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About this course

The aim of this course is a primer with basic notions of category the-
ory and representation theory of �nite dimensional algebras. We will study
the concept of adjoint functors and show the correspondence �quiver� �
�algebra� can be interpreted as a pair of adjoint functors between certain
categories.

Mostly the lectures do not contain the proofs and the theory is accom-
panied by examples (sometimes introduced as the exercises). For a deeper
acquaintance with the theory of categories and representations of �nite di-
mensional algebras, we recommend (to interested reader) consult with the
books and/or on-line resources listed after Lectures 2 and 3.

1. What are categories and functors?

�Perhaps the purpose of categorical algebra is to

show that which is trivial is trivially trivial�

� Peter Freyd

1.1. Categories. Most mathematical theories deal with the situations where
there are certain maps between objects of a certain nature. The set of ob-
jects itself is �static�, while consideration of morphisms between objects is
more �dynamic�. Usually one imposes the restrictions on the nature of mor-
phisms between objects, for instance, it rarely makes sense to consider all
possible maps between groups, usually one limits oneself to studying only
group homomorphism.

The concept of a category was introduced by Samuel Eilenberg and Saun-
ders Mac Lane as a tool for simultaneous investigation of objects and mor-
phisms between them. This concept is slightly abstract but very convenient.
Before we give the precise de�nitions, we look at some simple examples.
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Examples:.

• Category Sets: objects � set and morphisms � arbitrary functions
between sets;
• Groups: objects � groups, morphisms � homomorphisms of groups;
• AbGroups: objects � commutative groups, morphisms � homo-
morphisms of groups;
• Rings: objects � rings, morphisms � homomorphisms of rings;
• Algk: objects � algebras over �xed �eld k, morphisms � homomor-
phisms of algebras;
• Top: objects � topological spaces, morphisms � continuous func-
tions;
• M�ds: objects � smooth manifolds, morphisms � di�erentiable
maps between manifolds;
• Vectk: objects � vector spaces over k, morphisms � linear operators.

It should be noted that in all these examples above we can form a compo-
sition of morphisms and this composition is associative (as in all examples
morphisms are functions between sets which satisfy certain restrictions and
composition of function is associative).

De�nition 1. A category C consists of the following:
• class of objects Ob(C). The situation �X is an object in C� we write
as X ∈ Ob(C) or X ∈ C;
• class of morphisms Mor(C). Each morphism f is a some map from
X ∈ C to Y ∈ C. Formally Mor(C) is a disjoint union of classes
Mor(X,Y ) for all possible X,Y ∈ C. We will denote the morphism

f by arrow X
f−−→ Y . By C(X,Y ) we denote the morphisms between

X and Y .;
• composition rule of morphisms:

Mor(X,Y )×Mor(Y,Z)→Mor(X,Z),

(f, g) 7→ fg,

which takes two morphisms X
f−−→ Y and Y

f−−→ Z to the morphism

X
fg−−−→ Z;

• for each X ∈ C there exists an identity morphism X → X;

This structure must satisfy the following axioms:

• composition of morphisms is associative;
• composition of arbitrary morphism f : X → Y with identity mor-
phism equals f .

1.2. Functors. Considering several categories simultaneously, functors bring
the way to �relate� them.

De�nition 2. Covariant (resp. contravariant) functor F from a cate-
gory C to a category D is a rule that associates to an arbitrary object X ∈ C
an object F (X) ∈ D, and to an arbitrary morphism f : X → Y a morphism
F (f) : F (X)→ F (Y ) (resp. F (f) : F (Y )→ F (X)) such that the following
axioms hold:

• F (idX) = idF (X) for any X ∈ C;
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• F preserves the composition between morphisms, that is, for arbi-
trary f : X → Y , g : Y → Z are F (f ◦ g) = F (f) ◦ F (g) (if F
covariant) and F (f ◦ g) = F (g) ◦ F (f) (if F contravariant) .

Examples:.

• inclusion of subcategory. Let C be a subcategory of D. That
means that objects and morphisms in C are also objects and mor-
phisms in D. The inclusion functor C ↪→ D, acts identically on
objects and morphisms. For example, we have a functor

AbGroups ↪→ Groups.

• forgetful functor: de�ne the functor F : Groups → Set, which
maps an arbitrary group to its underlying set (forgetting group struc-
ture), and arbitrary homomorphism between groups to a function
between the respective sets. Functor �forgets� group structure (on
the objects and morphisms). Similarly, we have the forgetful func-
tor Vectk → Sets, which maps any vector space to the set of all
its vectors, and any linear transformation between the spaces to the
corresponding map between the sets of vectors. In fact, we forget
that we can add vectors and multiply them by scalars, and that
linear maps are linear. Similarly, one can de�ne the forgetful func-
tors: Algk → Set, Top → Set, Ring → Set, R-Mod → Set, ...,
Algk → AbGroup ( functor which forgets multiplication).
• Free functors: For any set X we de�ne F (X) as a free group gener-
ated by the set X. Arbitrary function f : X → Y , which maps x ∈ X
to f(x) ∈ Y , de�nes the group homomorphism F (f) : F (X) →
F (Y ). It is easy to see that this map satis�es F (fg) = F (f)F (g),
hence it de�nes the functor F : Sets → Groups. Similarly, one
de�nes other �free� functors: Sets → Vectk, Sets → Ring, ...,
Sets→ Top (set X endowed with the discrete topology), and many
others.
• functor Boolean. We de�ne the functor P : Sets → Sets, setting
P[X] as the set of all subsets of X. Now if f : X → Y is a function
between sets, and U ⊂ X, de�ne P[f ](U) as the image of U under
f .
• Consider the following example of contravariant functor. Duality
functor

