AUTOMATA, LANGUAGES, AND GROUPS OF AUTOMORPHISMS OF ROOTED TREES

PART I - INTRODUCTION TO AUTOMATA AND LANGUAGES

Marialaura Noce

Georg-August-Universität Göttingen

Outline of the course

CONTENTS

The course consists of the following (not equally divided) three parts:

- Part I - Introduction to Automata and Languages
- Part II - Groups and Automata: a perfect match
- Part III - Groups of automorphisms of rooted trees

PLAN FOR TODAY

1. Outline of the course
2. Why?
3. Basic notions in automata theory
4. Automata
5. Finite state automata
6. Regular Languages
7. The pumping lemma
8. Plan for tomorrow

Why?

Why Automata Theory and Formal Languages?

Why Automata Theory and Formal Languages?

- A survey of Stanford 5 years grad students asked which of their courses did they use in their job.
(I know, this is a bad question for a pure mathematician ...)

Why Automata Theory and Formal Languages?

- A survey of Stanford 5 years grad students asked which of their courses did they use in their job.
(I know, this is a bad question for a pure mathematician ...)
- Auotmata Theory ranked high.

Why Automata Theory and Formal Languages?

- A survey of Stanford 5 years grad students asked which of their courses did they use in their job.
(I know, this is a bad question for a pure mathematician ...)
- Auotmata Theory ranked high.
- Automata Theory is relevant in many areas of Mathematics and also in Computer science.

SOME HISTORY...

SOME HISTORY...

- In the 1930's Gödel, Turing and Church discovered that some of the fundamental mathematical problems cannot be solved by a "computer".

SOME HISTORY...

- In the 1930's Gödel, Turing and Church discovered that some of the fundamental mathematical problems cannot be solved by a "computer".
- An example of a problem is "Is an arbitrary mathematical statement true or false?".

SOME HISTORY...

- In the 1930's Gödel, Turing and Church discovered that some of the fundamental mathematical problems cannot be solved by a "computer".
- An example of a problem is "Is an arbitrary mathematical statement true or false?".
- To understand better a problem, we need formal definitions of

SOME HISTORY...

- In the 1930's Gödel, Turing and Church discovered that some of the fundamental mathematical problems cannot be solved by a "computer".
- An example of a problem is "Is an arbitrary mathematical statement true or false?".
- To understand better a problem, we need formal definitions of
- Computer
- Algorithm
- Computation

SOME HISTORY...

- In the 1930's Gödel, Turing and Church discovered that some of the fundamental mathematical problems cannot be solved by a "computer".
- An example of a problem is "Is an arbitrary mathematical statement true or false?".
- To understand better a problem, we need formal definitions of
- Computer
- Algorithm
- Computation
- The theoretical models that were proposed in order to understand solvable and unsolvable problems led to the development of real computers.

THEN ...WHY AUTOMATA?

Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:

THEN ...WHY AUTOMATA?

Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:

- Finite Automata: used in text processing, compilers, and hardware design.

THEN ...WHY AUTOMATA?

Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:

- Finite Automata: used in text processing, compilers, and hardware design.
- Context-Free Grammars: used to define programming languages and in Artificial Intelligence.

THEN ...WHY AUTOMATA?

Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:

- Finite Automata: used in text processing, compilers, and hardware design.
- Context-Free Grammars: used to define programming languages and in Artificial Intelligence.
- Turing Machines: form a simple abstract model of a "real" computer, such as your PC at home.

AND NOW ...WHY GROUPS OF AUTOMORPHISMS OF ROOTED TREES? WHAT IS THE RELATION?

No spoiler, we will see later. Let's say that in these lectures we will see some connection between Automata Theory and Group Theory.

BASIC NOTIONS IN AUTOMATA

THEORY

BASIC CONCEPTS IN AUTOMATA THEORY

- Alphabets
- Strings
- Languages

Alphabets

- An alphabet A is a finite nonempty set.

AlPHABETS

- An alphabet A is a finite nonempty set.
- The elements of A are letters.

Alphabets

- An alphabet A is a finite nonempty set.
- The elements of A are letters.
- A finte sequence $a_{1} a_{2} \ldots a_{k}$ of elements from A is a string or a word of length k.

ALPHABETS

- An alphabet A is a finite nonempty set.
- The elements of A are letters.
- A finte sequence $a_{1} a_{2} \ldots a_{k}$ of elements from A is a string or a word of length k.
- The string of length 0 is the empty word and it is denoted by ϵ.

