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PLAN FOR TODAY

1. Previously, on “Automata, languages, and groups of
automorphisms of rooted trees”

2. Introduction to Grammars

3. Part II: Groups and automata

4. Automata groups

5. Mealy machine

6. How to generate automata groups

7. Let’s start now with Part III: groups of automorphisms of rooted
trees

8. Plan for Thursday
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PREVIOUSLY, ON “AUTOMATA,
LANGUAGES, AND GROUPS OF
AUTOMORPHISMS OF ROOTED TREES”



WHAT WE DID YESTERDAY

• Basic notions in Automata Theory
• Deterministic and non deterministic finite state automata

• Differences
• How one can construct a DFA from a NDFA and vice versa.

• Languages, and regular languages
• The pumping lemma
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LET’S RECALL SOMETHING FROM YESTERDAY

• We wanted to prove that some language is not regular. Take
• L = {0m1m | m ≥ 0}.
• L = {0m | m is a prime number}.
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PROOF OF I

Claim: The language L = {0m1m | m ≥ 0} is not regular.

Proof.
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PROOF OF II

Claim: The language L = {0m | m is a prime number} is not regular.

Proof.
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INTRODUCTION TO GRAMMARS



BACKGROUND

From Wikipedia
Grammar (again, from Ancient Greek [γραμματική]) is the set of
structural rules governing the composition of clauses, phrases and
words in a natural language.

• Noam Chomsky gave a mathematical model of grammar in 1956
which is effective for writing computer languages.
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GRAMMAR

Informally, a grammar can be seen like a deductive system, where
the sentences of the generated language are its “theorems”.
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FORMAL DEFINITION

A grammar describes a way to generate a language by using some
rules.
A grammar G can be formally written as a 4-tuple (T,N, S,P), where

• T is a set of terminal symbols.
• N is a set of variables or non-terminal symbols.
• S is a variable from N called the start symbol.
• P is a set of production rules for terminals and non-terminals. A
production rule has the form α → β, where α and β are strings
on N ∪ T.

8



EXAMPLE

Let’s consider a grammar to construct Italian sentences.

• T = set of all Italian words

• N = set of all non-terminals that correspond to the structural
component in an Italian sentence (<sentence>, <subject>,
<verb>, …).

• Start symbol: <sentence>
• Production rules:

• < sentence > → < subject >< verb >

• < subject > → < noun >

• < verb > → ascoltare
• < noun > → pianoforte
• . . . and many others if you want to learn Italian ;)
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ANOTHER EXAMPLE

You may recognize this example…
Let G = ({S}, {0, 1}, S,P) with productions P given by

• S→ 0S1
• S→ 01

10



FROM GRAMMARS TO LANGUAGES

The set of all strings of terminal symbols that can be derived from a
grammar by taking a start symbol and then consecutively applying
production rules until reaching a string of terminal symbols is said to
be the language generated from that grammar.

We write

L = {w ∈ T∗ | S→P w}

Example
The grammar of the previous example can be used to describe the
language L = {0n1n | n ≥ 0}.
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EXAMPLE

Let G = ({0, 1, 2}, {S,A}, S,P), where P contains the following
productions:

• S→ 0SA2
• S→ ϵ

• 2A→ A2
• 0A→ 01
• 1A→ 11

Which language is described by this grammar?
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TYPES OF GRAMMARS

Noam Chomsky introduced four types of grammars.

Type Grammar Language Automaton
Type 0 Unrestricted Recursively

enumerable
Turing Machine

Type 1 Context sen-
sitive

Context sen-
sitive

Linear bounded

Type 2 Context free Context free Pushdown
Type 3 Regular Regular Finite state
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TYPES OF GRAMMARS II

Chomsky hierarchy.
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REGULAR GRAMMARS

A grammar (N, T, S,P) is a regular grammar (Type 3) if one of the
following hold:

• every production is of the form A→ βB or A→ β with A,B ∈ N
and β ∈ T (right-linear grammar)

• every production is of the form A→ Bβ or A→ β with A,B ∈ N
and β ∈ T (left-linear grammar)

Example
G = ({S,A}, {0, 1}, S,P) with productions P given by
S→ 0S, S→ A,A→ 1A,A→ 1.

Theorem
A language is regular if and only if it is generated by a regular
grammar.
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CONTEXT-FREE GRAMMARS AND PUSHDOWN AUTOMATA

• Context-free grammars are grammars in which any of the
production rules can be applied regardless of context (i.e. it
does not depend on any other symbols that may or may not be
around a given symbol that is having a rule applied to it).

• Formally, a grammar is said to be context-free if its production
rules are of this type:

• A→ α, where A ∈ N and α ∈ (N ∪ T)∗.