Vectk → Vectk,

which maps an arbitrary vector space V to vector space V ∗ of all
linear functional on V . Linear operator L : U → V is mapped to
its conjugate L∗ : V ∗ → U∗ (which maps arbitrary linear functional
ϕ ∈ V ∗ to the linear functional u 7→ ϕ(L(u)) on U).
• Another example of contravariant functor is the functor Top →
Rings, which assigns to each topological space X the ring of continu-
ous functions C0(X,R), and to an arbitrary continuous map f : X →
Y it assigns so-called (pull-back) map f∗ : C0(Y,R)→ C0(X,R) (ob-
serve that the composition of function on Y with f is a function on
X).
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1.3. Equivalence of categories. Given two categories C and D when are
they equivalent? It is natural to say that C and D are isomorphic if there
are functors F : C → D and G : D → C such that they are inverses to each
other. In fact, this de�nition is quite restrictive, as the following example
explains:

Example. Let D be the category of �nite dimensional vector spaces over k,
and C be a subcategory containing the vector space kn (of column vectors)
for each dimension n. Note that theMor(kn, km) can be naturally identi�ed
with matrices Mm,n(k). The categories C and D are not isomorphic as D
contains all possible vector spaces. But an arbitrary n-dimensional vector
space V is isomorphic to kn (selecting the basis in V ), so the category of C in
some sense full enough and we can consider C and D as equivalent categories.

To formalize the last example, consider the following de�nition

De�nition 3. Covariant functor F : C → D is called the equivalence of

categories if

• F is essentially surjective, that is an arbitrary object in D is
isomorphic (but not necessarily equal!) to an object of the form
F (X) for some X ∈ C.
• F is full and faithful, that is there is a bijection

MorC(X,Y ) 'MorD(F (X), F (Y )),

for arbitrary X,Y ∈ C.

Consider the category as in Example 1.3. We make sure that the inclusion
functor F : C → D is an equivalence of categories. Indeed, if V is an arbitrary
n-dimensional space, V is isomorphic to kn. Fixing a basis e1, . . . , en, we get
the isomorphism V → kn, which maps an arbitrary vector v ∈ V to the
column of coordinates of v in the basis {ei}, and therefore F is essentially
surjective. It is easy to see that F is full and faithful, that is F is an
equivalence of categories.

1.4. Exercises.

Exercise 1.1. Let C be an arbitrary category. Show the following:

a) identical morphism idX : X → X is unique for each object X ∈ C;
b) an arbitrary isomorphism C has unique inverse;
c) Let f : X → Y and f : Y → Z be two morphisms. Show that if two

of the morphisms f, g and f ◦ g are isomorphisms, then the third is
also isomorphism. (This property is called two of three).

Exercise 1.2. Let I be an arbitrary partially ordered set in which a partial
order is given by �. With I we associate the category CI , in which objects
are elements of the set I, and for two arbitrary i, j ∈ I, Mor(i, j) � empty
set if i � j and has one element if i � j. Using re�exivity and transitivity of
relation �, one determines the composition of morphisms in CI and shows
that the construction above de�nes the category CI .

Exercise 1.3. Let I and J be two posets. Show that an arbitrary functor
between the categories CI and CJ is given by poset homomorphism (i.e. by
the function that preserves order) f : I → J .
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Exercise 1.4. Let X be an arbitrary topological space and I(X) is the set
of all closed subsets of X. Show that I(X) is a poset (with the order given by
the inclusion of subsets). Specify category Top(X) as CI(X) from Exercise
1.2.

Exercise 1.5. Let V be vector space over R. Show that the complexi�cation
V 7→ V ⊗R C de�nes the functor VectR → VectC.

Exercise 1.6. Let C,D be arbitrary categories, and F : C → D be a functor.
Show the following:

a) F maps isomorphisms to isomorphisms;
b) if F is full and faithful, and F (f) : F (X)→ F (Y ) is an isomorphism

in D, then f : X → Y is an isomorphism in C.

Exercise 1.7. Let G be an arbitrary group and [G,G] its commutator. Show
that G/[G,G] is an abelian group, and the map G 7→ G/[G,G] de�nes the
functor Ab : Group→ AbGroup.

Exercise 1.8. De�neTop∗ as a category whose objects are the pairs (X,x0),
X is topological space, x0 ∈ X is a �xed point and morphisms f : (X,x0)→
(Y, y0) are continuous maps f : X → Y such that f(x0) = y0. Make sure
that Top∗ is a category, and the map π1 : Top∗ → Group, which to the pair
(X,x0) connects its fundamental group π1(X,x0), de�nes covariant functor.

Exercise 1.9. De�ne CHaus a category whose objects are compact Haus-
dor� spaces and morphisms are continuous maps. And de�ne the map
β : Top→ CHaus, which to an arbitrary topological space X associates its
Stone-Cech compacti�cation βX (i.e., �maximum� compact Hausdor� space
�generated� by X). Show that β de�nes a functor.

