AUTOMATA, LANGUAGES, AND GROUPS OF AUTOMORPHISMS OF ROOTED TREES

Part III - Groups of automorphisms of rooted trees

Marialaura Noce

Georg-August-Universität Göttingen

TABLE OF CONTENTS

1. Previously, on Automata, languages, and groups of automorphisms of rooted trees
2. Let's finally start with Part III
3. Automorphisms of regular rooted trees
4. Self-similar groups
5. Branch groups
6. The Grigorchuk groups
7. The GGS-groups
8. The Basilica group
9. The Hanoi Tower group
10. Conclusions

Previously, on Automata,
 LANGUAGES, AND GROUPS OF AUTOMORPHISMS OF ROOTED TREES

Previous lecture

- Groups and automata
- Automata groups
- Mealy machine
- How to generate automata groups

EXAMPLE

How to generate automata groups

- We get a map ρ_{q} from A^{*} to A^{*} per state $q \in Q$.
- These maps have the same domain and codomain, hence we can compose them as we want.
- Note that the composition corresponds in the automaton to plugging in the output of a run to the input of another run.
- Given two states $p, q \in Q$, we define $\rho_{p q}=\rho_{p} \circ \rho_{q}$.
- The structure generated by $\left\{\rho_{q} \mid q \in Q\right\}$ is a semigroup.
- If the map ρ_{q} is bijective for all $q \in Q$, i.e. every state induces a function that can be inverted, then we obtain an automata group.

SELF-SIMILAR GROUPS

The Grigorchuk and the Gupta-Sidki automata are examples of self-similar group.
Self-similar groups are a subclass of the class of groups of automorphisms of rooted trees.

To Said Sidki, in honor of his 80th birthday.

Let's finally start with Part III

MOTIVATION: FAMOUS PROBLEMS IN GROUP THEORY

- Milnor's Problem \Longrightarrow growth of a group.
- General Burnside Problem \Longrightarrow finiteness properties of a group.

GROWTH OF GROUPS

Let $G=\langle X \mid R\rangle$ be a presentation of a group G.
For each $g \in G$, let $|g|$ denote the smallest length of a word $w \in F(X)$ such that $w={ }_{G} g$.

The growth function of G is the map $\gamma: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\gamma(n)=|\{g \in G| | g \mid=n\}| .
$$

It depends on the chosen presentation $\langle X \mid R\rangle$.

SOME FACTS ABOUT GROWTH OF GROUPS

- Free groups of finite rank $k>1$: exponential growth.

SOME FACTS ABOUT GROWTH OF GROUPS

- Free groups of finite rank $k>1$: exponential growth.
- Finite groups: polynomial growth (of degree 0).

SOME FACTS ABOUT GROWTH OF GROUPS

- Free groups of finite rank $k>1$: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

SOME FACTS ABOUT GROWTH OF GROUPS

- Free groups of finite rank $k>1$: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

Milnor's question (1960):
Are there groups of intermediate growth between polynomial and exponential?

SOME FACTS ABOUT GROWTH OF GROUPS

- Free groups of finite rank $k>1$: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

Milnor's question (1960):
Are there groups of intermediate growth between polynomial and exponential?

Grigorchuk's answer (1980):

> Yes, the first ... Grigorchuk group.

About the General Burnside Problem

A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite.
W. Burnside (1902)

About the General Burnside Problem

A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite.
W. Burnside (1902)

In modern terminology the general Burnside problem asks:
can a finitely generated periodic group be finite?
Recall that a group G is periodic if for any $g \in G$ there exists a positive integer n such that $g^{n}=1$.

ARE FINITELY GENERATED PERIODIC GROUPS FINITE?

- Yes, for nilpotent groups.
- Yes, for finitely generated periodic subgroups of the general linear group of degree $n>1$ over the complex numbers.
- Yes, ... for many other classes of groups.

ARE FINITELY GENERATED PERIODIC GROUPS FINITE?

- Yes, for nilpotent groups.
- Yes, for finitely generated periodic subgroups of the general linear group of degree $n>1$ over the complex numbers.
- Yes, ... for many other classes of groups.
- Counterexample: the first Grigorchuk group, the Gupta-Sidki p-groups.