Theorem
Context-free languages are generated by context-free grammars.
The set of all context-free languages is the set of languages
accepted by pushdown automata.
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J.E. Hopcroft, R. Motwani, J. D. Ullman
Introduction to Automata Theory, Languages, and Computation
- Addison-Wesley Longman Publishing Co., Inc. 2006.

R.W.Floyd, R. Beigel
The Language of Machines: an Introduction to Computability
and Formal Languages
- Computer Science Press, New York, 1994.
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PART II: GROUPS AND AUTOMATA



WORDS, RELATIONS, AND GROUP PRESENTATIONS

• Let X = {x1, x2, . . . }, and X−1 = {x−11 , x−12 , . . . }, X± = X ∪ X−1.
• The free reduction of a word w on X± is obtained by replacing all
subwords xix−1i or x−1i xi from w by the empty string ε to form its
free reduction1.
The resulting word is called the free reduction of w.

• Given two words w,w′ on X±, we write w ∼ w′ to denote that the
free reductions of w and w′ are the same.
For example: abb−1b ∼ aa−1ab−1bb ∼ ab.

1It can be seen that the free reduction does not depend on the order of deletions.
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WORDS, RELATIONS, AND GROUP PRESENTATIONS II

We define the free group F(X) by:

• the set of freely reduced words on X±

• the multiplication of two elements w1,w2 ∈ F(X) is the free
reduction of the word w1w2.

• The identity element in F(X) is the empty string ε.

Note: there are multiple ways of defining a free group. This one suits
our purposes.
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GROUP PRESENTATIONS

• Given a set R of words from F(X), we let ⟨⟨R⟩⟩ denote the
subgroup of F(X) generated by all conjugates of the elements
from R.

• We say that a group G has the presentation ⟨X | R⟩ if it is
isomorphic to the quotient group F(X)/⟨⟨R⟩⟩.

• We write G = ⟨X | R⟩. The elements from R are called the
relations of the presentation.

• If both X and R are finite then we say that ⟨X | R⟩ is a finite
presentation.

• Given a word w ∈ F(X), we write w =G 1 if π(w) = 1, where
π : F(X) → F(X)/⟨⟨R⟩⟩ is the canonical projection from F(X) to G.

• Informally, we can think of a word w from F(X) as representing
an element of G, namely π(w).
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WORD PROBLEM

Informally, the presentation ⟨X | R⟩ indicates that we can take words
from F(X) and delete or insert subwords from ⟨⟨R⟩⟩ without changing
the element the word represents in G.

The area of group theory that studies groups via their presentations
is called combinatorial group theory.

Word problem for G
The world problem for G asks whether or not a given input word
w ∈ F(X) represents the identity in G, i.e. if w =G 1.

We say that the word problem is soluble (or decidable) for G if
there exists a terminating algorithm that can decide on any input
word w whether w =G 1.
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EXAMPLE OF GROUPS WITH DECIDABLE WORD PROBLEM

• Automatic groups (such as finite groups, Braid groups, …)
• Finitely generated free groups
• Finitely generated free abelian groups
• Polycyclic groups
• Finitely presented simple groups.
• Finitely presented residually finite groups
• One relator groups
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A GROUP WITH UNSOLVABLE WORD PROBLEM

This example was given in 1986 by Collins. The group G is generated
by X = {a,b,d, c, e,p,q, r, t, k}, and has the following set of relations:

R = {p10a = ap,pacqr = rpcaq, ra = ar,p10b = bp,p2adq2r = rp2daq2,
rb = br,p10c = cp,p3bcq3r = rp3cbq3,
rc = cr,p10d = dp,p4bdq4r = rp4dbq4,
rd = dr,p10e = ep,p5ceq5r = rp5ecaq5, re = er,
aq10 = qa,p6deq6r = rp6edbq6pt = tp,
bq10 = qb,p7cdcq7r = rp7cdceq7,
qt = tq, cq10 = qc,p8ca3q8r = rp8a3q8,
dq10 = qd,p9da3q9r = rp9a3q9,
eq10 = qe,a−3ta3k = ka−3ta3}.
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AUTOMATIC GROUPS

Let G = ⟨X⟩ be a finitely generated group. An automatic structure of G
with respect to X is a set of finite-state automata:

• the word-acceptor, which accepts for every element of G at least
one word in X∗ representing it;

• multipliers, one for each a ∈ X∪ {1}, which accept a pair (w1,w2),
for words wi accepted by the word-acceptor, precisely when
w1a =G w2.
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AUTOMATIC GROUPS II

A group G is said to be biautomatic if it has two multiplier automata,
for left and right multiplication by elements of the generating set,
respectively.

Examples:

• Finite groups (consider the regular language to be the set of all
words in the finite group).

