2)!4/(2n!))m/2.

By Lemma 2.65 if n ≥ 32 it is enough to show that (n!/4)m/4−1 ≥ 2(n/4 + 1), which is true as
m/4− 1 > 0. The case 20 ≤ n ≤ 30 is easily dealt with.

Suppose now m = 3. We obtain (n/4 + 1)
(
n
n/2

)3 ≤ (n!/2). This is true by inspection for

18 ≤ n ≤ 30. If n ≥ 32 then using Lemma 2.65 as above we are reduced to prove that
n/2 + 2 ≤ n!1/4. This is true for n ≥ 6. �

6.2. Case I: n odd, X = Sym(n). Suppose that n is odd and X = Sym(n).
Let Π be the set consisting of the (k, n− k)-cycles of Sym(n) where 1 ≤ k ≤ n− 1, let M be the
family of the maximal intransitive subgroups of Alt(n) and let J = ∅. Let A be the set of the
(2, n− 2)-cycles of Sym(n), let B be the set of the (n− 1)-cycles of Sym(n), and for m odd let C be
the set of n-cycles of Alt(n), for m even let C = ∅. It is easy to show that conditions (1), (2), (3) of
Theorem 2.32 and conditions (1), (2), (3), (4) of Theorem 2.42 are fulfilled.
Condition (6) of Theorem 2.32 follows from Proposition 2.51.
By Lemma 2.57, condition (5) of Theorem 2.42 is fulfilled if m ≥ 3, m 6= 4 and n ≥ 15 is odd.

Claim 2.68. Condition (4)(i) of Theorem 2.32 and condition (6) of Theorem 2.42 are fulfilled if
n ≥ 11 is odd and m ≥ 1.

Suppose n ≥ 11, and take M ∈M, K a subgroup of Alt(n) outside M such that NSym(n)(K) is a
maximal subgroup of Sym(n) supplementing Alt(n). Then |M | ≥ |K| by Corollary 2.56, and the
inequality |NSym(n)(M) ∩ Π| ≥ |NSym(n)(K) ∩ (Π ∪ C)| is proved in [MarS, Claim 3.2].

Claim 2.69. Condition (4)(ii) of Theorem 2.32 and condition (7) of Theorem 2.42 are fulfilled if
n ≥ 11 is odd and m ≥ 2.

If M ∈M is the stabilizer of a subset of {1, . . . ,m} of size k then
|NX(M) ∩ Π| = (k − 1)!(n− k − 1)!, so we have to prove that

(
1

2
(
n− 1

2
)!(
n+ 1

2
)!)m−1(

n− 1

2
− 1)!(

n+ 1

2
− 1)! ≥ 2m(n!/2)m/r.
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In other words

(6)
8

n2 − 1
(
1

2
(
n− 1

2
)!(
n+ 1

2
)!)m ≥ 2m · (n!/2)m/r.

Suppose that n ≥ 15. Let M < Alt(n) be the stabilizer of a proper non-empty subset of {1, . . . ,m}.
Then |M |3/2 ≥ |Alt(n)| for every M ∈M by Lemma 2.53, so we are reduced to prove that

(8/(n2 − 1))|Alt(n)| 23m ≥ 2m · |Alt(n)|m/2, i.e. |Alt(n)|m/6 ≥ (m/4)(n2 − 1). This is clearly true for
every m ≥ 2 since n ≥ 15. If n = 11 then |M | ≥ 1

2
5!6! = 43200 and (6) is true for m ≥ 2. If n = 13

then |M | ≥ 1
2
6!7! = 1814400 and (6) is true for m ≥ 2.

Let us deal with condition (8) of Theorem 2.32.

Claim 2.70. Condition (8) of Theorem 2.32 is fulfilled if n ≥ 7 is odd and m ≥ 2.

Let V be a maximal subgroup of Sym(n) supplementing Alt(n) and such that V ∩ Alt(n) 6∈ M.
Condition (8) of Theorem 2.32 translates as follows:

2|Alt(n)|m

(n− 1)(n− 2)
≥ max{|V ∩ Alt(n)|m−1 · (|V ∩ Π|+ |V ∩ C|), 2m · |Alt(n)|m/r}.

The inequality 2|Alt(n)|m
(n−1)(n−2)

≥ 2m · |Alt(n)|m/r is clearly true for m ≥ 2 and n ≥ 5. The inequality

2|Alt(n)|m

(n− 1)(n− 2)
≥ |V ∩ Alt(n)|m−1 · (|V ∩ Π|+ |V ∩ C|)

is easily seen to be true if n ∈ {7, 9}. Suppose n ≥ 11. It suffices to show that
2

(n−1)(n−2)
|Alt(n)|m ≥ 2|R|m for any maximal transitive subgroup R of Sym(n) different from

Alt(n), i.e. (| Sym(n) : R|/2)m ≥ (n− 1)(n− 2), and this is true by Corollary 2.56, being true for
m = 1: | Sym(n) : R|/2 ≥

(
n
5

)
/2 > (n− 1)(n− 2) since n > 8.

6.3. Case II: n even, X = Sym(n). Suppose that n ≥ 32 is even and X = Sym(n).
Let Π be the set of the n-cycles in Sym(n), let M be the family of the maximal imprimitive
subgroups of Alt(n) corresponding to the partitions given by two subsets of {1, . . . , n} of size n/2.
Set C = ∅. Let J be the family of the maximal intransitive subgroups of Alt(n) conjugate to
(Sym(i)× Sym(n− i)) ∩ Alt(n) where i ∈ {1, . . . , [n/3]}. It is easy to see that conditions (1), (2),
(3) of Theorem 2.32 and conditions (1), (2), (3), (4) of Theorem 2.42 are fulfilled.
In [MarP] it is shown that the order of a primitive subgroup of Sym(n) not containing Alt(n) is at
most 2.6n. This together with Lemma 2.54 implies that if n ≥ 8 then the order of any member of
M is larger than the order of any subgroup of Alt(n) of the form K ∩Alt(n) where K is a maximal
subgroup of Sym(n) whose intersection with Π is non-empty. Indeed (n/2)!2 ≥ 2.6n if n ≥ 10, and
all the maximal subgroups of Alt(8) whose normalizer in Sym(8) intersects Π non-trivially belong
to M. In [MarS, Claims 3.3, 3.4] it is proved that |NSym(n)(M) ∩ Π| ≥ |K ∩ Π| for every M ∈M
and every maximal subgroup K of Sym(n) such that K ∩ Alt(n) 6∈ M. This implies that condition
(4)(i) of Theorem 2.32 and condition (6) of Theorem 2.42 are fulfilled for n ≥ 8 and m ≥ 1.
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Let us deal with condition (4)(ii) of Theorem 2.32 and condition (7) of Theorem 2.42. It is easy to
see that they are fulfilled if n ∈ {8, 10}. Suppose n ≥ 12. By Lemma 2.53 |M |3/2 ≥ |Alt(n)| for
every M ∈M. Therefore it suffices to prove that

|Alt(n)|(2/3)(m−1) · |NSym(n)(M) ∩ Π| ≥ 2m · |Alt(n)|m/2.
This is true for m = 3 and every m ≥ 5 (being true for m = 5, since |NSym(n)(M) ∩ Π| ≥ 10).
Observe that if m ∈ {2, 4} then condition (4)(iii) of Theorem 2.32 is trivially fulfilled (since n is
even, the n-cycles are odd permutations, so they do not admit square roots in Sym(n)).
Lemma 2.59 implies that if n ≥ 14 and m ≥ 2 then condition (8) of Theorem 2.42 is fulfilled.
Condition (5) of Theorem 2.42 is then implied by the following inequality if n ≥ 14 and m ≥ 2:

(7) 2

(
1

2

(
n

n/2

))m
≤ (n!/2)m−m/r−1.

Using r ≥ 2 we are reduced to

2(n!/2) ≤

 n!/2
1
4

(
n
n/2

)2

m/2

= (2(n/2)!4/n!)m/2.

If n = 30 then this is true for every m ≥ 4. If n ≥ 32 then by Lemma 2.65 it suffices that m/2 ≥ 2,
i.e. m ≥ 4. If m = 3 then inequality (7) becomes

2

(
1

2

(
n

n/2

))3

≤ n!/2,

in other words n!2 ≤ 2(n/2)!6. This is true by inspection for 12 ≤ n ≤ 30. If n ≥ 32 then using
Lemma 2.65 we are reduced to n!2 ≤ 2n!9/4, which is true.