To summarize

It seems that:

To summarize

It seems that:

> Milnor's question \bigcap General Burnside Problem
> $=$ the first Grigorchuk group, ...

AUTOMORPHISMS OF REGULAR ROOTED TREES

Regular rooted trees

SERIOUSLY: the regular rooted tree \mathcal{T}_{d}

Regular rooted trees

- The tree is infinite.

Regular rooted trees

- The tree is infinite.
- The root is a distinguished (fixed) vertex.

Regular rooted trees

- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.

Regular rooted trees

- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X=\{1, \ldots, d\}$.

Regular rooted trees

- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X=\{1, \ldots, d\}$.

Regular rooted trees

- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X=\{1, \ldots, d\}$.

- X^{n} denotes the nth level of the tree, and X^{*} denotes all the vertices of the tree.

AUTOMORPHISMS OF ROOTED TREES

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

AUTOMORPHISMS OF ROOTED TREES

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

AUTOMORPHISMS OF ROOTED TREES

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

AUTOMORPHISMS OF ROOTED TREES

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

Aut \mathcal{T}_{d}

The set Aut \mathcal{T}_{d} of all automorphisms of \mathcal{T}_{d} is a group with respect to composition between functions.

$\operatorname{Aut} \mathcal{T}_{d}$

The set Aut \mathcal{T}_{d} of all automorphisms of \mathcal{T}_{d} is a group with respect to composition between functions.

Sometimes we write \mathcal{T} for \mathcal{T}_{d}, and, consequently, Aut \mathcal{T} for Aut \mathcal{T}_{d}.

A subgroup of Aut \mathcal{T} : the stabilizer

n-th level

- The nth level stabilizer st(n) fixes all vertices up to level n.

A subgroup of Aut \mathcal{T} : the stabilizer

n-th level

- The nth level stabilizer st (n) fixes all vertices up to level n.
- If $H \leq$ Aut \mathcal{T}, we define $\operatorname{st}_{H}(n)=H \cap \operatorname{st}(n)$.

THE STABILIZER

- Stabilizers are normal subgroups of the given group.

THE STABILIZER

- Stabilizers are normal subgroups of the given group.
- There is a chain of subgroups of Aut \mathcal{T}

Aut $\mathcal{T} \supseteq \operatorname{st}(1) \supseteq \operatorname{st}(2) \supseteq \cdots \supseteq \operatorname{st}(n) \supseteq \ldots$
where $\bigcap_{n \in \mathbb{N}} \operatorname{st}(n)=1$.

THE STABILIZER

- Stabilizers are normal subgroups of the given group.
- There is a chain of subgroups of Aut \mathcal{T}

$$
\text { Aut } \mathcal{T} \supseteq \operatorname{st}(1) \supseteq \operatorname{st}(2) \supseteq \cdots \supseteq \operatorname{st}(n) \supseteq \ldots
$$

where $\bigcap_{n \in \mathbb{N}} \operatorname{st}(n)=1$.

- Hence Aut \mathcal{T} is a residually finite group (i.e. a group in which the intersection of all its normal subgroups of finite index is trivial).

Describing elements of Aut \mathcal{T}

An automorphism $f \in$ Aut \mathcal{T}_{d} can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

Describing elements of Aut \mathcal{T}

An automorphism $f \in$ Aut \mathcal{T}_{d} can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

Describing elements of Aut \mathcal{T}

An automorphism $f \in$ Aut \mathcal{T}_{d} can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

We say that $\sigma_{v} \in \operatorname{Sym}(d)$ is the label of f at the vertex v.

Describing elements of Aut \mathcal{T}

An automorphism $f \in$ Aut \mathcal{T}_{d} can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

We say that $\sigma_{v} \in \operatorname{Sym}(d)$ is the label of f at the vertex v. The set of all labels is the portrait of f.

Describing elements of Aut \mathcal{T}

The simplest type are rooted automorphisms: given $\sigma \in \operatorname{Sym}(d)$, they simply permute the d subtrees hanging from the root according to σ.

We denote with ϵ the identity element of $\operatorname{Sym}(d)$.

EXAMPLE OF A ROOTED AUTOMORPHISM

Let \mathcal{T}_{3} be the ternary tree, and a the rooted automorphism corresponding to the cycle $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$.

