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GENERALIZED HOPF DIFFERENTIALS

Uwe Abresch Harold Rosenberg

1 Introduction

A basic tool in the theory of constant mean curvature (cmc) surfaces in space

forms is the holomorphic quadratic differential discovered by Heinz Hopf. How-

ever, for more general target spaces the (2, 0)–part of the second fundamental

form of a cmc surface fails to be holomorphic.

The basic new result in [2] is that for cmc surfaces in the product spaces

S2 × R and H2 × R holomorphicity can be restored with the help of explicit,

geometrically defined correction terms.

Our generalized holomorphic quadratic differential is good enough to pro-

ceed along the lines of Hopf and prove that an immersed cmc sphere S2 in such

a product space must in fact be one of the embedded, rotationally-invariant sur-

faces described in the work of W.Y. and W.T. Hsiang [10] and R. Pedrosa [15],

which are the simplest cmc surfaces in the product spaces. The distance spheres

do not have constant mean curvature anymore.

The next step is to investigate the scope of the new construction [3]. More

precisely, we ask for which class of (oriented) Riemannian 3–manifolds (M 3, g)

there exists a correction field L that induces a holomorphic quadratic differential

on any immersed cmc surface Σ2 # (M3, g). There is an amazingly simple

necessary and sufficient condition, namely, L must satisfy a certain explicit

inhomogeneous ODE-system.

Integrability for this ODE-system is by no means automatic; it rather im-

poses serious restrictions on the geometry of the 3–manifold. A tedious clas-

sification reveals that solutions exist if and only if (M 3, g) is a homogeneous
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bundle over a surface with totally-geodesic fibers. Again an analogue of Hopf’s

theorem can be established.

Further applications of our generalized holomorphic quadratic differential

are conceivable. In particular, we expect that the theory of cmc tori can be

extended to the homogeneous target spaces under consideration [1, 5, 6].

The preceding results suggest that homogeneous 3–manifolds with at least 4–

dimensional isometry groups are an appropriate setting for global results about

minimal surfaces and cmc surfaces. In order to test this thesis, we discuss some

global properties of minimal surfaces in the Heisenberg group.

2 Classical Results

for Cmc Surfaces in Space Forms

In this section we review the two most prominent classical results about surfaces

with constant mean curvature. These results have been obtained in the 1950ies

by A.D. Alexandrov and H. Hopf, respectively [4, 9]. Their proofs provide two

very different approaches to the subject. In fact, even today it is fair to say

that they represent the key ideas of the entire subject.

2.1 Alexandrov’s Result.

Theorem. Let Σ2 be a closed embedded cmc surface in R3, in H3, or in a

hemisphere S3
+. Then Σ2 is a standard distance sphere.

In other words, soap bubbles in R3 and H3 are always distance spheres.

In S3, the same holds provided one restricts oneself to soap bubbles that are

contained in a hemisphere.

Idea of the Proof. Pick a totally-geodesic (hyper-) plane that does not in-

tersect the cmc surface Σ2 and sweep it across that surface. In the given target

spaces each of these planes Ht gives raise to an isometry, namely the reflection

%t through Ht.
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Figure 1: Alexandrov’s moving planes argument.

When the plane enters the domain Ω bounded by Σ2, one considers in ad-

dition the image %t(Σ
2
t ) of the part Σ2

t of the cmc surface that the planes have

already swept across. Initially %t(Σ
2
t ) lies in the interior of Ω; however, it cannot

stay there, since otherwise the planes Ht could not leave the compact surface

Σ2 which is absurd. So there is a first point of contact. Let p and t0 denote this

point and the corresponding parameter value in the planar sweep respectively.

Generically, the point p is contained in the interior of the mirrored part

%t0(Σ
2
t0
), and thus the two surfaces are tangential at p with matching orienta-

tions. In a neighborhood of p, it is therefore possible to write the reflected piece

as a graph over Σ2 = ∂Ω. Since %t0(Σ
2
t0

) is still contained in Ω̄, the underlying

function u cannot change sign in a small open neighborhood of p, and so u ≡ 0

by the Hopf maximum principle. In other words, %t0(Σ
2
t0

) is itself a piece of the

original surface Σ2, and so one finds that Σ2 is invariant under the reflection

%t0 .

In the borderline case, where the first point of contact lies on the plane Ht0 ,

one can resort to a refined version of the maximum principle to prove that Σ2
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is invariant under %t0 in this case, too.

Varying the family of planes Ht, the preceding argument shows that Σ2 is

in fact invariant under the reflection through any plane through its center of

mass. Hence it must consist of orbits of the orthogonal group O(3) generated

by these reflections. But all these orbits, except for the one through the center

of mass itself and possibly also the one through its antipodal point, are closed

2–manifolds.

�

The description and the figure make it amply clear why this argument is

customarily referred to as Alexandrov’s moving planes argument.

It is an extremely flexible argument that has been applied in many other

contexts since. It immediately applies in the n–dimensional case, and, instead

of assuming that the hypersurface has constant mean curvature, one may work

with any other elliptic curvature function, i.e., with any curvature function that

leads to a local equation satisfying the maximum principle. Examples of such

curvature functions are the scalar curvature, the Gauss-Kronecker curvature, or

the curvature functions defining elliptic Weingarten hypersurfaces.