6.4. Case III: n odd, p ≤ 4
√
n, X = Alt(n). Suppose that n ≥ 5 is odd, with smallest prime

divisor p at most 4
√
n and X = Alt(n).

Let Π be the set of n-cycles in Alt(n), and let M be the set consisting of the intransitive maximal
subgroups of Alt(n) conjugate to (Sym(n/p) o Sym(p)) ∩ Alt(n). Let C = ∅. Let J be the family of
intransitive maximal subgroups of Alt(n) conjugate to (Sym(i)× Sym(n− i)) ∩ Alt(n) for
i ∈ {1, . . . , [n/3]}. It is easy to see that conditions (1), (2), (3) of Theorem 2.32 and conditions (1),
(2), (3), (4) of Theorem 2.42 are fulfilled.
Condition (4)(i) of Theorem 2.32 and condition (6) of Theorem 2.42 translate as follows:

2

n

(
1

2
(n/p)!pp!

)m
≥ max{2.6nm, 2

n

(
1

2
(n/r)!rr!

)m
},

where r is a prime divisor of n different from p. This follows from Lemma 2.54 if n ≥ 8.
Condition (4)(ii) of Theorem 2.32 and condition (7) of Theorem 2.42 translate as follows:

2

n

(
1

2
(n/p)!pp!

)m
≥ m(n!/2)m/2.
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This is implied by Lemma 2.60 if n ≥ 5, m ≥ 3 and m 6= 4.
Condition (8) of Theorem 2.42 translates as follows:

2m−1 +

[n/3]∑
i=1

(
n

i

)m
<

(
n!

(n/p)!pp!

)m
.

By Lemma 2.58 and Lemma 2.61 this is true if m ≥ 1 and n ≥ 19.
Condition (5) of Theorem 2.42 translates as follows:

[n/3]∑
i=1

(
n

i

)m
+

(
n!

(n/p)!pp!

)m
≤ (n!/2)m/2−1.

Given condition (8), this is implied by

2

(
n!

(n/p)!pp!

)m
≤ (n!/2)m/2−1.

This is implied by Lemma 2.60 if n ≥ 5 and m ≥ 3, m 6= 4.

6.5. Case IV: n even, X = Alt(n). Suppose that n is even and X = Alt(n). Let C = ∅.
Suppose n is divisible by 4. Let Π be the set of all (i, n− i)-cycles of Alt(n) for all odd i with
i < n/2 and let M be the set of all maximal subgroups of Alt(n) conjugate to
(Sym(i)× Sym(n− i)) ∩ Alt(n) for all odd i with i < n/2. Let J be the family of maximal
imprimitive subgroups of Alt(n) conjugate to (Sym(n/2) o Sym(2)) ∩ Alt(n). It is easy to see that
conditions (1), (2), (3) of Theorem 2.32 and conditions (1), (2), (3), (4) of Theorem 2.42 are
fulfilled.
Lemmas 2.63 and 2.64 imply that if n > 12 is divisible by 4 and m ≥ 2 then condition (4)(i) of
Theorem 2.32 and condition (6) of Theorem 2.42 are fulfilled.
Lemma 2.66 implies that if n > 8 is divisible by 4 and m ≥ 2 then condition (4)(ii) of Theorem 2.32
and condition (7) of Theorem 2.42 are fulfilled.
Let us deal with condition (8) of Theorem 2.42. It translates as follows:

2m−1 +

(
1

2

(
n

n/2

))m
<

n/2−1∑
i=1 odd

(
n

i

)m
.

It is implied by the inequality 1
2

(
n
n/2

)
<
(

n
n/2−1

)
, true for n ≥ 4.

Condition (5) of Theorem 2.42 translates as follows:(
1

2

(
n

n/2

))m
+

n/2−1∑
i=1 odd

(
n

i

)m
≤ (n!/2)m−m/r−1.

It is therefore implied by Lemma 2.67 if n ≥ 20 and m ≥ 3, m 6= 4.
Suppose 6 < n ≡ 2 mod (4). Let ` be a prime not dividing n such that ` ≤ n− 3 (cfr. Proposition
2.51). Let Π be the set of all (i, n− i)-cycles of Alt(n) for all odd i with i ≤ n/2, let A be the set of
all (n− 1)-cycles of Alt(n), let B be the set of all (`, n− `)-cycles of Alt(n), let C = ∅ and letM be
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the set of all maximal subgroups of Alt(n) conjugate to (Sym(i)× Sym(n− i)) ∩ Alt(n) for some i
odd with i < n/2 or conjugate to (Sym(n/2) o Sym(2)) ∩ Alt(n). Let J = ∅. It is easy to see that
conditions (1), (2), (3), (5), (6), (7) of Theorem 2.32 and conditions (1), (2), (3), (4) of Theorem
2.42 are fulfilled. Note that the quantity

(1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2

is a lower bound of the left-hand sides of condition (4) of Theorem 2.32. Thus Lemmas 2.63, 2.64
and 2.66 imply that condition (4) of Theorem 2.32 and conditions (6) and (7) of Theorem 2.42 are
fulfilled if m ≥ 2 and n ≥ 14 is congruent to 2 modulo 4.
Condition (8) of Theorem 2.32 translates as follows:

4

`(n− `)(n− 1)
|Alt(n)|m ≥ max{2.6nm, (1

2
(n/a)!aa!)m,m|Alt(n)|m/r},

where a is the smallest odd divisor of n. Observe that `(n− `) ≤ (n/2)2. Therefore Lemmas 2.63,
2.64 and 2.66 imply that Condition (8) of Theorem 2.32 is implied by the following inequality if
m ≥ 2 and n ≥ 14 is congruent to 2 modulo 4.

(1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2 ≤ 4

(n/2)2(n− 1)
|Alt(n)|m.

It re-writes as follows:

(n/2)!2m ≤ 2n!m

n− 1
.

This is implied by
(
n
n/2

)m ≥ (n− 1)/2, true for m ≥ 1 and n ≥ 2.

Condition (5) of Theorem 2.42 translates as follows:

(n/2)−2∑
i=1
i odd

(
n

i

)m
+

(
1

2

(
n

n/2

))m
≤ (n!/2)m−m/r−1.

This is implied by Lemma 2.67 if n ≥ 20 and m ≥ 3, m 6= 4.

7. σ(Alt(5) o C2) = 57

We conclude this chapter with a computation which appears to need arguments which are
essentially different from those we have used so far. We prove that

Theorem 2.71. σ(Alt(5) o C2) = 1 + 6 · 6 + 4 · 5 = 57.

The meaning of the displayed sum is the following: σ(Alt(5) o C2) is realized by the upper bound of
Proposition 2.29 obtained considering the covering of Alt(5) consisting of the six normalizers of the
Sylow 5-subgroups and four point stabilizers.
Let G := Alt(5) o C2, the semidirect product (Alt(5)× Alt(5)) o 〈ε〉 where ε, of order 2, acts on
Alt(5)×Alt(5) by exchanging the two variables. Recall that the maximal subgroups of G are of the
following five types:

• The socle N = Alt(5)× Alt(5).
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• Type ’r’: NG(M ×M l) where l ∈ Alt(5) and M is a point stabilizer.
• Type ’s’: NG(M ×M l) where l ∈ Alt(5) and M is the normalizer of a Sylow 5-subgroup.
• Type ’t’: NG(M ×M l) where l ∈ Alt(5) and M is an intransitive subgroup of type (3, 2).
• Type ’d’: NG(∆α) where α ∈ Sym(5) and ∆α := {(x, xα) | x ∈ Alt(5)}.

Recall that:

• N ∩NG(H) = H for every H of the type M ×M l or ∆α with M a maximal subgroup of
Alt(5).
• The element (x, y)ε belongs to NG(M ×M l) if and only if xl−1, ly ∈M . In particular
xy ∈M .
• The element (x, y)ε belongs to NG(∆α) if and only if (αy)2 = xy.

Let M be a family of proper subgroups of G which cover G.