AlPHABETS

- An alphabet A is a finite nonempty set.
- The elements of A are letters.
- A finte sequence $a_{1} a_{2} \ldots a_{k}$ of elements from A is a string or a word of length k.
- The string of length 0 is the empty word and it is denoted by ϵ.

Example

- $A=\{0,1\}$ is the binary alphabet; 0100 is a string of A of length 4.
- $A=\{a, b, \ldots, z\}$ is the set of all lower-case letters.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

> Example
> Let $A=\{0,1\}$.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

> Example
> Let $A=\{0,1\}$.
> $\cdot A^{0}=\{\epsilon\}$

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

> Example $\begin{aligned} & \text { Let } A=\{0,1\} . \\ & \cdot \\ & \cdot A^{0}=\{\epsilon\} \\ & \cdot\end{aligned} A^{1}=\{0,1\}$.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

Example

Let $A=\{0,1\}$.

- $A^{0}=\{\epsilon\}$
- $A^{1}=\{0,1\}$.
- Question: are A and A^{1} the same?

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

Example

Let $A=\{0,1\}$.

- $A^{0}=\{\epsilon\}$
- $A^{1}=\{0,1\}$.
- Question: are A and A^{1} the same?
- $A^{3}=\{000,010,100,001,011,101,110,111\}$.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

Example

Let $A=\{0,1\}$.

- $A^{0}=\{\epsilon\}$
- $A^{1}=\{0,1\}$.
- Question: are A and A^{1} the same?
- $A^{3}=\{000,010,100,001,011,101,110,111\}$.
- $A^{*}=\{\epsilon, 0,1,00,01,10,11, \ldots\}$.

Powers of an alphabet

- A^{k} denotes all the strings of length k over A.
- A^{*} denotes all the strings over A.

Example

Let $A=\{0,1\}$.

- $A^{0}=\{\epsilon\}$
- $A^{1}=\{0,1\}$.
- Question: are A and A^{1} the same?
- $A^{3}=\{000,010,100,001,011,101,110,111\}$.
- $A^{*}=\{\epsilon, 0,1,00,01,10,11, \ldots\}$.

Note that $A^{*}=A^{0} \cup A^{1} \cup A^{2} \cup \ldots$

Concatenation of strings

Let $u=a_{1} \ldots a_{i}$ and $v=b_{1} \ldots b_{k}$ be strings.

CONCATENATION OF STRINGS

Let $u=a_{1} \ldots a_{i}$ and $v=b_{1} \ldots b_{k}$ be strings.

- The string $u v$ is the concatenation of u and v, i.e. $u v=a_{1} \ldots a_{i} b_{1} \ldots b_{k}$. The string uv is of length $i+k$.

CONCATENATION OF STRINGS

Let $u=a_{1} \ldots a_{i}$ and $v=b_{1} \ldots b_{k}$ be strings.

- The string $u v$ is the concatenation of u and v, i.e. $u v=a_{1} \ldots a_{i} b_{1} \ldots b_{k}$. The string uv is of length $i+k$.

Remark

For any string w, we have $w \epsilon=\epsilon W=w$.

CONCATENATION OF STRINGS

Let $u=a_{1} \ldots a_{i}$ and $v=b_{1} \ldots b_{k}$ be strings.

- The string $u v$ is the concatenation of u and v, i.e. $u v=a_{1} \ldots a_{i} b_{1} \ldots b_{k}$. The string $u v$ is of length $i+k$.

Remark

For any string w, we have $w \epsilon=\epsilon w=w$.

Example

Let $u=000$, and $v=111$. Then $u v=000111$.

LANGUAGES

Let A be an alphabet.

LANGUAGES

Let A be an alphabet.

- A language is a set of strings chosen from A^{*}, i.e. $L \subseteq A^{*}$.

LANGUAGES

Let A be an alphabet.

- A language is a set of strings chosen from A^{*}, i.e. $L \subseteq A^{*}$.

Example

Let $A=\{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r, s, t, u, v, z\}$. The collection of legal Italian words is a set of strings of A, thus Italian is a language over A.

LANGUAGES

Let A be an alphabet.

- A language is a set of strings chosen from A^{*}, i.e. $L \subseteq A^{*}$.

Example

Let $A=\{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r, s, t, u, v, z\}$. The collection of legal Italian words is a set of strings of A, thus Italian is a language over A.

- The empty language \emptyset is a language over any alphabet.

LANGUAGES

Let A be an alphabet.

- A language is a set of strings chosen from A^{*}, i.e. $L \subseteq A^{*}$.

Example

Let $A=\{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r, s, t, u, v, z\}$. The collection of legal Italian words is a set of strings of A, thus Italian is a language over A.