EXAMPLE OF A ROOTED AUTOMORPHISM

Let \mathcal{T}_{3} be the ternary tree, and a the rooted automorphism corresponding to the cycle $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$.

EXAMPLE OF A ROOTED AUTOMORPHISM

Let \mathcal{T}_{3} be the ternary tree, and a the rooted automorphism corresponding to the cycle $\sigma=\left(\begin{array}{ll}1 & 2\end{array} 3\right)$.

Note: sometimes we will identify a with σ.

Some facts about Aut \mathcal{T} : I

We have Aut $\mathcal{T} \cong \operatorname{st}(1) \rtimes \operatorname{Sym}(d)$.

SOME FACTS ABOUT Aut $\mathcal{T}: I$

We have Aut $\mathcal{T} \cong \operatorname{st}(1) \rtimes \operatorname{Sym}(d)$. Why?
Intuitively: take $f \in \operatorname{st}(1)$, and $\sigma \in \operatorname{Sym}(d)$.

Some facts about Aut $\mathcal{T}: I$

We have Aut $\mathcal{T} \cong \operatorname{st}(1) \rtimes \operatorname{Sym}(d)$. Why?
Intuitively: take $f \in \operatorname{st}(1)$, and $\sigma \in \operatorname{Sym}(d)$.

Some facts about Aut \mathcal{T} : I

We have Aut $\mathcal{T} \cong \operatorname{st}(1) \rtimes \operatorname{Sym}(d)$. Why?
Intuitively: take $f \in \operatorname{st}(1)$, and $\sigma \in \operatorname{Sym}(d)$.

Some facts about Aut \mathcal{T} : II

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \cdots \times \text { Aut } \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

for every $g \in \operatorname{st}(1)$.

Some facts about Aut \mathcal{T} : II

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times \stackrel{ }{d} \times \text { Aut } \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

for every $g \in \operatorname{st}(1)$.
Above, we denoted with g_{i} the section of g at the vertex i,

Some facts about Aut \mathcal{T} : II

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

for every $g \in \operatorname{st}(1)$.
Above, we denoted with g_{i} the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_{i} (which is identified with \mathcal{T}) that hangs from the vertex i.

Some facts about Aut \mathcal{T} : II

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

for every $g \in \operatorname{st}(1)$.
Above, we denoted with g_{i} the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_{i} (which is identified with \mathcal{T}) that hangs from the vertex i.

Some facts about Aut \mathcal{T} : II

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

for every $g \in \operatorname{st}(1)$.
Above, we denoted with g_{i} the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_{i} (which is identified with \mathcal{T}) that hangs from the vertex i.

Digression: this implies that Aut \mathcal{T} contains products
Aut $\mathcal{T} \times \cdots \times$ Aut \mathcal{T}.

I + II = DesCribing elements of Aut \mathcal{T}

- Any $g \in$ Aut \mathcal{T}_{d} can be seen as

$$
g=h \sigma, \quad \sigma \in \operatorname{Sym}(d), \quad h \in \operatorname{st}(1) \cong \operatorname{Aut} \mathcal{T}_{d} \times . \therefore \times \operatorname{Aut} \mathcal{T}_{d}
$$

$I+I I=$ Describing elements of Aut \mathcal{T}

- Any $g \in$ Aut \mathcal{T}_{d} can be seen as

$$
g=h \sigma, \quad \sigma \in \operatorname{Sym}(d), \quad h \in \operatorname{st}(1) \cong \operatorname{Aut} \mathcal{T}_{d} \times .{ }^{d} \times \operatorname{Aut} \mathcal{T}_{d}
$$

In other words, every $f \in$ Aut \mathcal{T}_{d} can be written as

$$
f=\left(f_{1}, \ldots, f_{d}\right) a,
$$

where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to some permutation $\sigma \in \operatorname{Sym}(d)$.

EXAMPLE

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right) a$, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ. If $f_{1}=f_{2}=\cdots=f_{d}=1$, then f is rooted.

EXAMPLE

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right) a$, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ. If $f_{1}=f_{2}=\cdots=f_{d}=1$, then f is rooted. Do you remember?

