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OUTLINE OF THE COURSE



CONTENTS

The course consists of the following (not equally divided) three parts:

• Part I - Introduction to Automata and Languages
• Part II - Groups and Automata: a perfect match
• Part III - Groups of automorphisms of rooted trees
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PLAN FOR TODAY

1. Outline of the course

2. Why?

3. Basic notions in automata theory

4. Automata

5. Finite state automata

6. Regular Languages

7. The pumping lemma

8. Plan for tomorrow
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WHY?



WHY AUTOMATA THEORY AND FORMAL LANGUAGES?

• A survey of Stanford 5 years grad students asked which of their
courses did they use in their job.
(I know, this is a bad question for a pure mathematician …)

• Auotmata Theory ranked high.
• Automata Theory is relevant in many areas of Mathematics and
also in Computer science.
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SOME HISTORY…

• In the 1930’s Gödel, Turing and Church discovered that some of
the fundamental mathematical problems cannot be solved by a
“computer”.

• An example of a problem is “Is an arbitrary mathematical
statement true or false?”.

• To understand better a problem, we need formal definitions of
• Computer
• Algorithm
• Computation

• The theoretical models that were proposed in order to
understand solvable and unsolvable problems led to the
development of real computers.
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THEN …WHY AUTOMATA?

Automata Theory deals with definitions and properties of different
types of “computation models”. Examples of such models are:

• Finite Automata: used in text processing, compilers, and
hardware design.

• Context-Free Grammars: used to define programming languages
and in Artificial Intelligence.

• Turing Machines: form a simple abstract model of a “real”
computer, such as your PC at home.
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AND NOW …WHY GROUPS OF AUTOMORPHISMS OF ROOTED TREES?
WHAT IS THE RELATION?

No spoiler, we will see later. Let’s say that in these lectures we will
see some connection between Automata Theory and Group Theory.
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BASIC NOTIONS IN AUTOMATA
THEORY



BASIC CONCEPTS IN AUTOMATA THEORY

• Alphabets
• Strings
• Languages
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ALPHABETS

• An alphabet A is a finite nonempty set.

• The elements of A are letters.
• A finte sequence a1a2 . . .ak of elements from A is a string or a
word of length k.

• The string of length 0 is the empty word and it is denoted by ϵ.

Example
• A = {0, 1} is the binary alphabet; 0100 is a string of A of length 4.
• A = {a,b, . . . , z} is the set of all lower-case letters.
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POWERS OF AN ALPHABET

• Ak denotes all the strings of length k over A.

• A∗ denotes all the strings over A.

Example
Let A = {0, 1}.

• A0 = {ϵ}
• A1 = {0, 1}.
• Question: are A and A1 the same?
• A3 = {000, 010, 100, 001, 011, 101, 110, 111}.
• A∗ = {ϵ, 0, 1, 00, 01, 10, 11, . . . }.

Note that A∗ = A0 ∪ A1 ∪ A2 ∪ . . . .
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CONCATENATION OF STRINGS

Let u = a1 . . .ai and v = b1 . . .bk be strings.

• The string uv is the concatenation of u and v, i.e.
uv = a1 . . .aib1 . . .bk. The string uv is of length i+ k.

Remark
For any string w, we have wϵ = ϵw = w.

Example
Let u = 000, and v = 111. Then uv = 000111.
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LANGUAGES

Let A be an alphabet.

• A language is a set of strings chosen from A∗, i.e. L ⊆ A∗.

Example
Let A = {a,b, c,d, e, f,g,h, i, l,m,n,o,p,q, r, s, t,u, v, z}. The
collection of legal Italian words is a set of strings of A, thus Italian
is a language over A.

• The empty language ∅ is a language over any alphabet.
• {ϵ} is a language consisting only on the empty string.

Remark
Recall that all alphabets are finite. Languages may have an infinite
number of strings, but these strings consist of strings drawn from
one finite fixed alphabet.
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DECISION PROBLEMS

• A decision problem is the question of deciding whether a given
string is a member of some particular language (we will
understand this better later).

• If A is an alphabet and L is a language over A, then the problem
L is

Given a string w in A∗, decide whether or not w is in L.

Example
The problem of testing whether an integer is a prime, can be
expressed by the language L consisting of all binary strings whose
value as a binary number is a prime.
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AUTOMATA



AUTOMATON

From an Ancient Greek dictionary
[αὐτόματον]: acting of one’s own will, of oneself.