- The empty language \emptyset is a language over any alphabet.
- $\{\epsilon\}$ is a language consisting only on the empty string.

LANGUAGES

Let A be an alphabet.

- A language is a set of strings chosen from A^{*}, i.e. $L \subseteq A^{*}$.

Example

Let $A=\{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r, s, t, u, v, z\}$. The collection of legal Italian words is a set of strings of A, thus Italian is a language over A.

- The empty language \emptyset is a language over any alphabet.
- $\{\epsilon\}$ is a language consisting only on the empty string.

Remark

Recall that all alphabets are finite. Languages may have an infinite number of strings, but these strings consist of strings drawn from one finite fixed alphabet.

Decision problems

DECISION PROBLEMS

- A decision problem is the question of deciding whether a given string is a member of some particular language (we will understand this better later).

DECISION PROBLEMS

- A decision problem is the question of deciding whether a given string is a member of some particular language (we will understand this better later).
- If A is an alphabet and L is a language over A, then the problem L is

DECISION PROBLEMS

- A decision problem is the question of deciding whether a given string is a member of some particular language (we will understand this better later).
- If A is an alphabet and L is a language over A, then the problem L is

Given a string w in A^{*}, decide whether or not w is in L.

DECISION PROBLEMS

- A decision problem is the question of deciding whether a given string is a member of some particular language (we will understand this better later).
- If A is an alphabet and L is a language over A, then the problem L is

Given a string w in A^{*}, decide whether or not w is in L.

Example

The problem of testing whether an integer is a prime, can be expressed by the language L consisting of all binary strings whose value as a binary number is a prime.

Automata

AUTOMATON

AUTOMATON

From an Ancient Greek dictionary

[aútó $\mu \alpha$ тоv]: acting of one's own will, of oneself.

AUTOMATON

From an Ancient Greek dictionary
[aútó $\mu \alpha$ тоv]: acting of one's own will, of oneself.

AUTOMATON

From an Ancient Greek dictionary

[aútó $\mu \alpha$ тоv]: acting of one's own will, of oneself.

From Wikipedia

An automaton is a relatively self-operating machine, or a machine or control mechanism designed to automatically follow a predetermined sequence of operations, or to respond to predetermined instructions.

AN EASY EXAMPLE

(Still) Informal definition of automata

- An automaton \mathcal{A} over an alphabet A is a device (machine) that reads input strings over A and accepts some of them (that is, given a string w, \mathcal{A} accepts w by halting in an accepting state).

(Still) Informal definition of automata

- An automaton \mathcal{A} over an alphabet A is a device (machine) that reads input strings over A and accepts some of them (that is, given a string w, \mathcal{A} accepts w by halting in an accepting state).
- The language of \mathcal{A}, denoted by $L(\mathcal{A})$ is the set of all strings that \mathcal{A} accepts.

TYPES OF AUTOMATA

TYPES OF AUTOMATA II

- finite state automaton \checkmark
- deterministic
- nondeterministic
- pushdown automaton \checkmark
- linear-bounded automaton
- Turing machine

Finite state automata

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.
- A transition function $\delta: Q \times A \rightarrow Q$, that takes as arguments a state and an input symbol and returns a state.

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.
- A transition function $\delta: Q \times A \rightarrow Q$, that takes as arguments a state and an input symbol and returns a state.
- You can think that δ is the "program" \mathcal{A} that tells us what \mathcal{A} can do in one step.

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.
- A transition function $\delta: Q \times A \rightarrow Q$, that takes as arguments a state and an input symbol and returns a state.
- You can think that δ is the "program" \mathcal{A} that tells us what \mathcal{A} can do in one step.
- A start state $q_{0} \in Q$.

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.
- A transition function $\delta: Q \times A \rightarrow Q$, that takes as arguments a state and an input symbol and returns a state.
- You can think that δ is the "program" \mathcal{A} that tells us what \mathcal{A} can do in one step.
- A start state $q_{0} \in Q$.
- A set of accepting states F from Q.

We will use the following notation:

Deterministic Finite State Automata (DFA)

A deterministic finite automaton \mathcal{A} consists of:

- A finite set of states Q.
- A finite set of input symbols A. We also call A alphabet.
- A transition function $\delta: Q \times A \rightarrow Q$, that takes as arguments a state and an input symbol and returns a state.
- You can think that δ is the "program" \mathcal{A} that tells us what \mathcal{A} can do in one step.
- A start state $q_{0} \in Q$.
- A set of accepting states F from Q.