Observation 2.72. N ∈M

Proof. Let x ∈ Alt(5) be a 5-cycle, and let y ∈ Alt(5) be a 3-cycle. Then the element (x, y)
does not belong to any NG(M ×M l) or NG(∆α) by the remarks above (no maximal subgroup of
Alt(5) has order divisible by 3 and 5). �

Call i the number of subgroups of type i in M for i = r, s, t, d.
The ’type’ of an element (x, y)ε ∈ G−N will be the cyclic structure of the element xy ∈ Alt(5).
The four possible cyclic structures will be denoted by 1, (3), (5), (2, 2).
The only maximal subgroups of G containing elements of type (3) are the ones of type r or t or d.
A subgroup of type r contains 96 elements of type (3). A subgroup of type t contains 12 elements
of type (3). A subgroup of type d contains 20 elements of type (3). G contains 1200 elements of
type (3). In particular 96r + 12t+ 20d ≥ 1200, in other words

(8) 24r + 3t+ 5d ≥ 300.

The only maximal subgroups of G containing elements of type (5) are the ones of type s or d. A
subgroup of type s contains 40 elements of type (5). A subgroup of type d contains 24 elements of
type (5) if α is even, 0 if α is odd. G contains 1440 elements of type (5). In particular
40s+ 24d ≥ 1440, in other words

(9) 5s+ 3d ≥ 180.

We know that G admits a cover which consists of 57 proper subgroups, with s = 36, r = 20,
t = d = 0 (the 20 subgroups of type r are NG(M ×M l) where l ∈ Alt(5) and M = Stab(i) for some
i ∈ {1, 2, 3, 4}).
Suppose by contradiction that σ(G) < 57, and let M be a cover with 56 proper subgroups. In
particular r + s+ t+ d+ 1 = 56, i.e. r + s+ t+ d = 55.

Observation 2.73. d ≤ 33, s ≥ 17 and r ≥ 6.

Proof. Inequality 9 re-writes as s ≥ 36− 3
5
d. Since r + s+ t+ d = 55,

r + t = 55− s− d ≤ 55− 36 + 3
5
d− d = 19− 2

5
d. Combining this with inequality 8 we obtain

24(19− 2
5
d) + 5d ≥ 300, i.e. d ≤ 156 · 5/23, i.e. d ≤ 33. Therefore s ≥ 36− 3

5
d = 36− 99

5
> 16.
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Inequality 8 re-writes as 21r + 2d− 3s+ 3(r + t+ d+ s) ≥ 300, i.e. 21r + 2d− 3s ≥ 135. Since
d ≤ 33 and s ≥ 17, 21r ≥ 135 + 3 · 17− 2 · 33 = 120, i.e. r ≥ 6. �

Observation 2.74. r + t+ d ≥ 20 and s < 36.

Proof. Consider the following elements of Alt(5): a1 := (243) ∈ Stab(1),
a2 := (143) ∈ Stab(2), a3 := (142) ∈ Stab(3), a4 := (132) ∈ Stab(4). Let X be the set of elements of
G of the form (x, y)ε with xy = ai for an i ∈ {1, 2, 3, 4} and x ∈ Ji, where Ji is a fixed set of
representatives of the right cosets of Stab(i), which will be specified later. Let H be the set of the
20 subgroups NG(M ×M l) of G of type r with M the stabilizer of i for i ∈ {1, 2, 3, 4}. Notice that
every element of X lies in exactly one element of H. Now observe that if a subgroup NG(K ×K l)
of type t contains an element (x, y)ε ∈ X then K is determined by ai = xy - use this to label the
K’s as Ki for i ∈ {1, 2, 3, 4} -, so that the only freedom is in the choice of the coset Kil. We will
choose the sets Ji in such a way that any two elements of Ji lie in different right cosets of Ki. This
implies that for every subgroup NG(K ×K l) of G of type t we have |X ∩NG(K ×K l)| ≤ 1. Let us
choose the Ji’s in such a way that for every subgroup NG(∆α) of type d we have |X ∩NG(∆α)| ≤ 1.
Choose:

J1 = {(452), (12534), (13425), (14)(35), (23)(15)},
J2 = {(134), (245), (123), (152), (125)},
J3 = {(142), (132), (134), (153), (135)},
J4 = {(132), (142), (243), (154), (145)}.

We have that for any i = 1, 2, 3, 4 any two elements of Ji lie in different right cosets of Ki. We have
to check that every subgroup of the form NG(∆α) contains at most one element of X . In other
words we have to check that if (x, y)ε ∈ X ∩NG(∆α) then (x, y)ε is determined. We have
(αy)2 = xy, so that if α is even then α = xyx, if α is odd then α = τxyxyx, where τxy is the
transposition whose support is pointwise fixed by xy. Let

Pi := {xyx | xy = ai, (x, y)ε ∈ X} ∪ {τxyxyx | xy = ai, (x, y)ε ∈ X} ⊂ Sym(5)

for i = 1, 2, 3, 4. Clearly |Pi| = 10 for i = 1, 2, 3, 4. All we have to show is that the Pi’s are pairwise
disjoint. This follows from the computation:

P1 = {(25)(34), (12)(35), (135), (14532), (15)(24),

(125)(34), (1352), (35), (132)(45), (24)},
P2 = {1, (15243), (14)(23), (14352), (14325),

(25), (1543), (14)(253), (1435), (1432)},
P3 = {(124), (14)(23), (234), (14253), (14235),

(124)(35), (14)(235), (2354), (1425), (1423)},
P4 = {(123), (13)(24), (12)(34), (13254), (13245),

(123)(45), (13)(245), (12)(345), (1325), (1324)}.
Clearly, the subgroups of G of type s do not contain any element of X .
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All this implies that H is definitely unbeatable on X , hence r + t+ d ≥ |H| = 20. It follows that
56 = |M| = 1 + r + s+ t+ d > s+ 20, i.e. s < 36. �

Observation 2.75. Let M be the normalizer of a Sylow 5-subgroup of Alt(5), let l ∈ Alt(5) and
suppose that NG(M ×M l) 6∈ M. Then NG(∆α) ∈M for every α ∈Ml. In particular, letting L be
the family of the cosets Ml where M < Alt(5) is the normalizer of a Sylow 5-subgroup and
NG(M ×M l) 6∈ M, the number of subgroups of type d in M is at least the size of the union of L.

Proof. The number of elements of type (5) in NG(M ×M l) is 40. Moreover the only maximal
subgroup of G of type r, s, t which contains one of these 40 elements is the one we are considering:
xy ∈M determines M and x ∈Ml determines Ml. Let c ∈M be a 5-cycle. The element (x, x−1c)ε
belongs to NG(∆α) if and only if (αx−1c)2 = c, i.e. αx−1c = c3, i.e. α = c2x. The result follows. �

Lemma 2.76. We have the following facts:

(1) Let k be a positive integer, and let L be the family of the cosets of the normalizers of the
Sylow 5-subgroups of Alt(5). Then any subfamily of L consisting of exactly k cosets covers
at least 10k − 2

(
k
2

)
elements of Alt(5).

(2) Let H 6= K be two normalizers of Sylow 5-subgroups of Alt(5). Then for any a1, a2, a3, b1,
b2, b3 ∈ Alt(5) such that Ha1, Ha2, Ha3, Kb1, Kb2, Kb3 are pairwise distinct, the union

Ha1 ∪Ha2 ∪Ha3 ∪Kb1 ∪Kb2 ∪Kb3

has size at least 42.

Proof. Let Ha,Kb ∈ L. If the intersection Ha ∩Kb is non-empty then it contains an element
x, so that Ha = Hx, Kb = Kx, and Ha ∩Kb = Hx ∩Kx = (H ∩K)x. It follows that the
maximum size of the intersection of two elements of L equals the maximum size of the intersection
of two normalizers of Sylow 5-subgroups, i.e. 2. Maximizing the sizes of the intersections we find
that k cosets cover at least 10k − 2

(
k
2

)
elements.

We now prove the second statement. Clearly |Ha1 ∪Ha2 ∪Ha3| = 30. Since |Hai ∩Kbj| ≤ 2 for
every i, j = 1, 2, 3,

|Ha1 ∪Ha2 ∪Ha3 ∪Kb1 ∪Kb2 ∪Kb3| ≥ 30 + 3 · (10− 3 · 2) = 42,

as we wanted. �

Corollary 2.77. s ≤ 31 and d ≥ 30.