EXAMPLE

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right) a$, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ. If $f_{1}=f_{2}=\cdots=f_{d}=1$, then f is rooted. Do you remember?

EXAMPLE: GENERAL CASE

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right) a$, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ.

EXAMPLE: GENERAL CASE

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right)$ a, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ.

EXAMPLE: GENERAL CASE

EXAMPLE: GENERAL CASE

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXAMPLE (ANOTHER!)

If \mathcal{T}_{2} is the binary tree and a is rooted corresponding to (12), let

$$
b=(1, b) a .
$$

How does b act on \mathcal{T}_{2} ?

EXERCISE

If \mathcal{T}_{7} is the 7 -adic tree and a is rooted corresponding to (1234567), let

$$
b=\left(a, a^{-1}, a^{2}, 1,1,1, b\right) a
$$

EXERCISE

If \mathcal{T}_{7} is the 7 -adic tree and a is rooted corresponding to (1234567), let

$$
b=\left(a, a^{-1}, a^{2}, 1,1,1, b\right) a
$$

How does b act on \mathcal{T}_{7} ?

SELF-SIMILAR GROUPS

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$.

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u.

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: consider $a=(a, 1,1)(23)$, we have

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: consider $a=(a, 1,1)(23)$, we have

- $a(21322)=a(2) a_{2}(1322)=31322$

DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in \operatorname{Aut} \mathcal{T}$ and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: consider $a=(a, 1,1)(23)$, we have

- $a(21322)=a(2) a_{2}(1322)=31322$
- $a(1321)=a(1) a_{1}(321)=1 a(321)=1 a(3) a_{3}(211)=1211$

SELF-SIMILAR GROUPS

Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be self-similar if taken $g=\left(g_{1}, \ldots, g_{d}\right) \sigma \in G$ we have $g_{i} \in G$ for any $i=\{1, \ldots, d\}$.

SELF-SIMILAR GROUPS

Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be self-similar if taken $g=\left(g_{1}, \ldots, g_{d}\right) \sigma \in G$ we have $g_{i} \in G$ for any $i=\{1, \ldots, d\}$.
- Example: Aut \mathcal{T} is self-similar, the first Grigorchuk is self-similar, Gupta-Sidki p-groups are self-similar for any p.

SELF-SIMILAR GROUPS

Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be self-similar if taken $g=\left(g_{1}, \ldots, g_{d}\right) \sigma \in G$ we have $g_{i} \in G$ for any $i=\{1, \ldots, d\}$.
- Example: Aut \mathcal{T} is self-similar, the first Grigorchuk is self-similar, Gupta-Sidki p-groups are self-similar for any p.
- Non-example: The group $G=\langle a, b\rangle$, where $a=(b, c) \sigma$ and $c \notin G$, then G is not self-similar.

SELF-SIMILAR GROUPS

Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be self-similar if taken $g=\left(g_{1}, \ldots, g_{d}\right) \sigma \in G$ we have $g_{i} \in G$ for any $i=\{1, \ldots, d\}$.
- Example: Aut \mathcal{T} is self-similar, the first Grigorchuk is self-similar, Gupta-Sidki p-groups are self-similar for any p.
- Non-example: The group $G=\langle a, b\rangle$, where $a=(b, c) \sigma$ and $c \notin G$, then G is not self-similar.
- An automata group is a finitely generated self-similar and finite-state group (i.e. $\left\{g_{u} \mid u \in X^{*}\right\}$ is finite).

AUTOMATA GROUPS VS SELF-SIMILAR GROUPS

Suppose we have $w=01$. Denote blue: output, purple: states.

AUTOMATA GROUPS VS SELF-SIMILAR GROUPS

Suppose we have $w=01$. Denote blue: output, purple: states.
Consider $b(01)=b(0) b_{0}(1)=1 a(1)=11$.

AUTOMATA GROUPS VS SELF-SIMILAR GROUPS

Suppose we have $w=01$. Denote blue: output, purple: states.
Consider $b(01)=b(0) b_{0}(1)=1 a(1)=11$.
The set of states of the automaton corresponds to a generating set of the self-similar group.

Take a break

BRANCH GROUPS

Introduction

- Branch groups were introduced by Grigorchuk in 1997.