From Wikipedia
An automaton is a relatively self-operating machine, or a machine
or control mechanism designed to automatically follow a
predetermined sequence of operations, or to respond to
predetermined instructions.
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AN EASY EXAMPLE

offstart on

Push

Push
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(STILL) INFORMAL DEFINITION OF AUTOMATA

• An automaton A over an alphabet A is a device (machine) that
reads input strings over A and accepts some of them (that is,
given a string w, A accepts w by halting in an accepting state).

• The language of A, denoted by L(A) is the set of all strings that
A accepts.
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TYPES OF AUTOMATA
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TYPES OF AUTOMATA II

• finite state automaton ✓
• deterministic
• nondeterministic

• pushdown automaton ✓
• linear-bounded automaton
• Turing machine

17



FINITE STATE AUTOMATA



DETERMINISTIC FINITE STATE AUTOMATA (DFA)

A deterministic finite automaton A consists of:

• A finite set of states Q.

• A finite set of input symbols A. We also call A alphabet.
• A transition function δ : Q× A→ Q, that takes as arguments a
state and an input symbol and returns a state.

• You can think that δ is the “program” A that tells us what A can
do in one step.

• A start state q0 ∈ Q.
• A set of accepting states F from Q.

We will use the following notation:

A = (Q,A, δ,q0, F).

18
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WAYS TO REPRESENT AN AUTOMATON

• Transition diagrams
• Transition tables

19



TRANSITION DIAGRAMS

Do you remember the example of the light on and off?

A transition diagram is a graph defined as follows:

• Vertices: states. Also:
• Initial state: empty single incoming arc.
• Final state: double circle.

• Arc: labeled with input symbol from A (or letter from the
alphabet A), they show the transition.

20
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ACCEPTABILITY BY DFA: INFORMAL DEFINITION

Let A = (Q,A, δ,q0, F) be a DFA.

• The language accepted by A, that we denote with L(A), is the set
of labels of the paths in the transition diagram of A that start at
the initial state q0 and end at a final state in F.
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TRANSITION TABLES

A transition table is a conventional tabular representation of the
map δ, described as follows:

• Rows: states
• Columns: letters from A.
• The entry for the row corresponding to the state q and the
column corresponding to the input a is the state δ(q,a).
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EXAMPLE

Example
Let L = {w | w is a binary string containing an odd number of 1 }.
How can we build a DFA that accepts L?

“Human” attempt:

• The finite automaton reads the input string w from left to right
and keeps track of the number of 1.

• After having read the entire string w, it checks whether this
number is odd accepted or even rejected.

• Thus the automaton A needs a state for each n ≥ 0.
• Is this a good way to do it?
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EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

• States: Q = {qE,qO}.
• Alphabet: A = {0, 1}.
• Start state: qE.
• The set F of accept states: F = {qO}.
• The transition table for δ is:

0 1
qE qE qO
qO qO qE
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EXAMPLE

We have

• δ(qE, 0) = qE
• δ(qE, 1) = qO
• δ(qO, 0) = qO
• δ(qO, 1) = qE

qEstart qO

1
0

1

0

25



ANOTHER EXAMPLE

q0start q2 q10

1

1

0 0,1

Can you guess what is this?
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EXTENDING THE TRANSITION FUNCTION TO STRINGS

• Now we define an extended transition function δ̄ that describes
what happens when we start in any state and follow any
sequence of input symbols from A.

• This can be done by induction on the length of the string w:
• If |w| = 0, then

δ̄(q, ϵ) = q.

• Let w = xa, where x is a string and |a| = 1. Then

δ̄(q,w) = δ(δ̄(q, x), a).
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ACCEPTABILITY BY DFA

Let A = (Q,A, δ,q0, F) be a DFA.

• A string w is accepted by A if A starting at the initial state ends
in an accepting state after reading the string.

• In other words, a string w is accepted if δ̄(q0,w) ∈ F.
• The language L(A) accepted by A is defined to be the set of all
strings that are accepted by A:

L(A) = {w | w is a string over A and A accepts w}.
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EXTENDING THE TRANSITION FUNCTION TO STRINGS: EXAMPLE

Consider the language L = {w | w has an even number of 0 and 1}.

What is a DFA A accepting L?

• Idea: the states of A must count the number of 0 and the
number of 1 modulo 2.

• Consider the alphabet A = {0, 1}
• Consider 4 states:

• q0: the number of 0 and 1 is even
• q1: the number of 0 is even and of 1 is odd
• q2: the number of 0 is odd and of 1 is even
• q3: the number of 0 and 1 is odd

• The state q0 is the initial and the final state.
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…CONTINUING

Summarizing:

A = ({q0,q1,q2,q3}, {0, 1}, δ,q0, {q0}).