Proof. Recall that the subgroups of G of type s are 36. In the following we use Lemma 2.76
and Observation 2.75. If s = 32 then d ≥ 28, impossible; if s = 33 then d ≥ 24, impossible; if
s = 34 then d ≥ 18, impossible since r ≥ 6. Assume now s = 35, so that d ≥ 10. Since r ≥ 6,
6 + 35 + t+ d ≤ r + s+ t+ d = 55, i.e. t+ d ≤ 14. Thus inequality 8 implies that
5 · 14 ≥ 300− 24r, i.e. r ≥ 10. Hence d = r = 10 and t = 0. This contradicts inequality 8. Since
s < 36, we deduce that s ≤ 31 and consequently d ≥ 30. �

Since d ≥ 30, r + s+ t+ 30 ≤ r + s+ t+ d = 55, i.e. r + s+ t ≤ 25. Since s ≥ 17 we obtain that
r + t ≤ 8. In particular r ∈ {6, 7, 8}.
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• r = 6. Then by inequality 8 we have 144 + 5(t+ d) ≥ 24r + 3t+ 5d = 24r + 3t+ 5d ≥ 300,
and we deduce that t+ d ≥ 32. Therefore 55 = r + s+ t+ d ≥ 6 + s+ 32, i.e. s ≤ 17.
Since s ≥ 17 we obtain that s = 17. Inequality 9 says that 5 · 17 + 3d ≥ 180, i.e. d ≥ 32, so
that d = 32 and t = 0.
• r = 7. Since d ≥ 30, 7 + s+ 30 ≤ r + s+ t+ d = 55, i.e. s ≤ 18.

– s = 18. Then 7 + 18 + t+ d = r + s+ t+ d = 55, i.e. t+ d = 30. Since d ≥ 30 we
obtain d = 30 and t = 0.

– s = 17. Inequality 9 says that 5 · 17 + 3d ≥ 180, i.e. d ≥ 32, so that
55 = r + s+ t+ d ≥ 7 + 17 + 32 = 56, contradiction.

• r = 8. Then since r + s+ t ≤ 25 we obtain s+ t ≤ 17, and since s ≥ 17 we have s = 17,
t = 0 and d = 30. This contradicts inequality 9.

We deduce that either (r, s, t, d) = (7, 18, 0, 30) or (r, s, t, d) = (6, 17, 0, 32).
In both these cases there are at least 18 subgroups of type s outside M. Therefore Observation
2.75 and Lemma 2.76(2) imply that d ≥ 42, a contradiction.





CHAPTER 3

Normal covers

Given a non-cyclic group G and a family H of subgroups of G, we say that H is a “normal cover”
of G if:

• every g ∈ G belongs to some H ∈ H, in other words
⋃
H∈HH = G;

• for every g ∈ G and H ∈ H, Hg ∈ H, in other words H is stable under G-conjugation.

For a normal cover H of G, we denote by H∗ the set of the orbits of the conjugation action of G on
H. We define γ(G) to be minH |H∗| where H varies in the family of the normal covers of G. Call
“γ-minimal (normal) cover” of G a normal cover H of G such that |H∗| = γ(G). If G is cyclic we
put γ(G) :=∞. We call γ(G) the “normal covering number” of G.

3.1. γ(G) > 1 for every finite group G. Indeed, if {M1, . . . ,Mn} is the conjugacy class of a maximal
non-normal subgroup M = M1 of G then since 1 ∈M1 ∩ . . . ∩Mn,

|M1 ∪ . . . ∪Mn| < |M1|+ . . .+ |Mn| = |M | · |G : M | = |G|.
Therefore M1 ∪ . . . ∪Mn 6= G.

Note that this is false for infinite groups: for instance, since any complex matrix can be taken to
upper-triangular form, and the invertible upper-triangular matrices form a group, we have

γ(GL(n,C)) = 1

for every integer n ≥ 2.
Dealing with the covering number we had evidence of the following fact: given an integer n ≥ 3, it
is hard to decide whether there exists a group G with σ(G) = n, indeed there exists some n for
which σ(G) 6= n for every group G (cf. the introduction). We have a completely different behaviour
for the normal covering number: A. Lucchini and E. Crestani [LCg] proved that for every integer
n ≥ 2 there exists a finite solvable group G with γ(G) = n.
It is clear that if N is a normal subgroup of G then γ(G) ≤ γ(G/N), since every normal cover of
G/N lifts to a normal cover of G.

Definition 3.2. We say that the non-cyclic group G is γ-elementary if γ(G) < γ(G/N) for every
non-trivial normal subgroup N of G.

We now prove the analogous of Lemma 1.8:

Lemma 3.3. Let G be a non-cyclic group. If M is a minimal normal cover of G and g is a central
element of prime order p which does not belong to every M ∈M then N :=

⋂
K∈MK EG,

G/N ∼= Cp × Cp and γ(G) = γ(G/N) = p+ 1.

65
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Proof. Let M1, . . . ,Mn be maximal subgroups of G with n = γ(G) and M = MG
1 ∪ . . . ∪MG

n .
The subgroups Mi not containing g are normal of index p and by Lemma 1.2 their number is at
least p, so if Mi,Mj are two of them then γ(G) ≤ γ(G/Mi ∩Mj) = γ(Cp×Cp) = p+ 1, in particular
since there is at least one Mi containing g we have p < γ(G) ≤ p+ 1. The result follows. �

We easily deduce the analogous of Proposition 1.9:

Proposition 3.4. If G is a γ-elementary group then Φ(G) = {1}, and either G is abelian or
Z(G) = {1}. In particular, any nilpotent γ-elementary group is abelian.

1. Coverings with normal subgroups

Coverings consisting of normal subgroups have been studied in [BCK].
Recall that if G =

∏
α∈A Tα is a direct product of simple groups - and πα : G→ Tα denotes the α-th

projection - then any maximal normal subgroup H of G is of one of the following forms:

• Standard: there exists α ∈ A such that

H =
∏

A3β 6=α

Tβ.

• Diagonal: there exists a subset B ⊆ A such that {Tβ}β∈B consists of isomorphic abelian
simple groups and H contains

∏
α∈A−B Tα and projects surjectively onto Tβ for each β ∈ B.

Proposition 3.5. Let G be a group. The following statements are equivalent:

(1) G is covered by its proper normal subgroups;
(2) G is covered by its proper normal subgroups N such that G/N is abelian;
(3) G/G′ is non-cyclic.

Proof. Clearly (3)⇒ (2)⇒ (1), so we are left to prove that (1)⇒ (3). Suppose G is covered
by its proper normal subgroups, and let I be the intersection of the maximal normal subgroups of
G. Then clearly G/I is covered by its proper normal subgroups. G/I is a subdirect product of
simple groups, and it is well known that a subdirect product of simple groups is isomorphic to a
direct product of simple groups. Say I ∼= T1 × · · · × Tr. We need to prove that there exist i 6= j in
{1, . . . , r} and a prime p such that Ti ∼= Tj ∼= Cp, i.e. that G admits a maximal normal subgroup of
diagonal type. This is implied by the fact that the elements of T1 × · · · × Tr with no non-trivial
entries do not belong to any maximal normal subgroup of standard type. �

2. Normal covers of a direct product

We now employ the ideas of Lemma 2.24 to prove a result analogous to Theorem 2.22 for the
normal covering number.

Theorem 3.6. Let H1, H2 be two groups such that |H1/H
′
1| and |H2/H

′
2| are coprime. Then

γ(H1 ×H2) = min(γ(H1), γ(H2)).
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Proof. Let G := H1 ×H2, and call πi : G→ Hi the i-th projection, for i ∈ {1, 2}. Let Ki be
the smallest normal subgroup of Hi such that Hi/Ki is a direct product of simple groups. Write

H1/K1 = S1 × · · · × Sα, H2/K2 = T1 × · · · × Tβ.

For a ∈ {1, . . . , α} and b ∈ {1, . . . , β} let π1,a : H1 → Sa and π2,b : H2 → Tb be the canonical
projections. Fix a minimal normal cover M of G consisting of maximal subgroups. Write
M =M1 ∪M2 ∪M3 whereMi for i ∈ {1, 2} is the set of the maximal subgroups of G of the form
π−1
i (L) where L is a maximal subgroup of Hi. Notice that M1, M2, M3 are stable under

conjugation, therefore

|M∗| = |M∗
1|+ |M∗

2|+ |M∗
3|.