We will use the following notation:

$$
\mathcal{A}=\left(Q, A, \delta, q_{0}, F\right) .
$$

WAYS TO REPRESENT AN AUTOMATON

- Transition diagrams
- Transition tables

TRANSITION DIAGRAMS

Do you remember the example of the light on and off?

TRANSITION DIAGRAMS

Do you remember the example of the light on and off? A transition diagram is a graph defined as follows:

TRANSITION DIAGRAMS

Do you remember the example of the light on and off? A transition diagram is a graph defined as follows:

- Vertices: states. Also:

TRANSITION DIAGRAMS

Do you remember the example of the light on and off? A transition diagram is a graph defined as follows:

- Vertices: states. Also:
- Initial state: empty single incoming arc.

TRANSITION DIAGRAMS

Do you remember the example of the light on and off? A transition diagram is a graph defined as follows:

- Vertices: states. Also:
- Initial state: empty single incoming arc.
- Final state: double circle.

TRANSITION DIAGRAMS

Do you remember the example of the light on and off? A transition diagram is a graph defined as follows:

- Vertices: states. Also:
- Initial state: empty single incoming arc.
- Final state: double circle.

TRANSITION DIAGRAMS

Do you remember the example of the light on and off?
A transition diagram is a graph defined as follows:

- Vertices: states. Also:
- Initial state: empty single incoming arc.
- Final state: double circle.
- Arc: labeled with input symbol from A (or letter from the alphabet A), they show the transition.

ACCEPTABILITY BY DFA: INFORMAL DEFINITION

Let $\mathcal{A}=\left(Q, A, \delta, q_{0}, F\right)$ be a DFA.

- The language accepted by \mathcal{A}, that we denote with $L(\mathcal{A})$, is the set of labels of the paths in the transition diagram of \mathcal{A} that start at the initial state q_{0} and end at a final state in F.

TRANSItION TABLES

A transition table is a conventional tabular representation of the map δ, described as follows:

TRANSItION TABLES

A transition table is a conventional tabular representation of the map δ, described as follows:

TRANSItION TABLES

A transition table is a conventional tabular representation of the map δ, described as follows:

- Rows: states

TRANSItion tables

A transition table is a conventional tabular representation of the map δ, described as follows:

- Rows: states
- Columns: letters from A.

TRANSItION TABLES

A transition table is a conventional tabular representation of the map δ, described as follows:

- Rows: states
- Columns: letters from A.
- The entry for the row corresponding to the state q and the column corresponding to the input a is the state $\delta(q, a)$.

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?
"Human" attempt:

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?
"Human" attempt:

- The finite automaton reads the input string w from left to right and keeps track of the number of 1 .

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?
"Human" attempt:

- The finite automaton reads the input string w from left to right and keeps track of the number of 1 .
- After having read the entire string w, it checks whether this number is odd accepted or even rejected.

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?
"Human" attempt:

- The finite automaton reads the input string w from left to right and keeps track of the number of 1 .
- After having read the entire string w, it checks whether this number is odd accepted or even rejected.
- Thus the automaton \mathcal{A} needs a state for each $n \geq 0$.

EXAMPLE

Example

Let $L=\{w \mid w$ is a binary string containing an odd number of 1$\}$. How can we build a DFA that accepts L?
"Human" attempt:

- The finite automaton reads the input string w from left to right and keeps track of the number of 1 .
- After having read the entire string w, it checks whether this number is odd accepted or even rejected.
- Thus the automaton \mathcal{A} needs a state for each $n \geq 0$.
- Is this a good way to do it?

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

- States: $Q=\left\{q_{E}, q_{0}\right\}$.

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

- States: $Q=\left\{q_{E}, q_{0}\right\}$.
- Alphabet: $A=\{0,1\}$.

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

- States: $Q=\left\{q_{E}, q_{0}\right\}$.
- Alphabet: $A=\{0,1\}$.
- Start state: q_{E}.

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

- States: $Q=\left\{q_{E}, q_{0}\right\}$.
- Alphabet: $A=\{0,1\}$.
- Start state: q_{E}.
- The set F of accept states: $F=\left\{q_{0}\right\}$.

EXAMPLE II: GOOD APPROACH

Idea: keep track of the number of 1 read is even or odd.

- States: $Q=\left\{q_{E}, q_{0}\right\}$.
- Alphabet: $A=\{0,1\}$.
- Start state: q_{E}.
- The set F of accept states: $F=\left\{q_{0}\right\}$.
- The transition table for δ is:

	0	1
q_{E}	q_{E}	q_{0}
q_{0}	q_{0}	q_{E}

EXAMPLE

We have

- $\delta\left(q_{E}, 0\right)=q_{E}$
- $\delta\left(q_{E}, 1\right)=q_{0}$
- $\delta\left(q_{\circ}, 0\right)=q_{\circ}$
- $\delta\left(q_{\circ}, 1\right)=q_{E}$

ANOTHER EXAMPLE

Can you guess what is this?