Transition table for δ:

0 1
q0 q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

30
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…CONTINUING II

A = ({q0,q1,q2,q3}, {0, 1}, δ,q0, {q0})

Transition diagram for A:

q0start q1

q2 q3

0

1

0

1

0

1

0

1
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…CONTINUING II

A = ({q0,q1,q2,q3}, {0, 1}, δ,q0, {q0})

Transition diagram for A:

q0start q1

q2 q3

0

1

0

1

0

1

0

1
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…CONTINUING III

• Take w = 1010.

• In this string the number of 0 is even and the number of 1 is
even.

• Then we expect that δ̄(q0,w) = q0.

We start from ϵ and then we increase size

• δ̄(q0, ϵ) = q0
• δ̄(q0, 1) = δ(δ̄(q0, ϵ), 1) = δ(q0, 1) = q1
• δ̄(q0, 10) = δ(δ̄(q0, 1), 0) = δ(q1, 0) = q3
• δ̄(q0, 101) = δ(δ̄(q0, 10), 1) = δ(q3, 1) = q2.
• δ̄(q0, 1010) = δ(δ̄(q0, 101), 0) = δ(q2, 0) = q0.
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…CONTINUING IV

In other words, a transition function is a path in the transition
diagram. Take again the string w = 1010.

q0start q1

q2 q3

0

1

0

1

0

1

0

1
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LET’S START SLOWLY AND PLAY A GAME

Let’s play a game on a 3x3 chessboard.

1 2 3
4 5 6
7 8 9

• Goal: start at 1 and go to 9.
• Rules: move to an adjacent square.

34



CHESSBOARD

• States: squares of the chessboard, that is
Q = {1, 2, 3, 4, 5, 6, 7, 8, 9}

• A = {b,p}, where
• b = move to any adjacent blue square
• p = move to any adjacent pink square

• Initial state: q0 = 1
• Final state: qF = 9

If there are choices where to go, we try all.
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NON-DETERMINISTIC FINITE STATE AUTOMATA (NDFA)

A non-deterministic finite automaton consists of:

• A finite set of states Q.
• A finite set of input symbols A.
• A transition function δ : Q× A ∪ {ϵ} → P(Q), that takes as
arguments a state and an input symbol and returns a a set of
states.

• A start state q0 ∈ Q.
• A set of accepting states F from Q.

We will use the following notation:

A = (Q,A, δ,q0, F).
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EXAMPLE

q0start q1 q2 q30

0,1

0, ϵ 1

0,1

What happens if we take the string w = 000110?
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EXAMPLE II
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NON-DETERMINISTIC FINITE STATE AUTOMATA (NDFA)

• Informally (remember the picture before): an NDFA accepts a
string if there exists at least one path in the state diagram that
starts at the initial state, and ends at an accept state.

• Formally:
• An NDFA A accepts a string w, if w can be written as w = y1y2 . . . ym,
where yi ∈ A ∪ {ϵ} for all 1 ≤ i ≤ m, and there exists a sequence of
states r0, r1, . . . , rm in Q, such that

• r0 = q
• ri+1 ∈ δ(ri, yi+1)
• rm ∈ F

• In other words a strings w is accepted if δ̄(q0,w) ∩ F ̸= ∅, that is
that contains at least one accepting state.

Similarly as before, the language L(A) accepted by A is defined to be
the set of all strings that are accepted by A.
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ANOTHER EXAMPLE

q0start q1 q20

0,1

1

• Can you guess what are the strings recognized by this
automaton?

• Why is this NDFA and not DFA?
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DFA VS NDFA

DFA NDFA
The transition from a state is to
a single particular next state for
each input symbol.

The transition from a state can
be to multiple next states for
each input symbol.

Empty string transitions are not
allowed.

NDFA permits empty string tran-
sitions.

Requires more space. Requires less space.
A string is accepted by a DFA, if
it transits to a final state.

A string is accepted by a NDFA, if
at least one of all possible tran-
sitions.
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EXERCISE FOR YOU

Formalise what we have said with the example of the 3x3 chessboard.
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EQUIVALENCE OF DFA AND NDFA

Question: It seems that NDFA are more powerful than DFA. Is this
true?

A language can be accepted by a DFA if and only if it can be accepted
by an NDFA.