• Example of biautomatic groups: hyperbolic groups, braid groups.

Automatic groups have solvable word problem in quadratic time.

24



AUTOMATIC GROUPS II

A group G is said to be biautomatic if it has two multiplier automata,
for left and right multiplication by elements of the generating set,
respectively.
Examples:

• Finite groups (consider the regular language to be the set of all
words in the finite group).

• Example of biautomatic groups: hyperbolic groups, braid groups.

Automatic groups have solvable word problem in quadratic time.

24



WORD PROBLEM AND FORMAL LANGUAGES: SOME RESULTS

Let G = ⟨X | R⟩, and suppose that X is a symmetric set, that is
X = {x, x−1 | x ∈ X}.

• The language associated to a finitely presented group is

LG = {w ∈ X∗ | w =G 1}.
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WORD PROBLEM AND FORMAL LANGUAGES

Let G be a group.

Theorem (Anisimov)
LG is a regular language if and only if G is finite.

Theorem (Muller-Schupp)
LG is a context-free language if and only if G is virtually free (i.e. G
has a free subgroup of finite index).
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MORE ABOUT ANISIMOV’S THEOREM

• Let’s try to prove one implication of the theorem, that is:
If G is finite, then LG is a regular language.

• In other words, let us construct a finite state automaton FSA that
accepts LG.

• The candidate is the Cayley graph of G.
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CAYLEY GRAPHS

Let G be a group generated by a finite set S = S−1. The Cayley graph
Γ(G, S) of G is constructed as follows:

• Vertices: elements of G.
• Edges: for two vertices x, y, create the oriented edge (x, y) if and
only if there is some s ∈ S such that x · s =G y. Then the edge
(x, y) is given the label s and (y, x) the label s−1.
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EXAMPLES

The Cayley graph of Z, with respect to the generating set S = {1}.

The Cayley graph of Z, with with respect to the generating set
S′ = {2, 3}.
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ANOTHER EXAMPLE

The Cayley graph of Z2.
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ABOUT THE IMPLICATION OF THE THEOREM

Let G = ⟨X | R⟩ be a group presentation.

• A word w ∈ F(X) satisfies w =G 1 (i.e. w ∈ LG) if there exists a path
in the Cayley graph of G (with respect to X) with label w, starting
and ending at the identity element (vertex) 1.

• If G is finite, then the Cayley graph of G is finite.
• The FSA is constructed out of a Cayley graph of G, by identifying
the vertex representing the identity element as the start and
accepting state.

• Thus given any finite group, an FSA can be constructed in in this
way from its Cayley graph.

Can you construct an FSA accepting the word problem in the Klein
4-group?
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OTHER DECISION PROBLEMS

In 1908, Dehn defined three famous decision problems for a finitely
generated group G = ⟨X | R⟩.

• The word problem
• The conjugacy problem: asks whether or not two given input
words a,b ∈ F(X) are conjugate in G (that is, there exists g ∈ F(X)
such that g−1ag =G b).

• The isomorphism problem: for a class of groups C asks whether
or not two given presentations of groups from C represent
isomorphic groups. (decidable, for exammple, in finitely
generated nilpotent groups [Grunewald-Segal])
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GROUPS IN WHICH THE CONJUGACY PROBLEM IS DECIDABLE

• free groups
• one-relator groups with torsion
• braid groups
• knot groups
• finitely generated abelian groups
• Gromov-hyperbolic groups
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WORD PROBLEM (AGAIN!)

• In general, it may be difficult to work with a group G defined by a
presentation.

• It is complicated to discover whether or not a word represents
the identity in the group.

• Formal languages and automata are used to study properties
(i.e. the word problem, the isoperimetric functions) in many
classes of important groups (for example, hyperbolic groups).
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IF YOU ARE CURIOUS: MISCELLANEA

• Stallings automata: a simple and efficient algorithm for building
a Deterministic Finite State Automaton associated to a given
finitely generated subgroup of a free group.
This DFSA is very useful: e.g. membership problem, intersection
of subgroups, Nielsen-Schreier Theorem, etc.

• Hyperbolic groups:

Theorem
Let G be a finitely presented group. TFAE:

• G is hyperbolic
• G admits a linear isoperimetric function
• G admits a subquadratic isoperimetric function
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AUTOMATA GROUPS



MOTIVATION

The class of automata groups contains several remarkable countable
groups. They have applications in several areas of mathematics
(algebra, geometry, analysis, probability, etc.)

With respect to group theory, they have been used to solve many big
problems.
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MEALY MACHINE



FINITE STATE TRANSDUCERS

Informally:

• A finite state transducer (FST) is a finite state automaton with an
output function.

• An FST is deterministic if the corresponding FSA is deterministic
(ignoring the output function).