By Lemma 2.23 every maximal subgroup M in M3 has the following form: there exist
a ∈ {1, . . . , α}, b ∈ {1, . . . , β} and an isomorphism ϕ : Sa → Tb such that

M = ∆(a, b, ϕ) := {(h1, h2) ∈ G | ϕ(π1,a(h1)) = π2,b(h2)}.

By the hypothesis if ∆(a, b, ϕ) ∈M3 then Sa and Tb are non-abelian simple groups. Now for
i ∈ {1, 2} let

Ωi := {h ∈ Hi | h 6∈ πi(M) ∀M ∈Mi}.
We now prove that Ω1 × Ω2 = ∅, so that either M =M1 or M =M2.
By contradiction, assume that Ω1 × Ω2 6= ∅, and take ω ∈ Ω1. For ∆(a, b, ϕ) ∈M3 define

U(a, b, ϕ) := {h ∈ H2 | π2,b(h) ∈ 〈ϕ(π1,a(ω))〉}.

Since 〈ϕ(π1,a(ω))〉 is a proper subgroup of Tb (because Tb is a non-abelian simple group, by
hypothesis!), U(a, b, ϕ) is a proper subgroup of H2.
We claim that the family {U(a, b, ϕ) | ∆(a, b, ϕ) ∈M3} is a normal family of subgroups of H2

(stable under conjugation). Note that if (x, y) ∈ G then being M3 a normal family,

M3 3 ∆(a, b, ϕ)(x,y) = ∆(a, b, π1,a(x)−1 ◦ ϕ ◦ π2,b(y)),

where π1,a(x)−1 and π2,b(y) are identified with the corresponding inner automorphisms of Sa, Tb
respectively. Since U(a, b, ϕ)h2 = U(a, b, ϕ ◦ π2,b(h2)) for h2 ∈ H2, the subgroup U(a, b, ϕ)h2 comes
from the diagonal subgroup ∆(a, b, ϕ)(1,h2). Thus {U(a, b, ϕ) | ∆(a, b, ϕ) ∈M3} is a normal family.
The claim is proved.
We claim that the family

{M < H2 | H1 ×M ∈M2} ∪ {U(a, b, ϕ) | ∆(a, b, ϕ) ∈M3}

covers H2. Let h ∈ Ω2. The element (ω, h) belongs to Ω1 × Ω2, and this set is covered by M3

(having empty intersection with each element of M1 ∪M2), therefore there exists ∆(a, b, ϕ) ∈M3

such that (ω, h) ∈ ∆(a, b, ϕ), in other words ϕ(π1,a(ω)) = π2,b(h), in particular h ∈ U(a, b, ϕ). The
claim is proved.
Let H := {U(a, b, ϕ) | ∆(a, b, ϕ) ∈M3}. We claim that |H∗| ≤ |M∗

3|. For this it suffices to show
that the function

M∗
3 → H∗, ∆(a, b, ϕ)G 7→ U(a, b, ϕ)H2
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is well defined and surjective. The surjectivity is clear. Let us show that it is well defined. Let
∆(a, b, ϕ) ∈M3 and (x, y) ∈ G. Since ∆(a, b, ϕ)(x,y) = ∆(a, b, π1,a(x)−1 · ϕ · π2,b(y)), it suffices to
show that U(a, b, π1,a(x)−1 · ϕ · π2,b(y)) and U(a, b, ϕ) are conjugated by an element of H2. Since
Tb E Aut(Tb), ϕ

−1 · π1,a(x)−1 · ϕ is an inner automorphism of Tb, call it t ∈ Tb and let h ∈ H2 be
such that π2,b(h) = t. Note that

π1,a(x)−1 · ϕ · π2,b(y) = ϕ · t · π2,b(y) = ϕ · π2,b(hy).

Therefore

U(a, b, ϕ)hy = U(a, b, ϕ · π2,b(hy)) = U(a, b, π1,a(x)−1 · ϕ · π2,b(y)).

The claim is proved.
We obtain that

|M∗
1|+ |M∗

2|+ |M∗
3| = γ(H1 ×H2) ≤ γ(H2) ≤ |M∗

2|+ |H∗| ≤ |M∗
2|+ |M∗

3|,

and this implies that M1 = ∅. Similarly we obtain M2 = ∅, thus M =M3.
By Proposition 3.5 there exists h ∈ H2 which does not belong to any proper normal subgroup N of
H2 with the property that H2/N is non-abelian. In particular π2,b(h) 6= 1 for every b ∈ {1, . . . , β}
such that Tb is non-abelian. It follows that the element (1, h) does not belong to any subgroup in
M3, contradiction. �

3. Upper bounds

In this section we give some upper bounds for γ(G) for G a group. The content of this section is a
joint work with Attila Maróti.

Proposition 3.7. Let G be a non-cyclic solvable group. Then:

(1) if G is σ-elementary and non-abelian then γ(G) = 2;
(2) if γ(G) > 2 then there exist a prime p and a normal subgroup N of G such that

G/N ∼= Cp × Cp and σ(G) = σ(G/G′) = σ(G/N) = p+ 1;
(3) if G/G′ is cyclic then γ(G) = 2.

Proof. The first assertion follows from Theorem 1.24. Now suppose that γ(G) > 2, and let
G/N be a σ-elementary quotient of G with the property that σ(G) = σ(G/N). Since
γ(G) ≤ γ(G/N), the first assertion implies that G/N is abelian hence G/N ∼= Cp × Cp for some
prime p, and (2) follows. (3) follows from (2). �

Proposition 3.8. Let G be a non-cyclic group, and write |G| = pa11 · · · p
ak
k with the primes

p1, . . . , pk pairwise distinct. Then γ(G) ≤
∑k

i=1
p
ai
i −1

pi−1
.

Proof. We may assume that G is non-abelian and γ-elementary, in particular Z(G) = {1} by
Proposition 3.4. For every i = 1, . . . , k choose a Sylow pi-subgroup Pi of G. Then G is covered by
the conjugates of the subgroups of the form CG(〈x〉) where x belongs to P1 ∪ . . . ∪ Pk. �

Theorem 3.9. Let G be a non-cyclic group. Then γ(G) ≤
√
|G|+ 1.
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Proof. Let G be a smallest counterexample to the statement of the theorem. Then G is
non-solvable by proposition 3.7, and by minimality every proper quotient of G is cyclic, in
particular G, being non-solvable, is monolithic and its Fitting subgroup is trivial. By [GRp,

Theorem 10] it follows that the number of conjugacy classes of G is at most
√
|G|. Since G is

covered by its cyclic subgroups, it follows that γ(G) ≤
√
|G|, contradiction. �

Proposition 3.7 implies that if G is a solvable group and p is the largest prime divisor of |G| then
γ(G) ≤ p+ 1. What can we say about the general case?

Conjecture 3.10 (A. Maróti, M. Garonzi). Let G be a non-cyclic group, and let p be the largest
prime divisor of |G|. Then γ(G) ≤ p+ 1.

In the following we will prove the following partial result.

Theorem 3.11. Let G be a non-cyclic group, and suppose that whenever X is an almost simple
section of G and X/ soc(X) is cyclic, one of the following holds:

• soc(X) is either alternating or sporadic,
• X = PSL(n, q) or X = PGL(n, q) for some integer n and some prime-power q.

Then γ(G) ≤ p+ 1, where p is the largest prime divisor of |G|.