In fact, the moving planes argument has even turned out to be fruitful for

studying a certain kind of nonlinear elliptic equations [8].

Remark. Yet, when working in S3, the theorem requires the additional hypothe-

sis that the cmc surface Σ2 should be contained in a hemisphere. To understand

the meaning of this additional hypothesis observe that

• each distance sphere S2 ⊂ S3 is actually contained in a closed hemisphere

S3
+, and

• in S3 itself there exist Clifford tori, i.e., cmc surfaces of genus 1. Even

worse, following the ideas of Kapouleas [11, 12] one can construct cmc

surfaces with arbitrarily large genus. Of course, none of these surfaces

can be contained in a hemisphere, but it is possible to construct such

examples in an arbitrarily small neighborhood of an equator.
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2.2 Hopf’s Result.

Theorem. Let S2 be an immersed sphere in R
3, H

3, or S
3 with constant mean

curvature. Then S2 is a standard distance sphere.

This theorem differs from Alexandrov’s theorem in two ways. First of all it

is about immersed spheres rather than closed embedded surfaces. Secondly, in

the case that the target space is the 3–sphere, there is no additional hypothesis

requiring the surface to lie in a closed hemisphere.

Remark. For many years it had been an open question whether — at least

for surfaces in euclidean space — the results of Alexandrov and Hopf might be

special cases of a more general theorem. However, in 1984 H.W. Wente [18]

showed that there actually exist immersed cmc tori in R3.

Ingredients in the Proof. The key step in Hopf’s approach is to realize

that for any immersed cmc surface Σ2 the Codazzi equations imply that the

(2, 0)–part Q := π2,0(hΣ) of the second fundamental form hΣ = 〈 . , A . 〉 is a

holomorphic quadratic differential on the surface.

On the other hand, it is a standard fact that a holomorphic quadratic dif-

ferential on S2 = CP
1 vanishes.

The upshot is that Q must vanish on any immersed cmc sphere in a space

of constant curvature. Expanding the definition of Q, one finds that

Q(Y1, Y2) = 1
4
·
(
hΣ(Y1, Y2) − hΣ(J Y1, J Y2)

)

−1
4
i ·
(
hΣ(J Y1, Y2) + hΣ(Y1, J Y2)

)
,

and thus the identity Q = 0 is equivalent to saying that the traceless part of hΣ

vanishes. And complete, totally-umbilical surfaces Σ2 in space forms like R3,

H3, or S3 are known to be distance spheres.

�

Remark. The preceding proof is very different from the proof of Alexandrov’s

theorem. In fact, because of the identity ∂̄ Q = 0 one may regard the quadratic

differential Q as a family of first integrals for the cmc equation.
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3 Straightforward Generalizations

The purpose of this section is to explain which of the facts about cmc surfaces

in space forms can be extended in a straightforward manner to cmc surfaces in

the product spaces S2 × R or H2 × R. It will be helpful to unify notation and

write M2
κ as a shorthand for the simply-connected surface of constant curvature

κ. Writing formulas for surfaces in M 2
κ × R is not only shorter than listing the

two cases separately; it also helps in understanding how things scale and what

kind of limits can possibly occur.

First, in these spaces distance spheres do not have constant mean curvature

anymore. However, there still exist rotationally-invariant cmc spheres, and so

they are used as standard comparison objects instead. Their properties are

described in the first subsection. In the second subsection we then explain how

Alexandrov’s result can be extended to cmc surfaces in these product spaces.

3.1 Rotationally-Invariant Cmc Spheres

S
2

H
in the Product Spaces M

2

κ
× R.

The meridian curve c(s) = (r(s), ξ(s)) of any rotationally-invariant cmc surface

can be obtained solving the following ODE-system:

∂
∂s
r = − sin(θ)

∂
∂s
ξ = cos(θ)

∂
∂s
θ = 2H − cos(θ) · ctκ(r)

(1)

Here the pair (r, ξ) denotes the standard coordinate functions on the orbit space,

which is either [0, π/√κ]×R or [0,∞)×R depending on whether the first factor

of the target space is a sphere or a hyperbolic plane. The θ–variable can be

interpreted as a partial Gauss map; the vector field (cos θ, sin θ) is precisely the

unit normal vector field of the meridian curve.

The function ctκ that appears in the expression for ∂
∂s
θ is the generalized

cotangent function, i.e., the solution of the Riccati equation ct′κ = −κ−ct2
κ that

has a pole at s = 0.
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Figure 2: Meridian curves for cmc spheres in S2 × R

A first integral.

The ODE-system for the meridian curves of rotationally-invariant cmc surfaces

given above is invariant w.r.t. translations in the ξ–direction. For this reason it

has the following first integral:

Iκ,H := cos(θ) · snκ(r) − 4H · snκ(
1
2
r)2

In fact, this expression was already known to the Hsiang brothers [10] when

they did their work on soap bubbles in products of euclidean and hyperbolic

spaces in 1989.

Note that the meridian curve c(s) intersects the boundary of the orbit space,

which is the projection of the fixed point set of the given 1–parameter group of

rotations, if and only if the first integral Iκ,H vanishes or, in case κ > 0, also if

Iκ,H = −4H/κ.

Explicit solutions.