Exercise 1.10. Let R,S be rings (not necessarily commutative). Consider
the category of right modules over these rings C = ModR and D = ModS
(in which morphisms are homomorphisms of modules). Show that, �xing
(R,S)-bimodule X, one can de�ne two functors F : C → D and G : D → C
as follows:

F (Y ) = Y ⊗R X, Y ∈ D,
G(Z) = HomS(X,Z), Z ∈ C.
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2. Adjunction between categories

2.1. Natural transformations.

� I did not invent category theory to talk about

functors. I invented it to talk about natural

transformations. �

� Saunders Mac Lane

What is a natural transformation? This is a map from one functor to an-
other! Consider the simple example that explains this quite vague de�nition.
Recall that for any vector space V there exists (�natural�) linear map

φV :V → V ∗∗

V 7→ (f 7→ f(v)).

If dimV <∞, it is easy to see that φV an isomorphism. What naturalness of
φV means? In fact, if dimV <∞, then the spaces V and V ∗ are isomorphic,
but there is no canonical isomorphism (the isomorphisms requires the choice
of basis in V ). On the other hand, the isomorphism φV does not require any
additional choice. To formalize this construction, consider the properties of
φV . An arbitrary linear map L : U → V generates a linear map L∗∗ : U∗∗ →
V ∗∗, which, together with the maps φU , φV generates the following diagram:

U U∗∗

V V ∗∗

φU

L L∗∗

φV

There is no a priori reason for supposing that the diagram above is commu-
tative (if φU is an arbitrary linear map, it is clear that the diagram is not
commutative). However, the diagram is indeed commutative! Let us show
that. Let u ∈ U , we check that

(1) φV (L(u)) = L∗∗(φU (u)).

Indeed, the functional in left side of (1) maps arbitrary linear functional
f ∈ V ∗ to the value f(L(u)). While the functional from the right side takes
an arbitrary linear functional f ∈ V ∗ to

φU (u)(L∗(f)) = L∗(f)(u) = f(L(u)).

We encourage the readers to analyse these equalities on their own.

De�nition 4. Let F,G : C → D be two covariant functors. Natural trans-
formation α : F → G between them is a rule that to every object X ∈ C
associates a morphism αX : F (X) → G(X) such that for every morphism
f : X1 → X2 in C the following diagram commutes

F (X1) G(X1)

F (X2) G(X2)

F (f)

αX1

G(f)

αX2
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If αX is an isomorphism for every object X, then α is called natural iso-
mor�sm.

Let's analyse the previous example in the context of this de�nition. Con-
sider the category of vector spaces over a �eld k denoted by Vectk and two
functors: Id : Vectk → Vectk (identical) and D : Vectk → Vectk (double
duality), which maps an arbitrary vector space V to its double dual V ∗∗,
and arbitrary morphism L : U → V to L∗∗ : U∗∗ → V ∗∗.

Exercise 2.1. Show that φU de�nes natural transformation between func-
tors Id andD, and considering subcategory FVectk ⊂ Vectk of �nite dimen-
sional vector spaces φU de�nes a natural isomorphism between the respective
restricted functors.

2.2. Adjoint functors. Recall that there are two functors between the cate-
gories Sets andVectk: free F : Sets→ Vectk and forgetful: Vectk → Sets.
G(V ) is the set of all vectors for a given vector space V , and F (X) is a vector
space over the �eld k with basis X (i.e. F (X) is formed by all formal linear
combinations

∑
i λixi with λi ∈ k and xi ∈ X, endowed with obvious vector

space structure). An arbitrary function g : X → G(V ) can be uniquely
extended to a linear operator f : F (X) → V (the operator f de�ned as
follows f(

∑
i λixi) =

∑
i λig(xi)). This generates the map η : g 7→ f which

has an �inverse� µ : f 7→ f |X (which assigns to an arbitrary linear operator
f : F (X) → V the map f |X : X → G(V ), restricting f to the basis of X).
Thus, η = ηX,V de�nes the bijection

(2) η : Sets(X,G(V )) ∼= Vectk(F (X), V )

Moreover, this bijection de�ned in �canonical� way for all sets X and vector
spaces V , i.e. component-wise ηX,V de�nes the natural transformation of
functors if we regard left and right sides of (2) as the functors in variables X
and V . A more detailed interpretation we give in de�nition of adjunction.

De�nition 5. Suppose we are given two functors F : C → D and G : D → C.
An adjunction between F and G is a law which for any pair (A ∈ C, B ∈ D)
associated the bijection ηA,B between C(A,G(B)) and D(F (A), B), which is
natural in A and in B. In this case the functor F is called left adjoint to
G, and G functor called right adjoint to F .

It is easy to see that naturalness of bijection η means that for each f :
A→ A′ and g : B → B′ the following diagrams commute:

C(A,G(B)) D(F (A), B)

C(A′, G(B)) D(F (A′), B)

f∗

ηA,B

(F (f))∗

ηA′,B

,

and
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C(A,G(B)) D(F (A), B)

C(A,G(B′)) D(F (A), B′)

(G(g))∗

ηA,B

g∗

ηA,B′

.

Here we used short notation g∗ = D(F (A), g) (composition with morphism
g), and f∗ = C(f,G(B)) (pre-composition with f).

Remark 1. The name �adjoint functor� arises as a kind of generalization of
the concept of �adjoint operator�. Indeed, consider the set of morphisms as
bi-functor

Mor : Cop × C → Sets

compare with the de�nition of adjoint functors with the de�nition of adjoint
operator in a complex vector space V with scalar product

〈·, ·〉 : V c × V → C,
in which V c denotes the vector space in which the action of the �eld C is
precomposed with complex conjugation.