3.1. Reduction to the almost simple case. We now deal with Conjecture 3.10. In this
section we reduce the problem to almost-simple groups. Let G be a smallest counterexample to the
conjecture. By Proposition 3.7, we know that G is non-solvable. If N is a non-trivial normal
subgroup of G such that G/N is non-cyclic then the conjecture holds for G/N hence it holds for G,
contradiction. It follows that every proper quotient of G is cyclic, in particular G, being
non-solvable, is monolithic with non-abelian socle. Let us use Notations 2.2. By Lemma 2.7 X/S is
cyclic, let x ∈ X be such that X/S = 〈xS〉. By Proposition 2.29

γ(G) ≤ ω(|G/soc(G)|) + γX(xS) ≤ ω(|G/soc(G)|) + γ(X),

where γX(xS) denotes the smallest number of conjugacy classes of a family of subgroups of X
which covers xS. For a positive real number r let π(r) be the number of primes at most r. Let p be
the largest prime dividing |G|. Since ω(|G/ soc(G)|) ≤ ω(|G|) ≤ π(p), it is sufficient to prove that
γ(X) ≤ p+ 1− π(p). Let q be the largest prime divisor of |X|. Then since q ≤ p and the function
x 7→ x+ 1− π(x) is monotone non-decreasing, q + 1− π(q) ≤ p+ 1− π(p), hence it is sufficient to
prove that γ(X) ≤ q + 1− π(q).
More in general, the following holds:

Lemma 3.12. For a group G denote by pG the largest prime dividing |G|. If G is a group such that
γ(X) ≤ pX

k − π(pX) for every almost simple section X of G such that X/ soc(X) is cyclic then
γ(G) ≤ pG

k. In particular if γ(X) ≤ pX
k for every almost simple group X with X/ soc(X) cyclic

then γ(G) ≤ pG
k+1 for every group G.
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3.2. The almost simple case. Let X be an almost simple group with soc(X) = S and
suppose that X/S is cyclic. Let p be the largest prime divisor of |X|. We want to prove that

(10) γ(X) ≤ p+ 1− π(p).

3.3. The alternating groups.

Theorem 3.13 (Bubboloni, Praeger, [BP]). Let n ≥ 4 be an integer, and let G be Sym(n) or
Alt(n). Then γ(G) is at most:

• [n+4
4

] if G = Sym(n) or Alt(n) and n is even;

• n−1
2

if G = Sym(n) and n is odd;

• [n+3
3

] if G = Alt(n) and n is odd.

In particular γ(G) ≤ n−1
2

for every n ≥ 5.

Theorem 3.14 (P. L. Chebyshev, [Chb]). Let x ≥ 5 be a real number. Then

0.92 < π(x)
ln(x)

x
< 1.11.

By Theorem 3.13, we see that bound (10) holds for 5 ≤ n ≤ 179. Suppose now that n ≥ 180. By
Theorem 3.13, to prove bound (10) it is enough to prove n−1

2
+ π(n) ≤ p+ 1, and by Theorem 3.14

it suffices to prove that n
2

+ 1.11 · n
ln(n)
≤ p. Since p is the largest prime at most n, it is enough to

show that π(n) > π(n
2

+ 1.11 · n
ln(n)

). By Theorem 3.14 it is enough to show that

0.92 · 1

ln(n)
> 1.11 ·

1
2

+ 1.11 · 1
ln(n)

ln(n(1
2

+ 1.11
ln(n)

))
.

After multiplying by 2 ln(n)/1.11 it is enough to see that

1.65 >
ln(n) + 2.22

ln(n) + ln(1
2

+ 1.11
ln(n)

)
.

Since ln(1
2

+ 1.11
ln(n)

) ≥ −0.7, it is enough to consider

0.65 >
2.92

ln(n)− 0.7
.

Rearranging terms we obtain ln(n) > 5.2, i.e. n ≥ 180.
We are left with the case X ∈ {M10, PGL2(9)}. In this case soc(X) ∼= Alt(6), p = 5, and bound
(10) follows from the following fact: X has exactly three conjugacy classes of maximal non-normal
subgroups, and they cover X.
Recall the following result.

Theorem 3.15 (Zsigmondi). Let a > b > 0 be two coprime integers. For every integer n > 1 there
exists a prime number p (called “primitive prime divisor”) that divides an − bn and does not divide
ak − bk for any positive integer k < n, with the following exceptions:
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• a = 2, b = 1 and n = 6;
• a+ b is a power of 2 and n = 2.

With what we have proved so far we can deduce the following:

Theorem 3.16. There exists a constant C such that for any non-cyclic group G, γ(G) ≤ Cp log(p),
where p is the largest prime divisor of |G|.

Proof. By the results above we are reduced to show that if G is almost-simple of Lie type,
G/ soc(G) is cyclic and g ∈ G generates G modulo soc(G) then in order to cover g soc(G) with
subgroups of G we need at most Cp log(p) conjugacy classes of subgroups of G, where C is some
absolute constant. Assume first that soc(G) is of classical type. Aschbacher’s theorem about the
maximal subgroups of the classical groups [AsCl] implies that any cyclic subgroup generated by an
element of g soc(G) is contained in a member of one of eight natural families of maximal subgroups.
This implies that the natural families provide a (normal) cover of g soc(G), and by [GKS, Lemma
2.1] and [LPS, Lemmas 2.1(ii) and 2.4] the number of conjugacy classes of maximal subgroups in
the natural families is at most 8r log(r) + r log(log(q)), where r is the rank and q is the order of the
underlying field. It follows that in order to conclude the classical case it is enough to show that
q ≤ pp and r ≤ p.

• Write q = `f where ` is a prime. If (`, f) = (2, 6) or f ≤ 2 then q ≤ 26p2. Otherwise,
noticing that q − 1 divides |G|, we see that a primitive prime divisor (cf. Theorem 3.15) of
`f − 1 divides |G| and this is at least f + 1. So f + 1 ≤ p. Hence q = `f ≤ pp.
• Now we bound r in terms of a function of p. Notice that a primitive prime divisor of qk − 1

divides |G| for some k ≥ r, and it is at least k + 1. Therefore r ≤ p.

If soc(G) is of exceptional type then since the rank of X is bounded the result is implied by [LMS,
Theorem 1.3].

�

The bound γ(G) ≤ Cp log(p) of the above theorem does not seem to be easily improvable. The
number of conjugacy classes of maximal subgroups in the natural families is at most
8r log(r) + r log(log(q)), and here the term r log(log(q)) comes from the subfield subgroups (class
C5). Moreover if X is an almost simple group with soc(X) of exceptional type then [LMS,
Theorem 1.2, Lemma 3.1] imply that the number of conjugacy classes of maximal subgroups of X
is at most C log(r) for some absolute constant C. In particular, if one could show that every
almost-simple group X with X/ soc(X) cyclic and soc(X) of classical type is covered by the classes
Ci, i 6= 5, 6, 7 then the proof of Lemma 2.4 in [LPS] would improve the bound of Theorem 3.16 to
C
√
p log(p) ≤ Cp.

In particular, we obtain the following result.

Theorem 3.17. Let G be a non-cyclic group without composition factors of classical Lie type.
Then γ(G) ≤ Cp/ log(p), where p is the largest prime divisor of |G| and C is an absolute constant.

The term p/ log(p) comes from ω(|G/ soc(G)|) ≤ π(p).



72 3. NORMAL COVERS

3.4. The linear groups. Since the groups GL(n, q) can be covered by all stabilizers of all
k-dimensional subspaces, where 1 ≤ k ≤ [n/2], together with the cyclic subgroups of order qn − 1,
which are all conjugate, we see that γ(GL(n, q)) ≤ [n/2] + 1. Let L be a subgroup of GL(n, q)
containing SL(n, q). The set of subgroups in the previous covering with each element intersected
with L provides a covering for L, and these subgroups split into [n/2] + 1 conjugacy classes of
subgroups. Since all the considered subgroups contain the center of L, we obtain the following
bound: γ(L/Z(L)) ≤ [n/2] + 1. Hence if PSL(n, q) ≤ X ≤ PGL(n, q) then γ(X) ≤ [n/2] + 1.
Suppose n 6= 2 and q is not a Mersenne prime, or (n, q) 6= (6, 2). Then by Theorem 3.15 qn − 1
admits a prime factor qn which divides |X| and such that qn ≥ n+ 1. It is sufficient to prove that
[n/2] + 1 ≤ n+ 2− π(n+ 1), i.e. π(n+ 1) ≤ n− [n/2] + 1, which is true for every n ≥ 2.
Suppose (n, q) = (6, 2). Then 7 divides |X| and 7 = n+ 1, so the previous argument works.
Suppose n = 2. Then the largest prime divisor of |X| is at least 3, so the previous argument works.
Note that if X is any cyclic extension of PSL(n, q) then by these arguments it is sufficient to prove
that γ(X) ≤ [n/2] + 1.