INTRODUCTION

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$
\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times{ }^{d^{n}} \times \operatorname{Aut} \mathcal{T}
$$

since $\psi_{n}: \operatorname{st}(n) \longrightarrow$ Aut $\mathcal{T} \times \cdots \cdots{ }^{d^{n}} \times \operatorname{Aut} \mathcal{T}$ is an isomorphism.

INTRODUCTION

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$
\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times{ }^{d^{n}} \times \operatorname{Aut} \mathcal{T}
$$

since $\psi_{n}: \operatorname{st}(n) \longrightarrow$ Aut $\mathcal{T} \times \cdots \times \operatorname{Aut} \mathcal{T}$ is an isomorphism.

- If $G \leq$ Aut \mathcal{T}, we have

$$
\psi_{n}: \operatorname{st}_{G}(n) \longrightarrow \psi_{n}\left(\operatorname{st}_{G}(n)\right),
$$

where $\psi_{n}\left(\operatorname{st}_{G}(n)\right)$ need not be a direct product.

INTRODUCTION

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$
\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \cdots^{d^{n}} \times \operatorname{Aut} \mathcal{T}
$$

since $\psi_{n}: \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \cdots{ }^{d^{n}} \times$ Aut \mathcal{T} is an isomorphism.

- If $G \leq$ Aut \mathcal{T}, we have

$$
\psi_{n}: \operatorname{st}_{G}(n) \longrightarrow \psi_{n}\left(\operatorname{st}_{G}(n)\right),
$$

where $\psi_{n}\left(\operatorname{st}_{G}(n)\right)$ need not be a direct product.

- The question is: given $G \leq$ Aut \mathcal{T}, can we find for every $n \in \mathbb{N}$ a subgroup (eventually of finite index) of $\operatorname{st}_{G}(n)$ which is a direct product?

Rigid STABILIZERS

The rigid stabilizer of the vertex u is

$$
\operatorname{rst}_{G}(u)=\left\{g \in G: g \text { fixes all vertices outside } \mathcal{T}_{u}\right\}
$$

n-th level

Rigid STABILIZERS

The rigid stabilizer of the vertex u is

$$
\operatorname{rst}_{G}(u)=\left\{g \in G: g \text { fixes all vertices outside } \mathcal{T}_{u}\right\}
$$

The rigid stabilizer of the $n t h$ level is $\operatorname{rst}_{G}(n)=\prod_{u \in X^{n}} \operatorname{rst}_{G}(u)$.

About the "question"

- If G is the whole Aut \mathcal{T} then the rigid stabilizer coincides with the nth level stabilizer.

About the "question"

- If G is the whole Aut \mathcal{T} then the rigid stabilizer coincides with the nth level stabilizer.
- And if $G \leq$ Aut \mathcal{T} ?

About the "question"

- If G is the whole Aut \mathcal{T} then the rigid stabilizer coincides with the nth level stabilizer.
- And if $G \leq$ Aut \mathcal{T} ?
- Bad news: this is not usually the case for arbitrary subgroups of Aut \mathcal{T}.

About the "question"

- If G is the whole Aut \mathcal{T} then the rigid stabilizer coincides with the nth level stabilizer.
- And if $G \leq$ Aut \mathcal{T} ?
- Bad news: this is not usually the case for arbitrary subgroups of Aut \mathcal{T}.
- Good news: in some cases, there exist "nice" rigid stabilizers.

About the "question"

- If G is the whole Aut \mathcal{T} then the rigid stabilizer coincides with the nth level stabilizer.
- And if $G \leq$ Aut \mathcal{T} ?
- Bad news: this is not usually the case for arbitrary subgroups of Aut \mathcal{T}.
- Good news: in some cases, there exist "nice" rigid stabilizers.
- Informally speaking: the subgroup $\psi_{n}\left(\operatorname{rst}_{G}(n)\right)$ is the largest subgroup of $\psi_{n}\left(\operatorname{st}_{G}(n)\right)$ which is a "geometric" direct product.

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}).

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

- We say that G is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

- We say that G is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

- We say that G is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut \mathcal{T}, where $\operatorname{rst}(n)=\operatorname{st}(n)$ is as large as possible.