Extending the Transition Function to Strings

- Now we define an extended transition function $\bar{\delta}$ that describes what happens when we start in any state and follow any sequence of input symbols from A.

Extending the Transition Function to Strings

- Now we define an extended transition function $\bar{\delta}$ that describes what happens when we start in any state and follow any sequence of input symbols from A.
- This can be done by induction on the length of the string w :

Extending the Transition Function to Strings

- Now we define an extended transition function $\bar{\delta}$ that describes what happens when we start in any state and follow any sequence of input symbols from A.
- This can be done by induction on the length of the string w:
- $|f| w \mid=0$, then

$$
\bar{\delta}(q, \epsilon)=q .
$$

Extending the Transition Function to Strings

- Now we define an extended transition function $\bar{\delta}$ that describes what happens when we start in any state and follow any sequence of input symbols from A.
- This can be done by induction on the length of the string w:
- If $|w|=0$, then

$$
\bar{\delta}(q, \epsilon)=q .
$$

- Let $w=x a$, where x is a string and $|a|=1$. Then

Extending the Transition Function to Strings

- Now we define an extended transition function $\bar{\delta}$ that describes what happens when we start in any state and follow any sequence of input symbols from A.
- This can be done by induction on the length of the string w:
- If $|w|=0$, then

$$
\bar{\delta}(q, \epsilon)=q .
$$

- Let $w=x a$, where x is a string and $|a|=1$. Then

$$
\bar{\delta}(q, w)=\delta(\bar{\delta}(q, x), a) .
$$

ACCEPTABILITY BY DFA

Let $\mathcal{A}=\left(Q, A, \delta, q_{0}, F\right)$ be a DFA.

- A string w is accepted by \mathcal{A} if \mathcal{A} starting at the initial state ends in an accepting state after reading the string.

ACCEPTABILITY BY DFA

Let $\mathcal{A}=\left(Q, A, \delta, q_{0}, F\right)$ be a DFA.

- A string w is accepted by \mathcal{A} if \mathcal{A} starting at the initial state ends in an accepting state after reading the string.
- In other words, a string w is accepted if $\bar{\delta}\left(q_{0}, w\right) \in F$.
- The language $L(\mathcal{A})$ accepted by \mathcal{A} is defined to be the set of all strings that are accepted by \mathcal{A} :

$$
L(\mathcal{A})=\{w \mid w \text { is a string over } A \text { and } \mathcal{A} \text { accepts } w\}
$$

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$.

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2 .

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:
- q_{0} : the number of 0 and 1 is even

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:
- q_{0} : the number of 0 and 1 is even
- q_{1} : the number of 0 is even and of 1 is odd

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:
- q_{0} : the number of 0 and 1 is even
- q_{1} : the number of 0 is even and of 1 is odd
- q_{2} : the number of 0 is odd and of 1 is even

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:
- q_{0} : the number of 0 and 1 is even
- q_{1} : the number of 0 is even and of 1 is odd
- q_{2} : the number of 0 is odd and of 1 is even
- q_{3} : the number of 0 and 1 is odd

Extending the Transition Function to Strings: Example

Consider the language $L=\{w \mid w$ has an even number of 0 and 1$\}$. What is a DFA \mathcal{A} accepting L?

- Idea: the states of \mathcal{A} must count the number of 0 and the number of 1 modulo 2.
- Consider the alphabet $A=\{0,1\}$
- Consider 4 states:
- q_{0} : the number of 0 and 1 is even
- q_{1} : the number of 0 is even and of 1 is odd
- q_{2} : the number of 0 is odd and of 1 is even
- q_{3} : the number of 0 and 1 is odd
- The state q_{0} is the initial and the final state.