Examples:.

a) The pairs of functors �free�forgetful� are the typical examples of ad-
junction between functors. Free functor is left adjoint to forgetful and
forgetful is right adjoint to free. One example we saw at the beginning
of this section. A similar example: free functor F : Sets→ Groups

is left adjoint to forgetful functor G : Group → Sets. Indeed, any
group homomorphism F (X) → U uniquely and naturally (check!)
gives rise to the function X → G(U). Similarly, we can build exam-
ples of adjoint functors for free rings, free R-modules and so on.

b) forgetful functor G : Top → Sets has a left and right adjoint func-
tors. Left adjoint functor L endows the set X with discrete topol-
ogy (because all maps L(X) → Y are continuous, for an arbitrary
Y ∈ Top). Right adjoint functor R endows the set X with trivial
topology.

c) Let I and J be two posets. Any functor F : CI → CJ is a an order
preserving map F : I → J (see. Exercise 1.3). Therefore a pair
of adjoint functors F : CI → CJ , G : CJ → CI is a pair of order-
preserving maps satisfying

CI(F (a), b) ∼= CJ(a,G(b))

for all a ∈ I and b ∈ J . On the other hand, it means that

F (a) �J b⇔ a �I G(b).

The latter correspondence is called Galois correspondence between
posets (see. Exercises at the end this lecture for speci�c examples of
such correspondence).

d) functor Ab : Group → AbGroup (see. Exercise 1.7) is left adjoint
to embedding functor G : AbGroup→ Group.

f) functor Stone-Cech compacti�cation β : Top → CHaus is left ad-
joint to inclusion functor CHaus ↪→ Top.
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g) Tensor-Hom adjunction. Let U, V,W be three vector spaces.
Standard fact from linear algebra says that there is an isomorphism

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W )),

where Hom(·, ·) denotes the vector space of all linear operators. Simi-
lar correspondence (an isomorphism of abelian groups) holds for right
modules over rings (see. Exercise 1.10):

HomS(Y ⊗R X,Z) ∼= HomR(Y,HomS(X,Z)).

Hence the functor − ⊗R X (see. Exercise 1.10) is left adjoint to
functor HomS(X,−).

The following theorem holds.

Theorem 1. To specify the adjunction between two functors F : C → D and
G : D → C is equivalent to specify two natural transformations η : IdC → GF
and ε : FG→ IdD such that the following diagrams commute:

F FGF

F

Fη

εF , and

G GFG

G

ηG

Gε .

The natural transformation η is called unit of adjunction and ε is counit
of adjunction.

Example. Consider adjoint pair of ("free-forgetful") functors: F : Sets →
Vectk, G : Vectk → Sets. It is easy to see that for any set X ∈ Sets the
unit of adjunction ηX : X → GF (X) is given by inclusion of basis, and for
any vector space V , and counit εV : FG(V )→ V is given by continuation of
identity linear map on the basis of space FG(V ).

2.3. Exercises.

Exercise 2.2. Suppose we are given three functor F,G,H : C → D. Show
that if α : F → G and β : G → H are natural transformation, then the
composition βα : F → H is also natural. Show that the functors F : C → D
form a category of F(C,D), where the set of morphisms between any functors
is given by natural transformations. Which natural transformation de�nes
identical morphism?

Exercise 2.3. Let X be a topological space. De�ne a poset I(X) as the
set of all closed subsets of X (see Exercise 1.2 and 1.4). and poset J(X) as
the set of all subsets of X. Show that the functor of embedding of category
CI(X) ↪→ CJ(X) has left adjoint functor that maps an arbitrary subset in A

to its closure Ā.
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Exercise 2.4. Let I be the set of all ideals in commutative ring C[x1, . . . , xn],
and J is the set of all subsets in Cn . De�ne f : I → Jop as a function that
takes the ideal to its zero set in Cn, and f : Jop → I which maps any subset
of Cn into an ideal of polynomials which annihilates it . Show that f and
g form Galois correspondence. Conclude that they form a pair of adjoint
functors between the respective categories.

Exercise 2.5. Show that the complexi�action functor VectR → VectC
(see. Exercise 1.5) is left to adjoint to functor which restricts the scalars
VectC → VectR.

Exercise 2.6. Let G : Algk → Vectk be forgetful functor. Describe its
left adjoint. (Hint: Given a vector space V build tensor algebra T (V ) =
k⊕V ⊕(V ⊗V )⊕. . . and show that the correspondence V 7→ T (V ) determines
left adjoint functor to G).

Exercise 2.7. Describe the unit and counit of adjunction betweenAbGroup
and Group.

Exercise 2.8. Describe unit and counit for examples and exercices presented
in this section.

2.4. References.

(1) Serge Lang, Algebra, Springer-Verlag, New York, (2002).
(2) Saunders Mac Lane, Categories for the working mathematician, Springer-

Verlag, (1971).
(3) Masaki Kashiwara, Pierre Schapira, Categories and Sheaves, Springer-

Verlag, Berlin Heidelberg, 2006.
(4) J. Adamek, H. Herrlich, G. Strecker, Abstract and Concrete Cate-

gories: The Joy of Cats, Wiley-Interscience, (1990).
(5) nLab(https://ncatlab.org) � collective and open the online wiki lab-

oratory which contains a lot of useful information on the theory of
categories.
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3. Algebra and its radical, connection with quivers

3.1. Summary on algebras, their radical, basic algebras. Through-
out this section we assume that A is a �nite dimensional algebra over alge-
braically closed �eld k, i.e., A is a �nite dimensional vector space endowed
with an associative multiplication with unit.