The ODE-system (1) actually has enough first integrals in order to describe

the meridian curve as the level set of a function that resembles the standard
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quadric:

1 = (4H2 + κ) · sn2
κ

(
1
2
r
)

+ 4H2 · sn2
−κ

(
1
2
ξ
√

1 + κ
4H2

)
(2)

Here snκ denotes the generalized sine function, i.e., the solution of the differen-

tial equation sn′′
κ +κ snκ = 0 with initial data snκ(0) = 0 and sn′

κ(0) = 1.

To help with intuition, we specialize this equation to the case κ = 1 and

rewrite all the occurrences of the generalized sine function in terms of its classical

counterparts sin and sinh.

1 = (1 + 4H2) · sin2
(

1
2
r
)

+ 4H2 · sinh2
(

1
2
ξ
√

1 + 1
4H2

)

It is also easy to check that for κ = 0 equation (2) indeed boils down to the

classical quadric 1 = H2 · (r2 + ξ2) .

Observation. The cmc spheres S2
H

with 0 < 4H2 < κ are not contained in the

product of a closed hemisphere and the real axis.

Principal curvatures.

In each product space M 2
κ × R there still exists a totally-geodesic slice for the

action of the 1–parameter group of rotations that preserves the cmc surface.

Hence the principle directions are the tangent vectors to the meridians and the

circles of latitude, respectively. W.r.t. this basis the second fundamental form

is given by

hΣ =

(
H + κ

4H
· cos2(θ) 0

0 H − κ
4H

· cos2(θ)

)

Thus the spheres S2
H

in the product spaces are not totally-umbilical. The linear

combinations 2H ·hΣ−κ ·dξ2 , however, are multiples of the induced metric ι?g.

3.2 Alexandrov’s Result for Cmc Surfaces

in the Product Spaces M
2

κ
× R.

The moving planes argument used in the proof of Alexandrov’s theorem carries

over verbatim to cmc surfaces embedded into the product spaces M 2
κ ×R. The
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argument proves less though, since the product spaces admit fewer reflections;

all planes of reflection are either vertical or horizontal.

Theorem. Let Σ2 be a closed embedded cmc surface in H2 × R or S2
+ × R.

Then Σ2 is a rotationally-invariant vertical bi-graph.

In other words, here the conclusion is that the surface Σ2 is one of the

rotationally-invariant cmc spheres S2
H

described in the preceding subsection.

Remark. Closed embedded cmc surfaces Σ2 ↪→ S2 × R that do not project

into some hemisphere S2
+ are only guaranteed to be vertical bi-graphs.

Caveat. In S2 × R , there again exist embedded cmc tori and embedded cmc

surfaces of higher genus. In other words, the restriction to cmc surfaces that

project into a hemisphere is again an essential hypothesis. However, not all of

the rotationally-invariant cmc spheres S2
H
⊂ S2×R do project into hemispheres,

and so this restriction is highly undesirable.

4 New Results for Cmc Surfaces

in the Product Spaces M
2
κ

× R

The theorems presented in this section have been obtained in cooperation with

Harold Rosenberg from Paris 7 [2]. Our principal contribution is to introduce

a holomorphic quadratic differential along the lines of Hopf’s work for cmc

surfaces in these more general target spaces. Based on this result we then

establish the analogue of Hopf’s classification of immersed cmc spheres in the

product spaces.

4.1 Obstacles for Generalizing

the Holomorphic Quadratic Differential.

In fact, there are two obstacles that are commonly mentioned when it comes

to extending Hopf’s holomorphic quadratic differential to cmc surfaces in more

general target spaces.
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First, for target manifolds (M 3, g) other than space forms, the r.h.s. of the

Codazzi equations

〈∇X A · Y −∇Y A ·X ,Z〉 = 〈R(X, Y ) ν , Z〉 .

does not vanish anymore. Here ν and A = Dν denote the unit normal field

and the Weingarten map of the cmc surface, respectively. ∇ and D denote

the Levi-Civita connections of the surface and the 3–manifold, respectively. As

usual, ∇X Y = (DX Y )tan . Thus we find that ∂̄(π2,0(hΣ)) does not vanish for

all cmc surfaces in the products M 2
κ × R anymore.

The second issue is that the rotationally-invariant cmc spheres S2
H

in the

product spaces M 2
κ ×R are not totally-umbilical as explained in Subsection 3.1.

In particular, π2,0(hΣ) cannot be holomorphic on any of the spheres S2
H
, which

puts the problems with the Codazzi equations into a somewhat different light.

4.2 Main Results.

Inspecting the formulas from Subsection 3.1 more closely, one discovers one

encouraging fact though: For each sphere S2
H

the (2, 0)-part Q of the field

q := 2H hΣ − κ ι?(dξ2) vanishes. The important observation here is that q is a

linear combination of hΣ and ι?(dξ2) with constant coefficients.

So there is hope that Q may be holomorphic on all cmc surfaces in the

product spaces M 2
κ × R , and this indeed works out:

Theorem 1. Let (κ,H) 6= 0, and let L := dξ2 be the symmetric bilinear form

corresponding to the vertical projectors in M 2
κ × R. Then the expression

Q := 2H · π2,0(hΣ) − κ · π2,0(ι
?L) .

defines a natural holomorphic quadratic differential on any immersed cmc sur-

face ι : Σ2 # M2
κ × R with mean curvature H.