Summarizing:

$$
\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

Summarizing:

$$
\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

Transition table for δ :

	0	1
q_{0}	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

$$
\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

$$
\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

Transition diagram for \mathcal{A} :

...CONTINUING II

$$
\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)
$$

Transition diagram for \mathcal{A} :

...CONTINUING III

- Take $w=1010$.
- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

...CONTINUING III

- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- $\bar{\delta}\left(q_{0}, \epsilon\right)=q_{0}$
- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- $\bar{\delta}\left(q_{0}, \epsilon\right)=q_{0}$
- $\bar{\delta}\left(q_{0}, 1\right)=\delta\left(\bar{\delta}\left(q_{0}, \epsilon\right), 1\right)=\delta\left(q_{0}, 1\right)=q_{1}$

...CONTINUING III

- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- $\bar{\delta}\left(q_{0}, \epsilon\right)=q_{0}$
- $\bar{\delta}\left(q_{0}, 1\right)=\delta\left(\bar{\delta}\left(q_{0}, \epsilon\right), 1\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $\bar{\delta}\left(q_{0}, 10\right)=\delta\left(\bar{\delta}\left(q_{0}, 1\right), 0\right)=\delta\left(q_{1}, 0\right)=q_{3}$

...CONTINUING III

- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- $\bar{\delta}\left(q_{0}, \epsilon\right)=q_{0}$
- $\bar{\delta}\left(q_{0}, 1\right)=\delta\left(\bar{\delta}\left(q_{0}, \epsilon\right), 1\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $\bar{\delta}\left(q_{0}, 10\right)=\delta\left(\bar{\delta}\left(q_{0}, 1\right), 0\right)=\delta\left(q_{1}, 0\right)=q_{3}$
- $\bar{\delta}\left(q_{0}, 101\right)=\delta\left(\bar{\delta}\left(q_{0}, 10\right), 1\right)=\delta\left(q_{3}, 1\right)=q_{2}$.

...CONTINUING III

- Take $w=1010$.
- In this string the number of 0 is even and the number of 1 is even.
- Then we expect that $\bar{\delta}\left(q_{0}, w\right)=q_{0}$.

We start from ϵ and then we increase size

- $\bar{\delta}\left(q_{0}, \epsilon\right)=q_{0}$
- $\bar{\delta}\left(q_{0}, 1\right)=\delta\left(\bar{\delta}\left(q_{0}, \epsilon\right), 1\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $\bar{\delta}\left(q_{0}, 10\right)=\delta\left(\bar{\delta}\left(q_{0}, 1\right), 0\right)=\delta\left(q_{1}, 0\right)=q_{3}$
- $\bar{\delta}\left(q_{0}, 101\right)=\delta\left(\bar{\delta}\left(q_{0}, 10\right), 1\right)=\delta\left(q_{3}, 1\right)=q_{2}$.
- $\bar{\delta}\left(q_{0}, 1010\right)=\delta\left(\bar{\delta}\left(q_{0}, 101\right), 0\right)=\delta\left(q_{2}, 0\right)=q_{0}$.

In other words, a transition function is a path in the transition diagram. Take again the string $w=1010$.

Take a break

LET'S START SLOWLY AND PLAY A GAME

Let's play a game on a 3×3 chessboard.

1	2	3
4	5	6
7	8	9

- Goal: start at 1 and go to 9 .
- Rules: move to an adjacent square.

CHESSBOARD

- States: squares of the chessboard, that is
$Q=\{1,2,3,4,5,6,7,8,9\}$
- $A=\{b, p\}$, where
- b = move to any adjacent blue square
- $p=$ move to any adjacent pink square
- Initial state: $q_{0}=1$
- Final state: $q_{F}=9$

If there are choices where to go, we try all.

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

- A finite set of states Q.

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

- A finite set of states Q.
- A finite set of input symbols A.

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

- A finite set of states Q.
- A finite set of input symbols A.
- A transition function $\delta: Q \times A \cup\{\epsilon\} \rightarrow P(Q)$, that takes as arguments a state and an input symbol and returns a a set of states.

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

- A finite set of states Q.
- A finite set of input symbols A.
- A transition function $\delta: Q \times A \cup\{\epsilon\} \rightarrow P(Q)$, that takes as arguments a state and an input symbol and returns a a set of states.
- A start state $q_{0} \in Q$.

Non-Deterministic Finite State Automata (NDFA)

A non-deterministic finite automaton consists of:

- A finite set of states Q.
- A finite set of input symbols A.
- A transition function $\delta: Q \times A \cup\{\epsilon\} \rightarrow P(Q)$, that takes as arguments a state and an input symbol and returns a a set of states.
- A start state $q_{0} \in Q$.
- A set of accepting states F from Q.

We will use the following notation:

$$
\mathcal{A}=\left(Q, A, \delta, q_{0}, F\right) .
$$

EXAMPLE

What happens if we take the string $w=000110$?