• An FST is also known as a Mealy machine.
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FINITE STATE TRANSDUCERS II

Formally, an FST is defined with:

• A finite set of states Q.
• A finite set of input symbols A.
• A finite set of output symbols O.
• An input transition function δ : Q× A→ Q.
• An output transition function X : Q→ O.
• An initial state q0 ∈ Q from which every process starts.

We will use the following notation:

M = (Q,A,O, δ, X,q0).
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GRAPHICAL REPRESENTATION

• Each transition (edge) is labelled with two strings as follows

input|output
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HOW TO GENERATE AUTOMATA
GROUPS



LET’S START WITH AN EXAMPLE

Consider the alphabet A = {0, 1}, and two states p and q.

p q

0|0 1|1

0|1

1|0

• Take the string w = 010.
• How can we read w starting at p?
• And at q?

Since we can do this for any word, we can say that p induces a map
ρp : A∗ → A∗. Similarily, q induces a map ρq : A∗ → A∗.
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EXAMPLE

a b

0|0 1|1

0|1

1|0
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HOW TO GENERATE AUTOMATA GROUPS

• We get a map ρq from A∗ to A∗ per state q ∈ Q.
• These maps have the same domain and codomain, hence we
can compose them as we want.

• Note that the composition corresponds in the automaton to
plugging in the output of a run to the input of another run.

• Given two states p,q ∈ Q, we define ρpq = ρp ◦ ρq.
• The structure generated by {ρq | q ∈ Q} is a semigroup.
• If the map ρq is bijective for all q ∈ Q, i.e. every state induces a
function that can be inverted, then we obtain an automata
group.
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LET’S GO BACK TO THE EXAMPLE

a b

0|0 1|1

0|1

1|0

What is the group generated by the automaton above?
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ANOTHER EXAMPLE

a b

0|1 1|1

0|1

1|0

What is the group generated by the automaton above?
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THE GUPTA-SIDKI AUTOMATON
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THE GUPTA-SIDKI AUTOMATON
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THE GRIGORCHUK AUTOMATON

Sorry, you have to wait until Thursday ;)

47



SELF-SIMILAR GROUPS

The Grigorchuk and the Gupta-Sidki automata are examples of
self-similar group (we will see the definition later).

Self-similar groups are a subclass of the class of groups of
automorphisms of rooted trees.
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LET’S START NOW WITH PART III:
GROUPS OF AUTOMORPHISMS OF
ROOTED TREES



MOTIVATION: FAMOUS PROBLEMS IN GROUP THEORY

• Milnor’s Problem =⇒ growth of a group.
• General Burnside Problem =⇒ finiteness properties of a group.
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GROWTH OF GROUPS

Let G = ⟨X | R⟩ be a presentation of a group G.

For each g ∈ G, let |g| denote the smallest length of a word w ∈ F(X)
such that w =G g.

The growth function of G is the map γ : N → N:

γ(n) = |{g ∈ G | |g| = n}|.

It depends on the chosen presentation ⟨X | R⟩.
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SOME FACTS ABOUT GROWTH OF GROUPS

• Free groups of finite rank k > 1: exponential growth.

• Fundamental group π1(M) of a closed negatively curved
Riemannian manifold: exponential growth.

• Finite groups: polynomial growth (of degree 0).
• (Gromov, 1981) A group is virtually nilpotent if and only if it has
polynomial growth.

Milnor’s question (1960):

Are there groups of intermediate growth between polynomial and
exponential?

Grigorchuk’s answer (1980):

Yes, the first . . . Grigorchuk group.
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ABOUT THE GENERAL BURNSIDE PROBLEM

A still undecided point in the theory of discontinuous groups is
whether the order of a group may be not finite, while the order of

every operation it contains is finite.
W. BURNSIDE (1902)

In modern terminology the general Burnside problem asks:

can a finitely generated periodic group be finite?

Recall that a group G is periodic if for any g ∈ G there exists a
positive integer n such that gn = 1.
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ARE FINITELY GENERATED PERIODIC GROUPS FINITE?

• Yes, for nilpotent groups.
• Yes, for finitely generated periodic subgroups of the general
linear group of degree n > 1 over the complex numbers.

• Yes, . . . for many other classes of groups.

• Counterexample: the first Grigorchuk group, the Gupta-Sidki
p-groups.
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PLAN FOR THURSDAY



PLAN FOR THURSDAY

• Automorphisms of regular rooted trees
• Self-similar groups
• Self-similar groups as Mealy automata
• Branch groups
• Examples

• The Grigorchuk groups
• The Gupta-Sidki group
• The GGS-groups
• The Basilica group
• The Hanoi Tower group
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Questions or answers?



Obrigada :)
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