The proof of this theorem is essentially a direct computation, though a

much more elaborate one than in the case of constant curvature target spaces.
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In Subsection 4.3 we explain in more detail what the basic ingredients are and

give a structural argument why things actually work out.

As in H. Hopf’s work, Theorem 1 is the key to classifying immersed cmc

spheres:

Theorem 2. Any immersed cmc sphere S2 in a product space M 2
κ × R is con-

gruent to one of the embedded, rotationally-invariant cmc spheres S2
H

described

in Subsection 3.1.

The proof of this theorem closely follows the argument in the classical case

that has been described in Subsection 2.2. Again the starting point is to combine

Theorem 1 with the fact that the space of holomorphic quadratic differentials

on S2 = CP
1 is trivial. In order to finish the argument, it suffices to classify

cmc surfaces with Q ≡ 0.

Theorem 3. Let (κ,H) 6= 0, and let ι : Σ2 # M2
κ×R be a complete surface with

constant mean curvature H and vanishing holomorphic quadratic differential Q.

Furthermore, let θ := arcsin(dξ · ν). Then the following holds:

• if κ+ 4H2 > 0, then the surface Σ2 is congruent to one of the embedded,

rotationally-invariant cmc spheres S2
H

described in Subsection 3.1.

• if κ + 4H2 ≤ 0, then Σ2 is a complete open surface. Depending on the

sign of the function 4H2 + κ cos2(θ), it is either congruent to a disk-

like surface D2
H

or a particular parabolic surface P 2
H

or a surface C2
H

of

catenoidal type.

Remark. The disk-like cmc surfaces D2
H

and the cmc surfaces C2
H

of catenoidal

type are rotationally-invariant. They are homeomorphic to disks or annuli,

respectively. The parabolic cmc surfaces P 2
H

on the other hand are orbits under

suitable 2-dimensional solvable subgroups A N ⊂ SO
+(2, 1) × R .

For the purposes of this survey we refrain from giving a precise definition of

the noncompact cmc surfaces with vanishing holomorphic quadratic differential

Q. We rather illustrate their meridian curves in Figures 3–6.
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4.3 On the Proof of Theorem 1.

We begin explaining the three basic ingredients used in various computations

throughout the proof.

First of all, we need a way to compute the ∂̄–operator on the space of

quadratic differentials on an oriented Riemann surface (Σ2, ι?g). Since the al-

most complex structure J on such a surface is parallel, the ∂̄-operator can be

expressed in terms of the Levi-Civita connection ∇ as follows:

∂̄ Q(X;Y1, Y2) = 1
2

(
∇X Q+ i · ∇JX Q

)
(Y1, Y2)

=: ∇ 1
2
(1+iJ)X Q (Y1, Y2) .

Note that the preceding formula is not the definition of the ∂̄–operator. It even

fails for complex manifolds when the hermitean metric under consideration is

not Kaehlerian; this does not happen in the case of Riemann surfaces though.
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Decomposing the Weingarten map A as A = H · 1l +A0 , where A0 denotes

the traceless part, turns out to be extremely useful, since on surfaces traceless

symmetric endomorphisms anti-commute with the almost complex structure J .

Finally, the Codazzi equations play a key role. For surfaces Σ2 in 3–mani-

folds the curvature term on their r.h.s. can be factored through the curvature

ellipsoid and can thus be expressed in terms of the Einstein tensor G:

〈∇X A · Y −∇Y A ·X ,Z〉

= 〈X × Y ,G (ν × Z)〉 = 〈(X × Y ) × Z ,G ν〉 .

Since ν ⊥ X, Y, Z, the final simplification step on the r.h.s. is a consequence of

the following identity for cross products:

G (X × Y ) = tr(G) ·X × Y − (GX) × Y −X × (GY ) .

The key steps in the argument.

a) The Codazzi equations imply that

∂̄
(
π2,0(hΣ)

)
(X;Y1, Y2) = 〈ψ(X;Y1, Y2) , G ν 〉

where

ψ(X;Y1, Y2) := 1
2

[
〈X−, Y +

1 〉Y +
2 + 〈X−, Y +

2 〉Y +
1

]
,

X− := 1
2
(1 + iJ)X , Y +

µ := 1
2
(1 − iJ)Yµ .

Even without going into all the details of the computation, one can see that

ψ is a trilinear map of type (2, 1) that depends just on the metric and the

almost complex structure J . It seems worthwhile to point out that the space

of such maps is just 1–dimensional. This readily yields the claimed formula for

∂̄
(
π2,0(hΣ)

)
— at least up to a constant factor.

b) In order to compute the ∂̄–derivative of the second term which is the pull-

back of the field L := dξ2 of vertical projectors, it suffices to express the covari-

ant derivative ∇ on the surface Σ2 in terms of the covariant derivative D of the
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3-manifold and split the Weingarten map as A = H · 1l + A0 :

∂̄
(
π2,0(ι

?L)
)
(X;Y1, Y2)

= 〈Y +

1 ,D(X−) L · Y +

2 〉 − 2H · 〈ψ(X;Y1, Y2) , L ν 〉

The same reasoning as in (a) can be used in order to see without much compu-

tation that the terms involving the mean curvature H constitute a multiple of

the second term on the r.h.s. of the preceding formula. Moreover, it is possible

to argue that there does not exist any trilinear map of type (2, 1) that depends

linearly on a traceless symmetric endomorphism, hence the absence of terms

involving A0.

c) For the product spaces M 2
κ × R the field of vertical projectors is parallel,

i.e., DL = 0. Furthermore, because of the way in which the Einstein tensor

G describes the curvature ellipsoid, it is clear that G = −κ · L. With this

additional information, it is evident that the linear combination of ∂̄
(
π2,0(hΣ)

)

and ∂̄
(
π2,0(ι

?L)
)

that expresses the ∂̄–derivative of Q evaluates to zero.