EXAMPLE II

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.
- Formally:

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.
- Formally:
- An NDFA \mathcal{A} accepts a string w, if w can be written as $w=y_{1} y_{2} \ldots y_{m}$, where $y_{i} \in A \cup\{\epsilon\}$ for all $1 \leq i \leq m$, and there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q, such that

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.
- Formally:
- An NDFA \mathcal{A} accepts a string w, if w can be written as $w=y_{1} y_{2} \ldots y_{m}$, where $y_{i} \in A \cup\{\epsilon\}$ for all $1 \leq i \leq m$, and there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q, such that
- $r_{0}=q$
- $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$
- $r_{m} \in F$

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.
- Formally:
- An NDFA \mathcal{A} accepts a string w, if w can be written as $w=y_{1} y_{2} \ldots y_{m}$, where $y_{i} \in A \cup\{\epsilon\}$ for all $1 \leq i \leq m$, and there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q, such that
- $r_{0}=q$
- $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$
- $r_{m} \in F$
- In other words a strings w is accepted if $\bar{\delta}\left(q_{0}, w\right) \cap F \neq \emptyset$, that is that contains at least one accepting state.

Non-Deterministic Finite State Automata (NDFA)

- Informally (remember the picture before): an NDFA accepts a string if there exists at least one path in the state diagram that starts at the initial state, and ends at an accept state.
- Formally:
- An NDFA \mathcal{A} accepts a string w, if w can be written as $w=y_{1} y_{2} \ldots y_{m}$, where $y_{i} \in A \cup\{\epsilon\}$ for all $1 \leq i \leq m$, and there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q, such that
- $r_{0}=q$
- $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$
- $r_{m} \in F$
- In other words a strings w is accepted if $\bar{\delta}\left(q_{0}, w\right) \cap F \neq \emptyset$, that is that contains at least one accepting state.

Similarly as before, the language $L(\mathcal{A})$ accepted by \mathcal{A} is defined to be the set of all strings that are accepted by \mathcal{A}.

ANOTHER EXAMPLE

- Can you guess what are the strings recognized by this automaton?
- Why is this NDFA and not DFA?

DFA vs NDFA

DFA	NDFA
The transition from a state is to a single particular next state for each input symbol.	The transition from a state can be to multiple next states for each input symbol.
Empty string transitions are not allowed.	NDFA permits empty string tran- sitions.
Requires more space.	Requires less space.
A string is accepted by a DFA, if it transits to a final state.	A string is accepted by a NDFA, if at least one of all possible tran- sitions.

EXERCISE FOR YOU

Formalise what we have said with the example of the 3×3 chessboard.

Equivalence of DFA and NDFA

Question: It seems that NDFA are more powerful than DFA. Is this true?

Equivalence of DFA and NDFA

Question: It seems that NDFA are more powerful than DFA. Is this true?
A language can be accepted by a DFA if and only if it can be accepted by an NDFA.

Equivalence of DFA and NDFA

Question: It seems that NDFA are more powerful than DFA. Is this true?
A language can be accepted by a DFA if and only if it can be accepted by an NDFA.

- Of course it is easy to convert a DFA to a NDFA.
-What about the converse?
- We will forget about the ϵ-transition.

From NDFA to DFA

FRom NDFA TO DFA II

Transition table:

	0	1
q_{0}	q_{1}	q_{1}, q_{2}
q_{1}	q_{1}, q_{2}	q_{2}
q_{2}	q_{0}, q_{1}	q_{1}

How to build a DFA

Some observations:

How to build a DFA

Some observations:

- After conversion, the number of states in the resulting DFA may or may not be same as NDFA

How to build a DFA

Some observations:

- After conversion, the number of states in the resulting DFA may or may not be same as NDFA
- The maximum number of states is at most $2^{|Q|}$

How TO BUILD A DFA

Some observations:

- After conversion, the number of states in the resulting DFA may or may not be same as NDFA
- The maximum number of states is at most $2^{|Q|}$
- In the resulting DFA, all those states that contain the final state(s) of NDFA are treated as final states

Let'S now build this DFA

AND THE FINAL RESULT SHOULD BE THIS ...

Other finite state Automata

Finite state automata may have outputs corresponding to each transition. There are two types of finite state machines that generate output:

- Mealy Machine
- Moore machine

We will see this later (where later means tomorrow) ...

Regular Languages

Regular languages

Definition

A language K is called regular if there exists a finite state automaton \mathcal{A} such that

$$
K=L(\mathcal{A}) .
$$

REGULAR OPERATIONS

There are three operations on languages. Let L_{1} and L_{2} be two languages over the same alphabet.

REGULAR OPERATIONS

There are three operations on languages. Let L_{1} and L_{2} be two languages over the same alphabet.

- The union of L_{1} and L_{2} is

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\} .
$$

Regular operations

There are three operations on languages. Let L_{1} and L_{2} be two languages over the same alphabet.