Examples:.

a) A = k.
b) Examples of in�nite dimensional algebra: algebra k[x] of all polyno-

mials in one variable x with coe�cients in the �eld k, and algebra
k[x1, . . . , xn] of all polynomials in the variables x1, . . . , xn.

c) Algebra k[x]/(x2) of `dual numbers' consists of all pairs of the form
a+ b ∗ x, where a, b ∈ k, where x is an element such that x2 = 0. Is
easy to see that dim k[x]/(x2) = 2.

d) if A is an algebra, then the set Mn(A) of all n × n matrices with
coe�cients in A is also an algebra with conventional operations of
addition and multiplication of matrices. If A is �nite dimensional,
then Mn(A) is �nite dimensional. In particular, dimension of the
algebra Mn(k) equals n2.

e) Subset

Un(k) =


k k . . . k
0 k . . . k
...

... . . .
...

0 0 . . . k


of all upper-triangular matrices Mn(k) is a subalgebra in Mn(k).

f) Associative ring k〈x1, x2〉 of all polynomials of two noncommutative
variables x1 and x2 is a in�nite dimensional algebra (called the free
algebra on two generators).

g) Let G be a �nite group with identity e. The group algebra k[G] is an
algebra with a basis of {ag | g ∈ G} and multiplication agah = agh.
For example, ifG is a cyclic group of orderm, then k[G] ' k[x]/(xm−
1).

Recall that the radical J(A) is the intersection of all maximal right ideals
in A. It can be shown that the radical J(A) is the intersection of all maximal
left ideals, and therefore J(A) is two-sided ideal. Algebra A is called semi-

simple if J(A) = 0. Is easy to see that J(A/J(A)) = 0.

Exercise 3.1. Let A = U2(K) =

(
k k
0 k

)
. Show that

J(A) =

(
0 k
0 0

)
,

and describe radical of algebra Un(k).

Exercise 3.2. Let A = Md1(k) ⊕ · · · ⊕Mdn(k) (where Mdi(k) is a matrix
algebra over a �eld k). Show that A semi-simple.

Exercise 3.3. Suppose that chark = 0. Show that the group algebra k[G]
of �nite group G is semi-simple.
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Exercise 3.4. Let f : A → B be a surjective homomorphism of algebras
show that f(J(A)) = J(B).

Exercise 3.2 claims that arbitrary algebra

(3) A = Md1(k)⊕ · · · ⊕Mdn(k)

is semi-simple. In fact, the reverse is also true: theorem of Joseph Wedder-
burn says that an arbitrary semi-simple �nite dimensional algebra has the
form (3), and thus for any algebra A we have:

(4) A/J(A) 'Md1(k)⊕ · · · ⊕Mdn(k).

We will call the algebra A basic if in decomposition (4) all di equal 1, i.e.,
A/J(A) '

∏
i k. For example, algebra A = Un(K) is basic since in this case

A/J(A) ' k × · · · × k︸ ︷︷ ︸
n copies

(see Exercise (3.1)).

Exercise 3.5. Show that the algebra A = k[x]/(xm) is basic and its radical
J(A) is generated by x.

Exercise 3.6. Show that the algebra A =

(
k k[x]/x2

0 k[x]/x2

)
is basic and its

radical has the form

J(A) =

(
0 k[x]/x2

0 xk[x]/x2

)
.

3.2. Brief review on representations of algebras. A representation of
an algebra A (left A-module) is a vector space V with algebra homomorphism
ρ : A→ End(V ).

Examples:.

a) V = 0.
b) V = A, and ρ : A→ EndA is de�ned as follows: ρ(a) is an operator

of left multiplication by a, i.e., ρ(a)b = ab (conventional product).
Such representation is called regular.

Given two representations (V1, ρ1) and (V2, ρ2) of an algebra A, a mor-

phism between them is de�ned by the linear operator φ : V1 → V2 such that
the following diagram commutes

V1 V1

V2 V2

φ

ρ1(a)

φ

ρ2(a)

for all a ∈ A.
Thus, one can create a category RepA of representations of algebra A.

Basic algebras play a fundamental role in the theory of representations of
�nite dimensional algebras image due to the following theorem

Theorem 2. For any �nite dimensional algebra A exists basic �nite dimen-
sional algebra B such that categories RepA and RepB are equivalent (see
De�nition 3).
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So the study of the representations of all �nite dimensional algebra � re-
duces � to the study of the representations of basic algebras. In the following
two subsections we'll make sure that arbitrary basic algebra A is isomorphic
to the quotient algebra of path algebra of certain quiver.

3.3. Quivers and path algebras. A quiver Q is an oriented graph. We
will de�ne quiver Q by the set of vertices Q0, a set of edges (arrows) Q1,
and for a given arrow h ∈ Q1, we will denote by s(h), t(h) its initial and
terminal vertex:

s(h) t(h).h

A representation of a quiver Q is the setting a vector space Vi for each
vertex i ∈ Q0, and a linear mapping Vh : Vs(h) → Vt(h) for each arrow h ∈ Q1.

The theory of representations of quivers is closely connected with the
theory of representations of algebras. Given a quiver Q we will associate an
algebra kQ (so-called path algebra of Q such that representation of the
quiver Q are closely connected with the representations of the path algebra
kQ (corresponding categories are equivalent).