A more conceptual point of view.

As explained in (a) and (b), the key terms in the expressions for the ∂̄–derivatives

of π2,0(hΣ) and π2,0(ι
?L) are already determined by representation theory up to

some universal complex-valued factors. This argument readily implies that both

these terms are multiples of 〈ψ(X;Y1, Y2) , L ν 〉 . Thus there is a fixed linear

combination of π2,0(hΣ) and π2,0(ι
?L) that is holomorphic on all cmc surfaces

in M2
κ ×R whose mean curvature equals the number used in the definition of Q.

By construction the quadratic differential Q itself vanishes identically on

the rotationally-invariant cmc spheres S2
H

described in Subsection 3.1, and so

∂̄ Q ≡ 0, too. The tensor field 〈ψ(X;Y1, Y2) , L ν 〉 on the other hand does

not vanish identically on these cmc spheres. This identifies Q as the linear

combination that is holomorphic on all cmc surfaces.
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4.4 On the Proof of Theorem 3.

Here the basic idea is to prolong and work with the unit normal field

ν : Σ2
# N5

κ := T1(M
2
κ × R) .

The formula ι = π ◦ ν can then be used to recover the immersion itself.

In this setting the problem of classifying cmc surfaces with vanishing holo-

morphic quadratic differential boils down to studying integral surfaces of some

explicitly given 2–dimensional distribution in the tangent bundle of a 5–manifold.

More precisely,

Lemma. Immersions ι with constant mean curvature H and Q ≡ 0 corre-

spond to maps ν : Σ2 → N5
κ that are integral surfaces of some 2-dimensional

distribution EH ⊂ TN5
κ .

In fact, this lemma is just a slightly unusual way of writing the fundamental

equations of submanifold geometry.

Observation. The distribution EH is invariant under the action of the isometry

group Iso0(M
2
κ ×R) of the product space. This action has 4-dimensional orbits

that are separated by the invariant function

Θ: N5
κ → [−1

2
π , 1

2
π ]

v 7→ arcsin(dξ · v) .

In particular, it is sufficient to analyze for one point p in each fiber whether or

not there exists an integral surface of EH through p and, if so, to determine this

integral surface.

Of course, in general Θ will not be constant along such an integral surface.

The range of this function can easily be studied with the help of the integral

curves s 7→ c(s) of the component of grad ξ that is perpendicular to ν. The

explicit formulas for EH reveal that the function θ : s 7→ Θ ◦ c(s) satisfies the

following differential equation:

∂
∂s
θ = 1

4H

(
4H2 + κ cos2(θ)

)
.
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Analyzing this differential equation, it is not hard to determine the integral

surfaces of EH explicitly. As explained above, the various congruence classes

are characterized by the corresponding ranges of Θ. The corresponding meridian

curves have been depicted in Figures 3–6.

Since the ranges discovered in the preceding step cover the entire interval

[−1
2
π , 1

2
π ] , it follows a posteriori that EH is integrable everywhere.

5 Further Generalizations

Next we investigate the scope of the construction introduced in the preced-

ing section. In particular, we ask: For which (orientable) Riemannian 3–

manifold (M3, g) does there exist a correction field L that induces a holomorphic

quadratic differential on any immersed cmc surface. In this generality, it is of

course no longer possible to define the correction field L by means of an explicit

expression.

Theorem 4. Fix some constant H ∈ R. Let (M 3, g) be an oriented Rieman-

nian manifold, and let L0 be a C–valued, traceless, symmetric bilinear form

on M3. Then the expression

Q := π2,0(hΣ + ι?L0)

defines a holomorphic quadratic differential on any surface ι : Σ2 # (M3, g)

with constant mean curvature H, if and only if L0 solves the differential equa-

tion

DX L0 = 1
2
i ·
[
?X,G− 2H L0

]
. (∗)

Here the square brackets denote the commutator, and ?X stands for the

skew-symmetric endomorphism Y 7→ X × Y induced by the cross-product.

Remark. Focusing on traceless fields L0 does not restrict the class of quadratic

differentials Q. It is a mere normalization, as the projector π2,0 clearly annihi-

lates all multiples of the induced metric ι?g on the surface Σ2.
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The preceding theorem should not make one expect to find holomorphic

quadratic differentials for cmc surfaces in a generic Riemannian 3–manifold.

First, thinking about 3–manifolds with bumpy metrics, it is absurd to expect

getting any kind of uniqueness result for minimal surfaces quite in contrast

to the rigidity that conceivably follows analyzing the holomorphic quadratic

differential in more detail.

On a more technical basis, the ODE-system (∗) is strongly overdetermined.

So, one should expect that the corresponding integrability conditions impose

serious restrictions on the geometry of the underlying 3–manifold (M 3, g).