• Of course it is easy to convert a DFA to a NDFA.
• What about the converse?
• We will forget about the ϵ-transition.
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FROM NDFA TO DFA

q0start q1

q2

1

1

0

0,1

0

0,1

0
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FROM NDFA TO DFA II

Transition table:

0 1
q0 q1 q1,q2
q1 q1,q2 q2
q2 q0,q1 q1
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HOW TO BUILD A DFA

Some observations:

• After conversion, the number of states in the resulting DFA may
or may not be same as NDFA

• The maximum number of states is at most 2|Q|

• In the resulting DFA, all those states that contain the final
state(s) of NDFA are treated as final states
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LET’S NOW BUILD THIS DFA
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AND THE FINAL RESULT SHOULD BE THIS …

q0start {q1,q2} {q0,q1,q2}
1

0

0

1
0

1
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OTHER FINITE STATE AUTOMATA

Finite state automata may have outputs corresponding to each
transition. There are two types of finite state machines that generate
output:

• Mealy Machine
• Moore machine

We will see this later (where later means tomorrow) …
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REGULAR LANGUAGES



REGULAR LANGUAGES

Definition
A language K is called regular if there exists a finite state
automaton A such that

K = L(A).

50



REGULAR OPERATIONS

There are three operations on languages. Let L1 and L2 be two
languages over the same alphabet.

• The union of L1 and L2 is

L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}.

• The concatenation of L1 and L2 is

L1L2 = {ww′ | w ∈ L1 and w′ ∈ L2}.

• The star of L1 is

L∗1 = {u1u2 . . .uk | k ≥ 0 and ui ∈ L1 for all i = 1, 2, . . . , k}.
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EXAMPLE OF REGULAR OPERATIONS

Let L1 = {empty, full} and L2 = {cup, bottle}.

• What is L1 ∪ L2?
• What is L1L2?
• What is L∗1 ?
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CLOSURE PROPERTIES

Is the set of all regular languages closed under these operations?

Theorem
The set of regular languages is closed under the union operation,
i.e., if L1 and L2 are regular languages over the same alphabet A,
then L1 ∪ L2 is also a regular language.

53



CLOSURE UNDER UNION

The proof works as follows:

Proof.
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CLOSURE PROPERTIES II

Is the set of all regular languages closed under the other operations
seen before (concatenation and star)?

Theorem
Yes.

Proof.
Exercise ;)
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THE PUMPING LEMMA
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THE PUMPING LEMMA: RECAP

• We saw that the class of regular languages is closed under some
operations.

• Regular languages can be described by finite state automata.
• All these tools help to prove that a language is regular.
• What if one wants to prove that a language is not regular?
• Let L = {0m1m | m ≥ 0}. Can you establish if this language is
regular?

The pumping lemma is a property that all regular languages must
possess.
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THE PUMPING LEMMA II

Informal statement:

Theorem
If a language is regular, all sufficiently long string in the language
can be pumped.

58



THE PUMPING LEMMA III

Formal statement:

Theorem
Let L be a regular language. Then there exists an integer p ≥ 1
(called the pumping length) such that the following holds: Every
string s in L, with |s| ≥ p, can be written as s = xyz, such that

• |y| ≥ 1
• |xy| ≤ p
• for all i ≥ 0, xyiz ∈ L.

This means that by replacing the portion y in s by zero or more
copies of it, the resulting string is still in the language L.
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THE PUMPING LEMMA POEM

Any regular language L has a magic number p
and any long-enough word in L has the following property:
among its first p symbols is a segment you can find
whose repetition or omission leaves x among its kind.
So if you find a language L which fails this acid test,
and some long word you pump becomes distinct from all the rest,
by contradiction you have shown that language L is not
a regular guy, resilient to the damage you have wrought.
But if, upon the other hand, x stays within its L,
then either L is regular, or else you chose not well.
For w is xyz, and y cannot be null,
and y must come before p symbols have been read in full.
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THE PUMPING LEMMA: AN EXAMPLE

Consider the language L = {0m1m | m ≥ 0}.
Claim: this language is not regular.
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(ANOTHER) EXERCISE FOR TOMORROW

Let L = {0n | n is a prime number}.
Is L a regular language?
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PLAN FOR TOMORROW



PLAN FOR TOMORROW

• Part I - Introduction to Automata and Languages:
• Introduction to grammars
• Context-free grammars
• Pushdown automata

• Part II - Groups and Automata: what is this match?
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Questions or answers?



Obrigada :)

(Picture of me trying to go to Brasilia with a finite state machine)
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