The path algebra kQ of a quiver Q is an algebra over a �eld k, the
basis of which is formed by all oriented paths in Q (including trivial paths
pi, i ∈ Q0), and multiplication is de�ned by concatenation of paths. If two
paths can not be linked, then their product is de�ned as 0.

Example. The path algebra of a quiver

1 2h

has a basis of 3 elements p1, p2 (trivial paths on the vertices) and h (path
of length 1), endowed by multiplication p2

i = pi, i = 1, 2, p1p2 = p2p1 = 0,
p1h = hp2 = h, hp1 = p2h = h2 = 0. So it is easy to see that there exists an

isomorphism kQ ∼=
(
k k
0 k

)
, which is de�ned by

p1 7→
(

1 0
0 0

)
, p2 7→

(
0 0
0 1

)
, h 7→

(
0 1
0 0

)
.

Exercise 3.7. Show that the algebra kQ is generated by pi, i ∈ Q0 and
ah, h ∈ Q1 with the following relations:

1) p2
i = pi, pipj = 0 if i 6= j;

2) ahps(h) = ah ahpj = 0 if j 6= s(h);
2) pt(h)ah = ah piah = 0 if i 6= t(h).

Exercise 3.8. Supposing that Q is acyclic, show that the radical of the
algebra kQ is generated by all the arrows in Q.

Exercise 3.9. Using Exercise 3.8, show that kQ/J(kQ) '
∏
i∈Q0

k. Thus
kQ is a basic algebra.

3.4. Quiver of basic algebra. Let A be a �nite dimensional algebra. Re-
call that an element of the algebra e is called idempotent if e2 = e. Two
idempotents e, f ∈ A are called orthogonal if ef = fe = 0. Idempotent e
is called primitive if e can not be expressed as e = e1 + e2, where e1, e2 are
nonzero idempotents in A. Idempotent e is called central if ae = ea for all
a ∈ A. We say that the algebra A is connected if A can not be represented
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as a direct product of two algebras, or equivalently if 0 and 1 are the only
central idempotents in A.

Let A be a basic �nite dimensional algebra, and {e1, . . . , en} be a complete
set of orthogonal primitive idempotents in A. The Gabriel quiver QA,
associated with A, is de�ned as follows:

• �vertices� in QA are enumerated by the elements of set {e1, . . . , en};
• Number of �arrows � between the vertices ei and ej , equals

dim ei(J(A)/J2(A))ej .

One can prove that quiver QA does not depend of the choice of the complete
set of primitive idempotents in A.

Examples:.

• Let A = k[x]/(xm). It is easy to show that e = 1 is the only nonzero
idempotent in A. Using Exercise 3.5, we have J(A) = (x), thus
J2(A) = (x2), and therefore e dim(J(A)/J2(A))e = 1. Therefore,
QA has the following form:

1 α

• Let A =

(
k k[x]/x2

0 k[x]/x2

)
. Is easy to see that{

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)}
is a complete set of primitive orthogonal idempotents (therefore QA
has two vertex), and

J(A) =

(
0 k[x]/x2

0 xk[x]/x2

)
, J2(A) =

(
0 xk[x]/x2

0 0

)
(See Exercise 3.6). So dim J(A)/J2(A) = 2, therefore QA has two
arrows. Direct calculations give the following

dim ei(J(A)/J2(A))ej =

{
1, (i, j) = (1, 2)or (i, j) = (2, 2),
0, otherwise.

If Q is an arbitrary �nite quiver, let RQ be two-sided ideal in algebra kQ
generated by arrows of Q. We say that two-sided ideal I ⊂ kQ admissible

if
RmQ ⊆ I ⊆ R2

Q,

for a m ≥ 2. In other words, I is admissible, if it does not contain arrows
of Q and includes all paths of length ≥ m. If I is admissible, the quotient
algebra kQ/I is called bound path algebra.

The following theorem de�nes the canonical form of basic �nite dimen-
sional algebras.

Theorem 3. Let A be basic, connected, �nite dimensional algebra. There
exists an admissible ideal I in kQA such that A ∼= kQA/I.

Exercise 3.10. Build the Gabriel quiver of the algebra A = Un(k).
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Exercise 3.11. Let A = U3(k), and C be subalgebra consisting of all ma-
trices

λ =

 λ11 λ12 λ13

0 λ22 λ23

0 0 λ33


such that λ11 = λ22 = λ33. Show that C is isomorphic to kQ/I, where
I = 〈α2, β2, αβ〉 is ideal in kQ, and Q is the following quiver

1α β
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4. Path algebra as a left adjoint functor

�Adjoint functors arise everywhere.�

� Saunders Mac Lane

In the previous lesson we saw that quivers (and their representations)
play a fundamental role in the structure and representation theory of �nite
dimensional algebras. In this lecture we will try to show that the construction
�quiver� � �algebra� (Q 7→ kQ, A 7→ QA) can be interpreted as a pair of
adjoint functors between certain categories. This lecture is based on a part
of a joint research project with John William Macquarrie (UFMG).

Consider the category Quiv, where the objects are �nite quivers and the
morphisms are embeddings of quivers (i.e., embeddings on vertices and on
corresponding sets of arrows). Let Quivac be the category of acyclic quivers.
Consider the category SBAlg, where objects are �nite dimensional basic
algebras and morphisms are surjective algebra homomorphisms.

Exercise 4.1. Show that Quiv and SBAlg are categories, Quivac is a full
subcategory in Quiv (i.e., morphisms between two objects in Quivac are
the same as in Quiv). Show that the correspondence Q 7→ kQ generates the
contravariant functor K[−] : Quivac → SBAlg.