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

- We say that G is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut \mathcal{T}, where $\operatorname{rst}(n)=\operatorname{st}(n)$ is as large as possible.
- The most important families of subgroups of Aut \mathcal{T} consist almost entirely of (weakly) branch groups.

BRANCH GROUPS

Let $G \leq$ Aut \mathcal{T} a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

- We say that G is a branch group if for all $n \geq 1$, the index of the rigid nth level stabilizer in G is finite. In other words, for all $n \geq 1$,

$$
\left|G: \operatorname{rst}_{G}(n)\right|<\infty .
$$

- We say that G is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut \mathcal{T}, where $\operatorname{rst}(n)=\operatorname{st}(n)$ is as large as possible.
- The most important families of subgroups of Aut \mathcal{T} consist almost entirely of (weakly) branch groups.
- The first Grigorchuk group is a branch group.

Regular branch groups

Let G be a self-similar group. We say that G is a regular branch if there exists a subgroup K of $\operatorname{st}_{G}(1)$ of finite index such that

$$
\psi(K) \supseteq K \times \stackrel{d}{d} \times K .
$$

Regular branch groups

Let G be a self-similar group. We say that G is a regular branch if there exists a subgroup K of $\operatorname{st}_{G}(1)$ of finite index such that

$$
\psi(K) \supseteq K \times \stackrel{d}{d} \times K .
$$

More precisely we have this situation:

Regular branch groups

- We say that G is a weakly regular branch group if K has infinite index in G.
- If we want to emphasize the subgroup K, we say that G is (weakly) regular branch over K.

Regular branch groups

- We say that G is a weakly regular branch group if K has infinite index in G.
- If we want to emphasize the subgroup K, we say that G is (weakly) regular branch over K.
- Regular branch \longrightarrow branch.

EXAMPLES OF (WEAKLY) BRANCH GROUPS

Now we will present the following groups of automorphisms of rooted trees together with their main properties:

- The Grigorchuk groups
- The GGS-groups
- The Basilica group
- The Hanoi Tower group

The first Grigorchuk group (finally!)

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
\end{gathered}
$$

The first Grigorchuk group (finally!)

$$
\begin{gather*}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) \\
(12) \tag{12}
\end{gather*}
$$

The first Grigorchuk group (finally!)

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) \\
(12)
\end{gathered}
$$

The first Grigorchuk group (finally!)

$$
\Gamma=\langle a, b, c, d\rangle
$$

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
$$

Can you guess what is the Grigorchuk automaton?

The Grigorchuk automaton

The Grigorchuk groups

The (first) Grigorchuk group

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
\end{gathered}
$$

The (first) Grigorchuk group

$$
\Gamma=\langle a, b, c, d\rangle
$$

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
$$

(12)

THe (FIRST) GRIGORCHUK GROUP

$$
\Gamma=\langle a, b, c, d\rangle
$$

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
$$

THe (FIRST) GRIGORCHUK GROUP

$$
\Gamma=\langle a, b, c, d\rangle
$$

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
$$

Г AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

Г AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark

Г AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of $\bar{\Gamma}$ that projects surjectively onto Γ

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of $\bar{\Gamma}$ that projects surjectively onto Γ
- Note that $a \notin \operatorname{st}_{\Gamma}(1)(\star)$

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of $\bar{\Gamma}$ that projects surjectively onto Γ
- Note that $a \notin \operatorname{str}_{\Gamma}(1)(\star)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{sta}_{\Gamma}(1)\right)\right.$:

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that $a \notin \operatorname{str}_{\Gamma}(1)(\star)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{st}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that $a \notin \operatorname{str}_{\Gamma}(1)(\star)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{st}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

- Then $\operatorname{str}_{\Gamma}(1)$ is onto Γ

「 AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2 -group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that $a \notin \operatorname{str}_{\Gamma}(1)(\star)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{sta}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

- Then $\operatorname{str}_{\Gamma}(1)$ is onto Γ
- $(\star)+(\star)=\Gamma$ is infinite.

「 AS A COUNTEREXAMPLE TO THE GBP

- Proof that Γ is torsion:

「 AS A COUNTEREXAMPLE TO THE GBP

- Proof that Γ is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.

