EXERCISES
 "AUTOMATA, LANGUAGES, AND GROUPS OF AUTOMORPHISMS OF ROOTED TREES"

MARIALAURA NOCE

Exercise 1. Let A be a nonempty finite alphabet. Is A^{*} countable? Why?

Exercise 2. Consider the following automaton, with intial state q_{0}, final state q_{1}, and transition function:

	a	b
q_{0}	q_{0}	q_{1}
q_{1}	q_{0}	q_{2}
q_{2}	q_{2}	q_{1}

Are the strings $a^{3} b, a b a a b, a b a b a b a b, a^{4} b b a, a^{10} b^{8} a b, a^{6} b^{8} a b$ accepted?

Exercise 3. Determine the language accepted by the automaton with initial state q_{0}, final state q_{1}, and transition function:

	0	1
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{1}	q_{0}

Exercise 4. Let $L=\left\{w \in\{a, b\}^{*}| | w \mid \equiv 1 \bmod 3\right\}$. Define a DFA A such that $L=L(A)$.

Exercise 5. Construct a NFDA that accepts the language $L=\{x \in$ $\{0,1,2\}^{*}| | x \mid \geq 5$ and the 4 th symbol from the right is 0$\}$.

Exercise 6. Determine if the following languages are regular or not:

- $L=\left\{x \in\{0,1\}^{*} \mid x\right.$ is palindrome $\}$
- $L=\left\{0^{i} 1^{j} \in 0,1^{*} \mid i, j>0,2 i>j\right\}$
- $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ starts with a and ends with $\left.a b\right\}$.

Hint: Pumping Lemma;

Exercise 7 (*). Find a DFA equivalent to the following NDFA:

Do you remember Context-Free languages?
Exercise 8. Which of the following is a context-free language?

- $L=\left\{a^{n} b^{m} a^{m} b^{n} \mid n, m \geq 0\right\}$
- $L=\left\{a^{n} b^{n} a^{m} b^{m} \mid n, m \geq 0\right\}$
- $L=\left\{a^{n} b^{m} a^{n} b^{m} \mid n, m \geq 0\right\}$
- $L=\left\{a^{n} b^{m} c^{q} \mid n=m\right.$ or $\left.m=q\right\}$.