Is easy to see that the correspondence A 7→ QA does not generate a functor
between categories SBAlg and Quiv. Indeed, the choice of a complete set
of primitive orthogonal idempotents in A, in general, is not unique, and the
choice of the basis in the space e(J(A)/J2(A))f (arrows between e and f) is
not canonical. We consider certain intermediate category between �quivers�
and �algebras� so that the correspondence above de�nes a functor.

4.1. Quotient category SBAlgn. The construction of quotient category
is similar to the construction of quotient set or quotient algebra. Let C be
an arbitrary category. Assume that the equivalence relation ∼ is de�ned on
morphismsMor(C). That is, for arbitraryX,Y ∈ C the setMor(X,Y ) splits
into equivalence classes [α], which satisfy the condition: once [α] = [α′], then
[βα] = [βα′] and [αβ] = [α′β], when the composition of morphisms makes
sense. Now we can create a new category of C/ ∼, which will be called
quotient category. Objects in C/ ∼ are the same as the objects in C, and
morphisms set MorC/∼(X,Y ) consists of equivalence classes of morphisms
MorC(X,Y ) relative to ∼. Composition of morphisms is given by the rule
[β][α] = [βα].

De�ne the following equivalence relation in the category SBAlg. Let
A,B ∈ SBAlg and α1, α2 ∈Mor(A,B). We say that α1 and α2 are n-depth
(denoting this by α1 ∼n α2) if

(α1 − α2)(J i(A)) ⊆ J i+1(B), 0 ≤ i ≤ n,
setting J0(A) = A.

Exercise 4.2. Show that ∼n is an equivalence relation on SBAlg. (Hint:
use Exercise 3.4).

Thus, we form quotient category

SBAlgn = SBAlg/ ∼n .
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Denote by Πn : SBAlg → SBAlg/ ∼n the corresponding quotient functor
(which is identical on objects, and maps each morphism α : A → B to its
equivalence class [α]n towards ∼n).

4.2. Category of Vquivers. Finite (pointed) Vquiver

V Q = (V Q0, V Q1)

is given by a �nite set of vertices V Q∗0 = {∗}∪V Q0, where V Q0 = {e1, . . . , en},
with �nite-dimensional vector space V Qe,f for every pair of vertices e, f ∈
V Q∗0 such that V Q∗,e = V Qe,∗ = 0 for all e.

Denote by ΣV Q free k-module generated by V Q0, which we treat as a
semi-simple algebra, de�ning

ei · ej =

{
1, i = j,
0 i 6= j

.

By V Q1 we denote the direct sum
⊕

e,f∈V Q0
V Qe,f , which has the natural

structure of ΣV Q-bimodule.

De�nition 6. A map of �nite Vquivers ρ : V Q→ V R consists of

• a pointed map ρ0 : V Q∗0 → V R∗0 (i.e., such that ρ0(∗) = ∗) that
restricts to a bijection from the elements of V Q0 not mapping to ∗,
onto V R0.
• a linear map ρe,f : V Qe,f → V Rρ0(e),ρ0(f) for each pair of vertices
e, f ∈ V Q∗0.

We say that ρ is surjective if every ρe,f is surjective.

Remark 2. One can check that ρ is a morphism ρ : V Q → V R i� ρ0 is
an algebra homomorphisms and ρV Q =

⊕
e,f∈V Q0

ρe,f : V Q1 → V R1 is a
ΣV Q − ΣV Q bimodule morphism.

Now de�ne the category SVQuiv which has objects �nite dimensional
Vquivers and morphisms surjective maps of Vquivers. We say that Vquiver
V Q = (V Q0, V Q1) is acyclic if there is n > 0 such that

V Q1 ⊗Σ · · · ⊗Σ V Q1︸ ︷︷ ︸
n

= 0.

Now denote by SVQuivac the full subcategory consisting of acyclic Vquivers.

Exercise 4.3. De�ne the natural contravariant functor between categories
Quiv and SVQuiv.

4.3. Functor �path algebra�. Given a pair (Σ, V ) (where Σ is an arbitrary
algebra and V is a Σ− Σ-bimodule) associate the tensor algebra T (Σ, V )
by

T (Σ, V ) = Σ⊕ V ⊕ V ⊗Σ V ⊕ . . . .
The tensor algebra satis�es the following universal property.

Proposition 1. Let A be a k-algebra. Let Σ be a semi-simple k-algebra and
V be a Σ− Σ bimodule. Suppose we have two functions

ϕ0 : Σ→ A, ϕ1 : V → A

such that

(1) ϕ0 is a k-algebra homomorphism
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(2) ϕ1 is a Σ − Σ bimodule homomorphism, with A treated as a Σ − Σ
bimodule via ϕ0.

Then there is a unique k-algebra homomorphism ϕ : T (Σ, V )→ A such that
ϕ|Σ = ϕ0, ϕ|V = ϕ1.

Let V Q = (V Q∗0, V Qe,f ) be a �nite acyclic Vquiver. The path algebra
k[V Q] is the tensor algebra T (ΣV Q, V Q1) de�ned above. We have that
k[V Q] is a basic algebra, therefore k[V Q] ∈ SBAlg. Let ρ : V Q → V R be
a surjective map of Vquivers. We obtain the maps ϕ0, ϕ1 as in the previous
proposition in the obvious way. Indeed we have that k[V R] = T (ΣV R, V R1).
As ρ0 is surjective on vertices therefore it generates a surjective algebra
morphism ϕ0 : ΣV Q � ΣV R ⊂ k[V R]. On the other hand ρ1 generates a
map

ϕ1 : V Q1 → V R1 ⊂ k[V R].