Theorem 5. Let (M̃3, g) be a simply-connected, oriented Riemannian mani-

fold, and let H ∈ R be some real constant. Then equation (∗) is solvable if and

only if (M̃3, g) is a homogeneous space with an at least 4-dimensional isometry

group.

Recall that homogeneous Riemannian 3–manifolds (M̃3, g) come with 6–,

4–, or 3–dimensional isometry groups. The ones with 6–dimensional isometry

groups are the space forms.

Observe that all simply-connected, homogeneous 3–manifolds with 4–dimen-

sional isometry groups admit natural equivariant Riemannian submersions with

1–dimensional, totally-geodesic fibers. They are classified up to isometry by

the curvature κ of the quotient surface and the bundle curvature τ of these

submersions. The range of this invariant is the entire plane except for the curve

κ = 4τ 2 which corresponds to spaces of constant curvature. In this family one

distinguishes six different homogeneous structures:

κ > 0 κ = 0 κ < 0

τ = 0 S2 × R R3 H2 × R

τ 6= 0 S
3
Berger

Nil(3) S̃l(2,R)

The first row consists of the product spaces M 2
κ × R. When discussing these

spaces in Section 4, we have ignored the case κ = τ = 0, as it boils down to

euclidean 3–space with the standard flat metric; only the automorphisms are
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restricted to isometries that preserve the splitting as R2 ⊕R. In the second row

one encounters 3 new classes of simply-connected Riemannian 3–manifolds: the

Berger spheres S
3
Berger

, the Heisenberg group Nil(3), and the universal covering

of Sl(2,R). These are the target spaces where the existence of a holomorphic

quadratic differential Q on immersed cmc surfaces has not been known before-

hand.

The isometry group of the Berger spheres is an index-2 extension of the

unitary group U(2) contained in O(4). In the other two cases, however, we are

dealing with maximal homogeneous structures. Altogether, with Theorem 5

we have constructed holomorphic quadratic differentials for cmc surfaces in

homogeneous 3–manifolds corresponding to 7 of the eight maximal homogeneous

structures that appear in Thurston theory [16, 17]. Only Solv(3) is missing; the

reason is that it only admits a 3–dimensional isometry group.

Remark. Inspecting the proof of Theorem 5, one finds that equation (∗) always

admits a homogeneous solution L0, i.e., a solution that is invariant under the

action of the full isometry group Iso0(M̃
3, g) of the homogeneous space. This

solution is necessarily a multiple of the traceless Einstein tensor G0.

Following the argument from the proof of Theorem 3, it is possible to classify

the cmc surfaces on which the holomorphic quadratic differential Q correspond-

ing to these homogeneous solutions L0 vanishes identically. As a result, we can

generalize Hopf’s result even further:

Theorem 6. Any immersed cmc sphere S2 in a simply-connected homogeneous

space (M̃3, g) with an at least 4–dimensional isometry group is in fact an em-

bedded, rotationally-invariant cmc sphere.

For the proofs of all 3 theorems presented in this section we refer the reader

to the forthcoming paper [3].

Remark. There are special situations where the ODE-system (∗) has other

solutions L0 than the homogeneous ones. This occurs for instance in hyper-

bolic 3–space H3 when studying cmc surfaces whose mean curvature H equals
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the mean curvature of the horospheres. In the literature these surfaces are re-

ferred to as Bryant surfaces. They are known to have more than one nontrivial

holomorphic quadratic differential [7].

Discussion of the results.

In contrast to the 5 symmetric spaces, all three bundle geometries S3
Berger

, Nil(3),

and S̃l(2,R) are not locally-conformally flat. Thus one cannot say that the addi-

tional symmetries of the Willmore functional are responsible for obtaining holo-

morphic quadratic differentials on immersed cmc surfaces. On the other hand,

it is also not correct to believe that the existence of an at least 2–dimensional

Ricci eigenspace is the distinctive geometric property. This time, the problem

is that the standard metric on Solv(3) has a double Ricci eigenvalue, too.

However, it seems natural to think of the holomorphic quadratic differen-

tial Q constructed in Theorems 4 and 5 as a family of first integrals for the cmc

equation that is due to the 1–dimensional isotropy groups of the bundle geome-

tries and the 3–dimensional isotropy groups of the space forms, respectively.

Observation. The isotropy group Gp of any point p in a simply-connected,

homogeneous 3–manifold (M̃3, g) with a 4–dimensional isometry group contains

the 180o–rotations around all horizontal geodesics through p.

In fact, Gp is isomorphic to the orthogonal group O(2) ⊂ SO(TpM̃
3) gen-

erated by these rotations, provided that the bundle curvature τ is nonzero.

Otherwise, (M̃3, g) is a product space, and Gp is isomorphic to the slightly

larger group O(2) × O(1) ⊂ O(TpM̃
3).

This simple observation has a lot of impact for the global theory of minimal

surfaces in this class of homogeneous spaces.

Corollary (Schwarz symmetrisation). In homogeneous bundles with 4–dimen-

sional isometry groups, it is possible to extend any minimal surface Σ2, whose

boundary consists only of horizontal and vertical edges, to a possibly immersed

global minimal surface Σ̂2 consisting of patches congruent to Σ2.
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As usual, the basic patch Σ2 can be obtained by first constructing an appro-

priate boundary polygon and then solving Plateau’s problem for this contour.