- The union of L_{1} and L_{2} is

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\} .
$$

- The concatenation of L_{1} and L_{2} is

$$
L_{1} L_{2}=\left\{w w^{\prime} \mid w \in L_{1} \text { and } w^{\prime} \in L_{2}\right\} .
$$

REGULAR OPERATIONS

There are three operations on languages. Let L_{1} and L_{2} be two languages over the same alphabet.

- The union of L_{1} and L_{2} is

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\} .
$$

- The concatenation of L_{1} and L_{2} is

$$
L_{1} L_{2}=\left\{w w^{\prime} \mid w \in L_{1} \text { and } w^{\prime} \in L_{2}\right\} .
$$

- The star of L_{1} is

$$
L_{1}^{*}=\left\{u_{1} u_{2} \ldots u_{k} \mid k \geq 0 \text { and } u_{i} \in L_{1} \text { for all } i=1,2, \ldots, k\right\} .
$$

EXAMPLE OF REGULAR OPERATIONS

Let $L_{1}=\{$ empty, full $\}$ and $L_{2}=\{$ cup, bottle $\}$.
-What is $L_{1} \cup L_{2}$?
-What is $L_{1} L_{2}$?
-What is L_{1}^{*} ?

Closure properties

Is the set of all regular languages closed under these operations?

Theorem

The set of regular languages is closed under the union operation, i.e., if L_{1} and L_{2} are regular languages over the same alphabet A, then $L_{1} \cup L_{2}$ is also a regular language.

CLOSURE UNDER UNION

The proof works as follows:
Proof.

Closure properties II

Is the set of all regular languages closed under the other operations seen before (concatenation and star)?

Theorem

Yes.
Proof.
Exercise ;)

The pumping lemma

Therapist: The Pumping Lemma is not real, it can not hurt you

The Pumping Lemma:

The pumping lemma: recap

- We saw that the class of regular languages is closed under some operations.

The pumping lemma: recap

- We saw that the class of regular languages is closed under some operations.
- Regular languages can be described by finite state automata.

The pumping lemma: recap

- We saw that the class of regular languages is closed under some operations.
- Regular languages can be described by finite state automata.
- All these tools help to prove that a language is regular.

THE PUMPING LEMMA: RECAP

- We saw that the class of regular languages is closed under some operations.
- Regular languages can be described by finite state automata.
- All these tools help to prove that a language is regular.
-What if one wants to prove that a language is not regular?

THE PUMPING LEMMA: RECAP

- We saw that the class of regular languages is closed under some operations.
- Regular languages can be described by finite state automata.
- All these tools help to prove that a language is regular.
-What if one wants to prove that a language is not regular?
- Let $L=\left\{0^{m} 1^{m} \mid m \geq 0\right\}$. Can you establish if this language is regular?

The pumping lemma is a property that all regular languages must possess.

THE PUMPING LEMMA II

Informal statement:

Theorem

If a language is regular, all sufficiently long string in the language can be pumped.

The pumping Lemma III

Formal statement:

Theorem

Let L be a regular language. Then there exists an integer $p \geq 1$ (called the pumping length) such that the following holds: Every string $\sin L$, with $|s| \geq p$, can be written as $s=x y z$, such that

- $|y| \geq 1$
- $|x y| \leq p$
- for all $i \geq 0, x y^{i} z \in L$.

This means that by replacing the portion y in s by zero or more copies of it, the resulting string is still in the language L.

The Pumping Lemma Poem

Any regular language L has a magic number p and any long-enough word in L has the following property: among its first p symbols is a segment you can find whose repetition or omission leaves x among its kind.
So if you find a language L which fails this acid test, and some long word you pump becomes distinct from all the rest, by contradiction you have shown that language L is not a regular guy, resilient to the damage you have wrought. But if, upon the other hand, x stays within its L, then either L is regular, or else you chose not well.
For w is xyz, and y cannot be null, and y must come before p symbols have been read in full.

THE PUMPING LEMMA: AN EXAMPLE

Consider the language $L=\left\{0^{m} 1^{m} \mid m \geq 0\right\}$. Claim: this language is not regular.

(ANOTHER) EXERCISE FOR TOMORROW

Let $L=\left\{0^{n} \mid n\right.$ is a prime number $\}$. Is L a regular language?

PLAN FOR TOMORROW

PLAN FOR TOMORROW

- Part I - Introduction to Automata and Languages:
- Introduction to grammars
- Context-free grammars
- Pushdown automata
- Part II - Groups and Automata: what is this match?

Questions or answers?

Obrigada :)

(Picture of me trying to go to Brasilia with a finite state machine)