Exercise 4.4. Check that ϕ1 is a ΣV Q − ΣV Q-bimodule homomorphism.

Hence we obtain a unique k-algebra homomorphism k[ρ] : k[V Q]→ k[V R]
by Proposition 1. As ρ is surjective map one shows (check!) that k[ρ] is a
surjective algebra homomorphism.

Thus, we get:

Proposition 2. The following construction de�nes a covariant functor:

k[−] :SVquivac → SBAlg,

Kn[−] = Πn ◦ k[−] :SVquivac → SBAlgn.

Remark 3. Note that the composition of the functors k[−]◦V [−] is a functor
from Exercise 4.1.

4.4. Functor �Gabriel Quiver�. Now we de�ne the functor in another
direction. Let A be a �nite dimensional algebra. Recall Wedderburn-Malcev
theorem (in a short form):

Theorem 4. There is a subalgebra Σ of A such that A = Σ ⊕ J(A) as k-
vector spaces and Σ ∼= A/J(A) as algebras. For two any subalgebras Σ e Σ′

such that A = Σ⊕ J(A) = Σ′ ⊕ J(A), there exists w ∈ J(A) such that

Σ′ = (1 + w)Σ(1 + w)−1.

The key idea is to de�ne the �vertices� in Gabriel quiver as the orbit un-
der J(A). Let A ∈ SBAlg. Denote by πA : A � A/J(A) the canonical
projection. Algebra homomorphism s : A/J(A) ↪→ A is called spllittingof
πA, if πA ◦ s = idJ(A). By SA denote the set of all such splittings and by EA
the collection of all possible complete sets primitive orthogonal idempotents
in A. Recall that, according to the theorem Wedderburn-Malcev, SA is non-
empty. Since A is basic then A/J(A) ∼=

∏n
i=1 k. So any split s ∈ SA de�nes

a complete set of orthogonal primitive idempotents {s(j1), . . . , s(jn)} ∈ EA,
in which j1, . . . , jn is the unique complete set of primitive orthogonal idem-
potents A/J(A). Denote the above correspondence by Φ : SA → EA.

Exercise 4.5. Show that Φ is a bijection.
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Any element w ∈ J(A) gives rise to an automorphism

a 7→ (1 + w)a(1 + w)−1, a ∈ A.

We denote such automorphism by 1+w(−), respectively we use the notation
1+wa := (1 + w)a(1 + w)−1. Let G(A) / InnAut(A) be the group of all such
automorphisms. We will use the notation G in cases when it is clear which
algebra we are using. Denote by Ga = {1+wa |w ∈ J} the orbit of a given
element a ∈ A.

Let A be a basic �nite dimensional algebra and s ∈ SA be any splitting,
and let Φ(s) ∈ EA be the corresponding set of primitive orthogonal idempo-
tents in A. De�ne the Vquiver GQ(A) of A as follows:

GQ(A)0 := {∗} ∪ {Ge | e ∈ Φ(s)},

GQ(A)Ge,Gf := e
J(A)

J2(A)
f, for �xed e, f ∈ Φ(s).

Exercise 4.6. Show that Vquiver GQ(A) is well-de�ned. That is, it does
not depend on the choice of s ∈ SA.

Let A,B be algebras with inner automorphism groups G = G(A) and
H = G(B). Given a surjective algebra homomorphism α : A→ B, we de�ne
the map of Vquivers GQ(α) : GQ(A)→ GQ(B) as follows:

GQ(α)(Ge) =Hα(e);

GQ(α) :e
J(A)

J2(A)
f → α(e)

J(B)

J2(B)
α(f)

e(j + J2(A))f 7→ α(e)(α(j) + J2(B))α(f).

Exercise 4.7. Show that the map in the de�nition above is well-de�ned
map of Vquivers. Moreover GQ(α) is surjective.

Thus, we have

Proposition 3. The construction above de�nes a covariant functor

GQ(−) : SBAlg→ SVquiv.

Exercise 4.8. For any n ≥ 1 show that there is a unique functor

G Qn(−) : SBAlgn → SVquiv

such that the following diagram commutes

SBAlg SVquiv

SBAlgn

Πn

GQ(−)

G Qn(−)

Build functor G Qn(−).
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4.5. Adjunction between functors. By SBAlgac denote the full subcat-
egory of basic algebra such that Vquiver GQ(A) is acyclic. Summing up the
construction described above, we have the following diagram

Quivac SVQuivac SBAlgac

SBAlgac/ ∼1

V [−] k[−]

GQ(−)

Path algebra

Π1

K1[−]

GQ1(−)

Here the functor K1[−] denotes the composition of functors Π1 ◦ k[−]. The
functor GQ1(−) is the restriction of the functor constructed in Exercise 4.8
to the subcategory SBAlgac.

The following theorem holds.

Theorem 5. The functor K1[−] is left adjoint to GQ1(−).

Exercise 4.9. As a consequence of the previous theorem, show that an
arbitrary algebra A ∈ SBAlg is a quotient algebra of path algebra.

Exercise 4.10. Describe unit and counit of adjunction in Theorem 5. De-
scribe the image functor K1[−]. This functor full and faithfull?
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