In our opinion, the principal results presented in this section, i.e., Theorems 5

and 6 and the Corollary, strongly suggest that the homogeneous 3–manifolds

with at least 4–dimensional isometry groups are the proper setting for studying

global properties of minimal surfaces and cmc surfaces.

6 Minimal Surfaces

in the Heisenberg Group Nil(3)

In order to test the thesis at the end of the preceding section, we have started in-

vestigating global properties of minimal surfaces in the Heisenberg group Nil(3).

As in the previous section, we only consider left-invariant Riemannian metrics.

These metrics come in a 1–parameter family gτ that is naturally indexed by

bundle curvature.

In the class of inner metric spaces this family has a limit with very special

properties, which shows up naturally in many contexts in analysis and geometry.

However, it is a Carnot-Caratheodory metric rather than a Riemannian metric.

In this section we restrict the discussion to the Riemannian case.

6.1 Equivariant Examples.

Equivariant minimal surfaces in the Heisenberg group, i.e., complete minimal

surfaces Σ2 ⊂ (Nil(3), gτ) that are invariant w.r.t. some 1–parameter subgroups

of isometries, have been classified in a paper by Ch. Figueroa, F. Mercuri,

and R. Pedrosa [14]. There are 4 distinct classes of 1–parameter subgroups

in Iso0(Nil(3)), a group that comes with a canonical homomorphism onto the

group of motions Iso0(R
2) in the quotient plane R2 = Nil(3)/Center. The list

of the corresponding equivariant minimal surfaces is as follows:

1. Vertical Planes:

These are the total preimages of straight lines, and thus they are invariant
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under vertical translations. In fact, each vertical plane is the orbit of a

2–dimensional abelian subgroup of Nil(3).

2. Catenoids and Horizontal Umbrellas:

These are the minimal surfaces in Nil(3) that are invariant under the group

φt of rotations around some vertical axis.

3. Helicoids and Helicoidal Catenoids:

These are the minimal surfaces in Nil(3) that are invariant under some

group φt of screw motions with a vertical axis.

4. Saddle-Type Surfaces:

These are the minimal surfaces in Nil(3) other than the vertical planes

that are invariant under a group φt of isometries that projects to a 1–

parameter group of translations. They come as a 1–parameter family of

noncongruent surfaces indexed by slope.

Observation. Among the equivariant minimal surfaces in (Nil(3), gτ), the um-

brellas and the saddle-type surfaces are the ones that are graphs w.r.t. the

Riemannian submersion (Nil(3), gτ) → R2. The holomorphic quadratic differ-

entials Q and the conformal types of these global minimal graphs are as listed

below:

umbrellas
vertical
planes

min. surfaces
of saddle-type

conformal type hyperbolic parabolic parabolic

hol. quad. diff. Q ≡ 0 Q ≡ 0 Q = c · dz2

The properties of the vertical planes have been listed here too, as these surfaces

occur both as limits of families of umbrellas and as limits of families of minimal

surfaces of saddle-type. In the first case the idea is to let the vertical axis move

to infinity, whilst in the second case one lets the slope parameter approach

infinity.
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6.2 Scherk Surfaces in Nil(3).

The doubly-periodic Scherk surface is a global minimal surface in euclidean 3–

space that is a graph over each of the black squares in a suitable checkerboard

tiling of the plane and that also contains the vertical lines over the vertices of

this tiling. Up to scaling the piece over a single square is congruent to the graph

of the function

f(x, y) := ln ◦ cos(y) − ln ◦ cos(x)

with (x, y) ∈
(
−1

2
π, 1

2
π
)
2.

In the Heisenberg group there exist minimal surfaces with similar properties.

They have been constructed in cooperation with Harold Rosenberg; the details

will be given in a forthcoming joint paper.

Proposition 7 (Local Scherk surfaces). Let Ω be a square in R2, and let

γ1∪γ2 denote the horizontal lift of its diagonals through a given common center.

Then, for any τ 6= 0, there is a unique minimal graph Σ2 ⊂ (Nil(3), gτ) w.r.t. the

Riemannian submersion (Nil(3), gτ) → R2 that

(i) is defined over the interior of the square Ω and contains γ1 ∪ γ2 , that

(ii) is asymptotic to +∞ over one pair of edges and to −∞ over the other

pair of edges, and that

(iii) has the vertical lines over the 4 vertices of the square Ω as its boundary.

Idea of the Proof. Consider the geodesic pentagon c consisting of a horizontal

lift of one of the edges of the square, an adjacent segment on each of the vertical

lines, and the appropriate segments of γ1 and γ2. This contour c is a Nitsche

graph over the triangle ∆ consisting of the given edge of the square and the two

adjacent segments on the diagonals.

As in the euclidean case there is a unique stable minimal surface spanning c,

and, moreover, this minimal surface is a graph over the interior of ∆. Now

the Schwarz reflection asserts that we can extend this minimal surface using

congruent copies obtained through 180o–rotations around γ1 and γ2. In this
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way we obtain a stable minimal graph of finite height defined over the entire

square Ω. (See Figure 7.)

Figure 7: The local Scherk surface.
Figure 8: A triply-periodic global
Scherk surface.