3.5. The sporadic groups. If X is a sporadic simple group then bound (10) follows from the
table found in [HMsp].
Suppose that X is the automorphism group of a simple sporadic group with soc(X) 6= X. Let p be
the largest prime divisor of X. We see by inspection that X has at most p− π(p) conjugacy classes
of involutions, and since every element of odd order belongs to soc(X) and every element of even
order centralizes an involution, to conclude it is enough to consider the family

{soc(X)} ∪ {CX(x) | x ∈ X, |x| = 2}G.
This concludes the proof of Theorem 3.11.



APPENDIX A

Some almost-simple groups

Theorem A.1 (Maróti [MarS]). Let n > 3 be an integer.

• σ(Sym(n)) = 2n−1 if n is odd and n 6= 9.
• σ(Sym(n)) ≤ 2n−2 if n is even.
• σ(Alt(n)) = 2n−2 if n ≡ 2 mod 4.
• σ(Alt(n)) > 2n−2 if n 6= 7, 9.
• 172 ≤ σ(Sym(9)) ≤ 256, σ(Sym(12)) ≤ 761.
• If n ≥ 14 then σ(Sym(n)) > 1

2

(
n
n/2

)
.

Theorem A.2. We list known results about small almost-simple groups.

• σ(M11) = 23 ([MarS]),
• σ(Alt(5)) = 10, σ(Sym(5)) = 16 ([Cohn]),
• σ(Sym(6)) = 13 ([S6]),
• σ(Alt(7)) = 31, σ(Alt(8)) = 71, 127 ≤ σ(Alt(9)) ≤ 157, σ(Alt(10)) = 256 ([KR]),
• σ(M10) ≥ 45 ([DLpr]).

Theorem A.3 ([Lgps] Theorem 1.2). Let G be any of the groups (P )GL(n, q), (P )SL(n, q). Let b

be the smallest prime factor of n, let

[
n
k

]
q

be the number of k-dimensional subspaces of the

n-dimensional vector space V over Fq, and let N(b) be the number of proper subspaces of V of
dimensions not divisible by b. Suppose that n ≥ 12. Then if n 6≡ 2 mod 4, or if n ≡ 2 mod 4, q
odd and G = (P )SL(n, q), then

(11) σ(G) =
1

b

n−1∏
i=1,b-i

(qn − qi) + [N(b)/2].

Otherwise

(12) σ(G) =
1

2

n−1∏
i=1,b-i

(qn − qi) +

n/2−1∑
k=1,2-k

[
n
k

]
q

+
qn/2

qn/2 + 1

[
n

n/2

]
q

+ ε,

where ε = 0 if q is even and ε = 1 if q is odd.

Theorem A.4 (Bryce, Fedri, Serena [BFS]). Let q ≥ 4 be a prime-power. Let

G ∈ {GL(2, q), PGL(2, q), SL(2, q), PSL(2, q)},
73
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with q 6= 5, 7, 9 if G ∈ {SL(2, q), PSL(2, q)}. Then:

σ(G) =
1

2
q(q + 1) q even;

σ(G) =
1

2
q(q + 1) + 1 q odd.

Moreover σ(GL(2, 2)) = σ(PGL(2, 2)) = σ(SL(2, 2)) = σ(PSL(2, 2)) = 4 (these four groups are
isomorphic to Sym(3)), and:

σ(GL(2, 3)) = σ(PGL(2, 3)) = 4, σ(SL(2, 3)) = σ(PSL(2, 3)) = 5,

σ(SL(2, 5)) = σ(PSL(2, 5)) = 10, σ(SL(2, 7)) = σ(PSL(2, 7)) = 15,

σ(SL(2, 9)) = σ(PSL(2, 9)) = 16.

Theorem A.5 (Lucido [Luc]). Let G =2 B2(q) = Suz(q) be the simple Suzuki group. Then
σ(G) = q2(q2 + 1)/2.
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Inspection

We now consider some more almost-simple groups and prove bounds needed in the thesis.

• Sym(8). It admits PGL(2, 7) as a maximal subgroup of index 120 and covering number 29,
so σ(Sym(8)) ≥ 29 by Lemma 1.6.
• Let G := Aut(PSL(2, 8)) = PΓL(2, 8). We are going to show that σ(G) = 29 and that

there exists only one minimal cover of G.
G is an almost simple group of order 1512 = 23 · 33 · 7. PSL(2, 8), its non-trivial proper

normal subgroup, is a maximal subgroup of covering number 36, thus if σ(G) < 36 then
PSL(2, 8) appears in every minimal cover.

Now, since soc(G) together with the normalizers of the Sylow 3-subgroups of PSL(2, 8)
form a cover of G consisting of 29 subgroups, we have σ(G) ≤ 29 so soc(G) appears in
every minimal cover of G. The only maximal subgroups of G which contain elements of
order 9 are soc(G) = PSL(2, 8) and the normalizers of the Sylow 3-subgroups of
PSL(2, 8). It follows that if P is a Sylow 3-subgroup of soc(G) = PSL(2, 8) then NG(P ) is
the only maximal subgroup of G which contains the elements of order 9 in NG(P )− P . So
the 28 normalizers of the Sylow 3-subgroups of soc(G) appear in every minimal cover. So
σ(G) = 29.
• Sym(10). Its maximal subgroups are the following [Atl]:

– Sym(9);
– Sym(8)× C2;
– Sym(7)× Sym(3);
– (Sym(5)× Sym(5)) : 2;
– Sym(6)× Sym(4);
– 25 : Sym(5);
– Alt(6) : 22.

Sym(8) and Sym(9) do not have elements of order 21. Thus Sym(8)× C2 has no elements
of order 21, and the only maximal subgroups of Sym(10) which contain elements of order
21 are of the kind Sym(7)× Sym(3). Now Sym(10) has 6! ·

(
10
7

)
· 2! = 172800 elements of

order 21, and Sym(7)× Sym(3) has 6! · 2! = 1440 such elements, so in order to cover the
elements of order 21 we need at least 172800/1440 = 120 proper subgroups. Therefore
σ(Sym(10)) ≥ 120.
• M12. It admits PSL(2, 11) as a maximal non normal subgroup of covering number 67 and

index 144, so σ(M12) ≥ 67 by Lemma 1.6.
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• Sym(12). It admits PGL(2, 11) as a maximal non normal subgroup of covering number 67
and index 9!, so σ(Sym(12)) ≥ σ(PGL(2, 11)) = 67 by Lemma 1.6.
• PSL(3, 3). It has 1728 elements of order 13, and its maximal subgroups which contain

elements of order 13 are of the kind C13 o C3, and such subgroups are 144. Since the
C13 o C3 have 12 elements of order 13, in order to cover the elements of order 13 we need
at least 1728/12 = 144 proper subgroups. In particular σ(G) ≥ 144.
• G := PSL(2, 16) : 2 admits PSL(2, 16) as a maximal and normal subgroup. The maximal

subgroups of G are:
– 17 copies of ((24.5).3).2;
– 120 copies of 17.4;
– 68 copies of C2 × Alt(5);
– 1 copies of PSL(2, 16);
– 136 copies of Sym(3)×D10.
The only maximal subgroups which contain elements of order 10 are C2×Alt(5) (which

has 24 elements of order 10) and Sym(3)×D10 (which contains 12 elements of order 10),
and since G contains 1632 elements of order 10, we need at least 1632/24 = 68 proper
subgroups to cover the elements of order 10. In particular σ(G) ≥ 68.
• G := PΓL(2, 16) = PSL(2, 16) o C4. The maximal subgroups of G are:

– 17 copies of ((24.5).3).4;
– 136 copies of (5.4)× Sym(3);
– 68 copies of Alt(5).4;
– 120 copies of 17.8;
– 1 copy of PSL(2, 16) o C2.
The only maximal subgroups which contain elements of order 12 are (5.4)× Sym(3)