「 AS A COUNTEREXAMPLE TO THE GBP

- Proof that Γ is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$

Г AS A COUNTEREXAMPLE TO THE GBP

- Proof that Γ is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$
- What about b, c and d?

「 AS A COUNTEREXAMPLE TO THE GBP

- Proof that Γ is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$
- What about b, c and d ?
- General case: ...more technical.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

- Then the only possibility is that $b^{2}=1$.

PROOF THAT $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

- Then the only possibility is that $b^{2}=1$.
- As a consequence, $c^{2}=d^{2}=1$.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.
- It is amenable but not elementary amenable.

SUMMARIZING SOME PROPERTIES OF Г

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.
- It is amenable but not elementary amenable.
- Many other exotic properties

GRIGORCHUK GROUPS

where $\sigma=(12)$.

GRIGORCHUK GROUPS

where $\sigma=(12)$.
Let $0,1,2$ be the three non-trivial homomorphisms from $C_{2} \times C_{2}=\{1, b, c, d\}$ to $C_{2}=\{1, \sigma\}$ such that:
$0: b \mapsto \sigma$
$1: b \mapsto \sigma$
$2: b \mapsto 1$
$C \mapsto 1$
$C \mapsto \sigma$
$c \mapsto \sigma$
$d \mapsto 1$
$d \mapsto \sigma$
$d \mapsto \sigma$.

GRIGORCHUK GROUPS

Example 1: $0,1,1,0 \ldots$

GRIGORCHUK GROUPS

Example 2: 0, 2, 2, $2 \ldots$

GRIGORCHUK GROUPS

GRIGORCHUK GROUPS

- Let $\Omega=\{0,1,2\}^{\infty}$ be the space of infinite sequences over letters $\{0,1,2\}$.

Given $\omega \in \Omega$ the Grigorchuk group is $G_{\omega}=\left\langle a, b_{\omega}, c_{\omega}, d_{\omega}\right\rangle$.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$.
- If ω is eventually constant then G_{ω} is virtually abelian.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$.
- If ω is eventually constant then G_{ω} is virtually abelian.
- Otherwise, G_{ω} is of intermediate growth.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$.
- If ω is eventually constant then G_{ω} is virtually abelian.
- Otherwise, G_{ω} is of intermediate growth.
- The group G_{ω} is periodic if and only if ω contains all three letters $0,1,2$ infinitely often.

The GGS-GROUPS

The GGS-Groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

The GGS-Groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$

The GGS-Groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The GGS-Groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The group $G_{\mathrm{e}}=\langle a, b\rangle$ is the GGS-group corresponding to the defining vector e.

The GGS-GROUPS

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The group $G_{\mathrm{e}}=\langle a, b\rangle$ is the GGS-group corresponding to the defining vector e.

A GGS-group is torsion if and only if $\sum_{i=1}^{p-1} e_{i} \equiv 0 \bmod p$.

A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$

A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

- Can you prove that this group is infinite and generated by elements of order p? And that is a p-group?.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
-What if $p=2$?

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
-What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
-What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .
- Either G is a finite dihedral group or the infinite dihedral group.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
-What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .
- Either G is a finite dihedral group or the infinite dihedral group.
- In both cases G is not a counterexample to the GBP.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
-What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2.
- Either G is a finite dihedral group or the infinite dihedral group.
- In both cases G is not a counterexample to the GBP.
- Then if you want a group generated by elements of order 2, you must add generators: $\Gamma=\langle a, b, c, d\rangle$.

The Basilica group

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

-Can you define a and b from their portraits above?

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(,) \epsilon \quad b=(,) \sigma$

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(1, b)$

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(1, b) \quad b=(1, a) \sigma$

A CURIOSITY ABOUT THE NAME

First: the Basilica group is $B=\langle a, b\rangle$.

A CURIOSITY ABOUT THE NAME

First: the Basilica group is $B=\langle a, b\rangle$.

A CURIOSITY ABOUT THE NAME

First: the Basilica group is $B=\langle a, b\rangle$.

SOME PROPERTIES OF THE BASILICA GROUP

- It is torsion-free (Can you prove that a and b have infinite order?)
- It is weakly regular branch over its derived subgroup B^{\prime}.