The final step in constructing the local Scherk surfaces is to show that the

family of these finite height Scherk surfaces converges towards some limit surface

Σ2 when their height goes to +∞. This goal is accomplished with the help of

suitable barriers. By its very construction the limit surface is a minimal graph,

but some further arguments are necessary to establish that this graph is actually

defined on the entire open square.

�

As in the euclidean case, the local Scherk surfaces in the Heisenberg group

(Nil(3), gτ) naturally come as a 1–parameter family Σ2
r indexed by the size of

the underlying square Ω. However, it is not possible anymore to recover the

entire family from one of its member surfaces by scaling.

Remark. Upon enlarging the square, the local Scherk surfaces Σ2
r converge to

saddle-type surfaces of slope zero and not to umbrellas.

Yet, it is possible to use them as comparison objects for proving curvature

bounds for global minimal graphs. These bounds can be viewed as a first step

towards a Bernstein theorem.
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On the Schwarz extension of the local Scherk surfaces Σ2.

As indicated above, the local Scherk surface Σ2 from the Proposition can be

extended using the Schwarz reflection principle; one obtains an immersed global

minimal surface Σ̂2. Clearly, Σ̂2 is the orbit of Σ2 under the group Γ generated

by the 180o–rotations around the diagonals and the 180o–rotations around the

lines containing the vertical segments of the geodesic pentagon c.

It is not hard to see that Γ is a a discrete subgroup of Iso0(Nil(3), gτ ), and

thus the global surface Σ̂2 is even properly immersed.

But, Σ̂2 is not embedded. In fact, the next lemma implies that Σ̂2 is invariant

under a nontrivial vertical translation, and thus the vertical lines bounding the

fundamental piece Σ2 must be lines of self-intersection.

Lemma. Let Γ′ be the discrete subgroup in Iso0(Nil(3), gτ) generated by the

180o–rotations around the vertical lines over the vertices of the triangle ∆.

Then Γ′ contains a lattice. In particular, Γ′ contains the vertical translation

by 8h where h denotes the vertical displacement by which the horizontal lift of

the triangle ∆ fails to close up.

One can visualize these holonomy effects in the following way:

Observation. The set Γ′ · (γ1 ∪ γ2) , i.e., the union of the various images of

the horizontal lift of diagonals of the basic square Ω w.r.t. the action of the

discrete group Γ′, is a 1–dimensional complex that projects to the union of the

diagonals of all the black squares of the tiling and that is invariant under the

vertical translation by 8h.

Embedded global Scherk surfaces.

Because of the holonomy effects described above, it is inevitable to refrain from

passing to the limit in the proof of Proposition 7. We shall rather use the stable

minimal graphs of finite height that have been constructed in the first step of

the proof.

The group Γc that is relevant for describing the Schwarz extension of a

minimal surface spanning a contour c of finite height is the extension of Γ
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generated by the 180o–rotation around the segment of c that is the horizontal

lift of the edge of the square Ω. As a result, the Schwarz extensions of the stable

minimal graphs of finite height are in general not properly immersed anymore.

Persuing this idea a little further, one can exclude all but 3 choices for the lift

of the edge of the square.

It can be shown that all these cases do actually occur.

Proposition 8 (Triply-periodic Scherk surfaces). For each left-invariant

metric gτ on the Heisenberg group Nil(3), there exists an embedded, triply-

periodic, global minimal surface Σ̂2 of Scherk type.

One way to construct these triply-periodic minimal surfaces is to start out

with a contour c where the end points of the horizontal lift of the edge of Ω

lie at equal distances above and below the corresponding end points of γ1 and

γ2. In fact, this contour has an additional symmetry; as indicated in Figure 8,

it is invariant under the 180o–rotation around the horizontal geodesic through

the center and the mid point of the lifted edge. In fact, this axis divides the

geodesic pentagon c into two geodesic quadrilaterals c1 and c2 such that the

stable minimal surfaces bounded by c1 and c2 are the two halves of the stable

minimal surface bounded by c.

The other possibility for constructing a triply-periodic minimal surface is to

work with a horizontal lift of the edge of Ω that begins at the end point of either

γ1 or γ2. In this case the contour c degenerates to a geodesic quadrilateral, which

is congruent to either one of the pieces c1 and c2 obtained when constructing

the pentagon in the proceding paragraph from a square Ω′ ⊂ R2 that has
√

2

times the size of Ω.

6.3 Half-Space Theorems.

The material presented in this subsection is joint work with Harold Rosenberg,

too. From the conformal point of view, the umbrellas in Nil(3) are hyperbolic

surfaces and not parabolic ones. Yet, the following holds:
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Theorem 9. Let Σ2 be a proper, possibly branched minimal surface in the

Heisenberg group Nil(3). Suppose that Σ2 is contained in the complement of

some horizontal umbrella. Then Σ2 is congruent to this umbrella by a vertical

translation.

The behavior of complete minimal surfaces in the product space H2 × R is

very different [13]; there exist plenty of complete minimal surfaces in any half-

space bounded by some level set H2 × {t0}. In other words, there cannot be

any half-space theorem at all.

Method of Proof. The same argument as in the euclidean case works, as the

catenoids in (Nil(3), gτ) collapse to a doubly-covered punctured umbrella when

their necksize shrinks to 0.

�

It seems to be an interesting question whether in the Heisenberg group there

are also half-space theorems with respect to the vertical planes or the minimal

surfaces of saddle-type.
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