(which contains 20 elements of order 12) and Alt(5).4 (which contains 40 elements of order
12), so to cover the elements of order 12 (which are 2720) we need at least 2720/40 = 68
proper subgroups, so that σ(G) ≥ 68.
• PSL(3, 4) = M21. The only maximal subgroup of PSL(3, 4) which contains elements of

order 7 is PSL(2, 7), which contains 48 elements of order 7. Since PSL(3, 4) has 5760
elements of order 7, the covering number of PSL(3, 4) is at least 5760/48 = 120.
• PΣL(3, 4) = PSL(3, 4) : 2. The only maximal subgroup of PΣL(3, 4) which contains

elements of order 14 is PSL(2, 7)× C2, which contains 48 elements of order 14. Since
PΣL(3, 4) has 5760 elements of order 14, the covering number of PΣL(3, 4) is at least 120.
• PGL(3, 4). The only maximal subgroup of PGL(3, 4) = PSL(3, 4) : 3 which contains

elements of order 21 is (7 : 3)× 3, which contains 12 elements of order 21. Since PGL(3, 4)
contains 11520 elements of order 21, the covering number of PGL(3, 4) is at least
11520/12 = 960.
• σ(PΓL(3, 4)) = 3.
• M22. It contains 80640 elements of order 11, and the only maximal subgroup of M22 which

contains elements of order 11 is PSL(2, 11), which contains 120 such elements. Thus the
covering number of M22 is at least 80640/120 = 672.
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• M22 : 2. It admits PGL(2, 11) as a maximal and non normal subgroup of index 672 and
covering number 67, so σ(M22 : 2) ≥ 67 by Lemma 1.6.
• M23. It admits Alt(8) as a maximal non normal subgroup of index 506 and covering

number ≥ 64, so σ(M23) ≥ 64 by Lemma 1.6.
• M24. It admits PSL(2, 23) as a maximal non normal subgroup of covering number 277 and

index 40320, so σ(M24) ≥ 277 by Lemma 1.6.

In the following list we summarize some information we need, deduced from above, about σ(G)
where G is a primitive group of degree at most 24.

• Degree 5. σ(Alt(5)) = 10; σ(Sym(5)) = 16.
• Degree 6. σ(Alt(5)) = 10; σ(Sym(6)) = 13; σ(Sym(5)) = 16.
• Degree 7. σ(SL(3, 2)) = 15; σ(Alt(7)) = 31; σ(Sym(7)) = 64.
• Degree 8. σ(PSL(2, 7)) = σ(PGL(2, 7)) = 29; σ(Alt(8)) ≥ 64; σ(Sym(8)) ≥ 29.
• Degree 9. σ(Aut(PSL(2, 8))) = 29; σ(PSL(2, 8)) = 36; σ(Alt(9)) ≥ 80; σ(Sym(9)) ≥ 172.
• Degree 10. σ(Alt(5)) = 10; σ(Sym(6)) = 13; σ(Alt(6)) = 16; σ(PGL(2, 9)) = 46; σ(M10),
σ(Alt(10)), σ(Sym(10)) ≥ 45, σ(PΓL(2, 9)) = 3.
• Degree 11. σ(M11) = 23; σ(PSL(2, 11)) = 67; σ(Alt(11)), σ(Sym(11)) ≥ 512.
• Degree 12. σ(M11) = 23; σ(PSL(2, 11)) = σ(PGL(2, 11)) = 67; σ(M12), σ(Alt(12)),
σ(Sym(12)) ≥ 67.
• Degree 13. σ(PSL(3, 3)), σ(Alt(13)), σ(Sym(13)) ≥ 144.
• Degree 14. σ(PSL(2, 13)), σ(PGL(2, 13)), σ(Alt(14)), σ(Sym(14)) ≥ 92.
• Degree 15. σ(Sym(6)) = 13; σ(Alt(6)) = 16; σ(Alt(7)) = 31; σ(PSL(4, 2)), σ(Alt(15)),
σ(Sym(15)) ≥ 64.
• Degree 16. σ(Alt(16)) ≥ 214; σ(Sym(16)) > 6435.
• Degree 17. σ(PSL(2, 16)), σ(PSL(2, 16) : 2), σ(PΓL(2, 16)), σ(Alt(17)), σ(Sym(17)) ≥ 68.
• Degree 18. σ(PSL(2, 17)), σ(PGL(2, 17)), σ(Alt(18)), σ(Sym(18)) ≥ 216.
• Degree 19. σ(Alt(19)), σ(Sym(19)) ≥ 217

• Degree 20. σ(PSL(2, 19)), σ(PGL(2, 19)), σ(Alt(20)), σ(Sym(20)) ≥ 191.
• Degree 21. σ(SL(3, 2)) = 15; σ(Alt(7)) = 31; σ(PΓL(3, 4)) = 3; σ(PGL(2, 7)), σ(Sym(7)),
σ(PSL(3, 4)), σ(PΣL(3, 4)), σ(PGL(3, 4)), σ(Alt(21)), σ(Sym(21)) ≥ 64.
• Degree 22. σ(M22), σ(M22 : 2), σ(Alt(22)), σ(Sym(22)) ≥ 67.
• Degree 23. σ(M23), σ(Alt(23)), σ(Sym(23)) ≥ 64.
• Degree 24. σ(M24), σ(PSL(2, 23)), σ(PGL(2, 23)), σ(Alt(24)), σ(Sym(24)) ≥ 277.

1. Two affine groups

In this section we show that σ(AGL(4, 2)) ≥ 31 = σ(F2
4 o Alt(7)).

• G := AGL(4, 2) = F2
4 oGL(4, 2). We want to show that σ(G) ≥ 31. We observe that

GL(4, 2) ∼= Alt(8) and G is monolithic. Let V := F2
4 and H := GL(4, 2), so that

G = V oH. Since σ(Alt(8)) ≥ 69, if (as we can suppose) σ(G) < 69 then every
complement of V must appear in every minimal cover {M1, . . . ,Mn} of G, where
n = σ(G). We have H1(H,V ) = 0 by the result in [JP], so that V has exactly 16
complements in G, let them be M1, . . . ,M16. If g ∈ GL(4, 2) stabilizes a non-zero vector
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v ∈ V then the function F2
4 → F2

4 which sends x to xg − x is not injective (having v in its
kernel), so it is not surjective: there exists w ∈ V such that xg − x 6= w for every x ∈ V . In
this case wg ∈ G does not belong to any complement of V , because the complements of V
are conjugate to H, and wg ∈ Hx means g ∈ H and w = x− xg. Thus wg must lie in at
least one Mi with i ≥ 17, so g must belong to it, because the maximal subgroups which do
not complement V must contain it (V is the only minimal normal subgroup of G). It turns
out that M17/V, . . . ,Mn/V must cover all the point stabilizers of GL(4, 2). If v is a
non-zero vector then the point stabilizer of v in GL(4, 2) is isomorphic to ASL(3, 2), whose
covering number is 15. So either every point stabilizer is one of the Mi/V with i ≥ 17 or
the Mi/V with i ≥ 17 are at least 15. In any case the Mi/V with i ≥ 17 are at least 15, so
σ(G) ≥ 15 + 16 = 31.
• G := F2

4 o Alt(7). Let V := F2
4 and H := Alt(7). We want to show that σ(G) ≥ 31.

Suppose by contradiction that σ(G) ≤ 30, so that all the complements of V appear in
every minimal cover of G (because σ(Alt(7)) = 31). Since σ(G) ≤ σ(H) = 31 we have
H1(H, V ) = 0 (otherwise we would have at least 32 complements of V ). Let M1, . . . ,M16

be the 16 complements of V in G. Since H acts faithfully on 16 elements, we have an
injection Alt(7)→ Sym(16), and a 7-cicle h of Alt(7) must fix a non-zero vector in this
action (the image of a 7-cycle in Sym(16) is either a 7-cycle or a product of two disjoint
7-cycles), let v be this vector. Then vh ∈ G does not belong to any complement of H
because it has order 14, and H has no elements of order 14. Thus vh lies in a Mi with
i ≥ 17, and every such Mi contains V (because it does not complement it), so
M17/V, . . . ,Mn/V contain together all the 7-cycles. But to cover the 7-cycles in Alt(7) we
need at least 15 subgroups, because the 7-cycles in Alt(7) are 6! and the only maximal
subgroups of Alt(7) which contain 7-cycles are the SL(3, 2), and they contain 48 7-cycles.
We deduce that σ(G) ≥ 16 + 15 = 31, contradiction. In particular since
σ(G) ≤ σ(Alt(7)) = 31, G is a non-σ-elementary group with covering number 31.
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