SOME PROPERTIES OF THE BASILICA GROUP

- It is torsion-free (Can you prove that a and b have infinite order?)
- It is weakly regular branch over its derived subgroup B^{\prime}.
- It has exponential word growth.

The Hanol Tower group

The Hanol tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.

The Hanol tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:

The Hanol tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;

The Hanol tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another or on an empty peg;

The Hanol tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another or on an empty peg;
- No disk may be placed on top of a smaller disk.

THE HANOI TOWERS GAME

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.

THE HANOI TOWERS GAME

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lies.

The Hanol towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lies.
- We "read" from the smallest to the bigger disk.

The Hanol towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lies.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

The Hanol towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lies.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

- The length of the word above is $6 \longrightarrow 6$ disks.

The Hanol towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lies.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

- The length of the word above is $6 \longrightarrow 6$ disks.
- This means that the smaller disk is in the 2nd position, the second smaller disk is in the 3rd position, the third smaller disk is in the 1st position, and so on.

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

1

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

131

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

1311

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13112.

The Hanol towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13112.

- Goal: to send 11... 1 to $33 \ldots 3$.

THE HANOI TOWERS GAME

- Configurations (sequences of length n of $1,2,3$) can be seen as vertices on the n-th level in a rooted ternary tree.

- Any move takes one vertex on the n-th level on the tree to another vertex on the n-th level. Then each move can be thought of as an automorphism of the rooted ternary tree.

THE HANOI TOWERS GAME

THE HANOI TOWERS GAME

Move a:

- Search for the first time a 2 or 3 appears in the configuration

THE HANOI TOWERS GAME

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them

THE HANOI TOWERS GAME

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity

THE HANOI TOWERS GAME

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3

The Hanol towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=31322$

The Hanol towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=31322$

One can define elements a, b and c acting on the whole ternary tree.

The Hanol towers game group

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=31322$

One can define elements a, b and c acting on the whole ternary tree.

$$
\mathcal{H}=\langle a, b, c\rangle
$$

The Hanol towers game group

Move a :

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=31322$

One can define elements a, b and c acting on the whole ternary tree.

$$
\mathcal{H}=\langle a, b, c\rangle
$$

where $a=(a, 1,1)(23), b=(1, b, 1)(13), c=(1,1, c)(12)$.

The Hanol towers game group

Move a :

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=31322$

One can define elements a, b and c acting on the whole ternary tree.

$$
\mathcal{H}=\langle a, b, c\rangle
$$

where $a=(a, 1,1)(23), b=(1, b, 1)(13), c=(1,1, c)(12)$.
Example: $a(21322)=a(2) a_{2}(1322)=31322$.

Conclusions

To CONCLUDE ...

Automata theory plays an important role not only in Computer Science but also in group theory.

To conclude

Automata theory plays an important role not only in Computer Science but also in group theory. Some questions:

To conclude

Automata theory plays an important role not only in Computer Science but also in group theory.
Some questions:

- What is your favourite automata group...? :)

To conclude ...

Automata theory plays an important role not only in Computer Science but also in group theory.
Some questions:

- What is your favourite automata group...? :)
- Nice topic: study algorithmic problems in branch groups.

To CONCLUDE ...

Automata theory plays an important role not only in Computer Science but also in group theory.
Some questions:

- What is your favourite automata group...? :)
- Nice topic: study algorithmic problems in branch groups.
- Do there exist finitely presented branch groups?

References

[1] G. Baumslag Topics in combinatorial group theory - Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1993).
[2] L. Bartholdi, R.I. Grigorchuk, Z. Sunik Branch groups - Handbook of Algebra, Volume 3, North-Holland (2003), 989-1112.
[3] R.I. Grigorchuk Just infinite branch groups - New Horizons in pro-p Groups, Progress in Mathematics, Volume 184 (2000), 121-179.
[4] P. de la Harpe Topics in Geometric Group Theory - Chicago Lectures in Mathematics (2000).
[5] D. Holt, S. Rees,and C. E. Röver Groups, Languages, and Automata - London Mathematical Society Student Texts 88 (2017).
[6] V. Nekrashevych Self-similar groups - Mathematical Surveys and Monographs, 117, American Mathematical Society (2005).

Obrigada.
Grazie :)

