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PREVIOUSLY, ON AUTOMATA,
LANGUAGES, AND GROUPS OF
AUTOMORPHISMS OF ROOTED TREES



PREVIOUS LECTURE

• Groups and automata
• Automata groups
• Mealy machine
• How to generate automata groups
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EXAMPLE

a b

0|0 1|1

0|1

1|0
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HOW TO GENERATE AUTOMATA GROUPS

• We get a map ρq from A∗ to A∗ per state q ∈ Q.
• These maps have the same domain and codomain, hence we
can compose them as we want.

• Note that the composition corresponds in the automaton to
plugging in the output of a run to the input of another run.

• Given two states p,q ∈ Q, we define ρpq = ρp ◦ ρq.
• The structure generated by {ρq | q ∈ Q} is a semigroup.
• If the map ρq is bijective for all q ∈ Q, i.e. every state induces a
function that can be inverted, then we obtain an automata
group.
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SELF-SIMILAR GROUPS

The Grigorchuk and the Gupta-Sidki automata are examples of
self-similar group.

Self-similar groups are a subclass of the class of groups of
automorphisms of rooted trees.
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To Said Sidki, in honor of his 80th birthday.
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LET’S FINALLY START WITH PART III



MOTIVATION: FAMOUS PROBLEMS IN GROUP THEORY

• Milnor’s Problem =⇒ growth of a group.
• General Burnside Problem =⇒ finiteness properties of a group.
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GROWTH OF GROUPS

Let G = 〈X | R〉 be a presentation of a group G.

For each g ∈ G, let |g| denote the smallest length of a word w ∈ F(X)
such that w =G g.

The growth function of G is the map γ : N → N:

γ(n) = |{g ∈ G | |g| = n}|.

It depends on the chosen presentation 〈X | R〉.
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SOME FACTS ABOUT GROWTH OF GROUPS

• Free groups of finite rank k > 1: exponential growth.

• Finite groups: polynomial growth (of degree 0).
• (Gromov, 1981) A group is virtually nilpotent if and only if it has
polynomial growth.

Milnor’s question (1960):

Are there groups of intermediate growth between polynomial and
exponential?

Grigorchuk’s answer (1980):

Yes, the first . . . Grigorchuk group.
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ABOUT THE GENERAL BURNSIDE PROBLEM

A still undecided point in the theory of discontinuous groups is
whether the order of a group may be not finite, while the order of

every operation it contains is finite.
W. BURNSIDE (1902)

In modern terminology the general Burnside problem asks:

can a finitely generated periodic group be finite?

Recall that a group G is periodic if for any g ∈ G there exists a
positive integer n such that gn = 1.
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ARE FINITELY GENERATED PERIODIC GROUPS FINITE?

• Yes, for nilpotent groups.
• Yes, for finitely generated periodic subgroups of the general
linear group of degree n > 1 over the complex numbers.

• Yes, . . . for many other classes of groups.

• Counterexample: the first Grigorchuk group, the Gupta-Sidki
p-groups.
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TO SUMMARIZE

It seems that:

Milnor’s question
∩

General Burnside Problem

= the first Grigorchuk group, …
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AUTOMORPHISMS OF REGULAR
ROOTED TREES



REGULAR ROOTED TREES
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SERIOUSLY: THE REGULAR ROOTED TREE Td
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REGULAR ROOTED TREES

• The tree is infinite.

• The root is a distinguished (fixed) vertex.
• Regular: the number of descendants is the same at every level.
• A vertex is a word in the alphabet X = {1, . . . ,d}.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

∅

1 2 d

11 12 1d 21 22 2d d1 d2 dd

· · ·

• Xn denotes the nth level of the tree, and X∗ denotes all the
vertices of the tree.
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AUTOMORPHISMS OF ROOTED TREES

Automorphisms of Td
Bijections of the vertices that preserve incidence.

∅

u

f

∅
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Aut Td

The set Aut Td of all automorphisms of Td is a group with respect to
composition between functions.

Sometimes we write T for Td, and, consequently, Aut T for Aut Td.
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A SUBGROUP OF Aut T : THE STABILIZER

n-th level

• The nth level stabilizer st(n) fixes all vertices up to level n.

• If H ≤ Aut T , we define stH(n) = H ∩ st(n).
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THE STABILIZER

• Stabilizers are normal subgroups of the given group.

• There is a chain of subgroups of Aut T

Aut T ⊇ st(1) ⊇ st(2) ⊇ · · · ⊇ st(n) ⊇ . . .

where
∩
n∈N st(n) = 1.

• Hence Aut T is a residually finite group (i.e. a group in which the
intersection of all its normal subgroups of finite index is trivial).
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DESCRIBING ELEMENTS OF Aut T

An automorphism f ∈ Aut Td can be represented by writing in each
vertex v a permutation σv ∈ Sym(d) which represents the action of f
on the descendants of v.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

σ1 σ2 σd

σ11 σ12 σ1d σ21 σ22 σ2d σd1 σd2 σdd

· · ·

We say that σv ∈ Sym(d) is the label of f at the vertex v. The set of all
labels is the portrait of f.
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DESCRIBING ELEMENTS OF Aut T

The simplest type are rooted automorphisms: given σ ∈ Sym(d), they
simply permute the d subtrees hanging from the root according to σ.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

ε ε ε

ε ε ε ε ε ε ε ε ε

· · ·

We denote with ϵ the identity element of Sym(d).
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EXAMPLE OF A ROOTED AUTOMORPHISM

Let T3 be the ternary tree, and a the rooted automorphism
corresponding to the cycle σ = (1 2 3).

...
...

...

Note: sometimes we will identify a with σ.
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SOME FACTS ABOUT Aut T : I

We have Aut T ∼= st(1)⋊ Sym(d).

Why?
Intuitively: take f ∈ st(1), and σ ∈ Sym(d).

ϵ

· · ·

...

...
...

...

σ

· · ·

ϵ ϵ ϵ...

...
...

...
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SOME FACTS ABOUT Aut T : II

We define the isomorphism

ψ : st(1) −→ Aut T × d· · · × Aut T
g 7−→ (g1, . . . ,gd)

for every g ∈ st(1).

Above, we denoted with gi the section of g at the vertex i, that is the
action of g on the subtree Ti (which is identified with T ) that hangs
from the vertex i.

u

T

Digression: this implies that Aut T contains products
Aut T × · · · × Aut T .

24
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I + II = DESCRIBING ELEMENTS OF Aut T

• Any g ∈ Aut Td can be seen as

g = hσ, σ ∈ Sym(d), h ∈ st(1) ∼= Aut Td × d. . .× Aut Td

In other words, every f ∈ Aut Td can be written as

f = (f1, . . . , fd)a,

where fi ∈ Aut Td and a is rooted corresponding to some
permutation σ ∈ Sym(d).

25



I + II = DESCRIBING ELEMENTS OF Aut T

• Any g ∈ Aut Td can be seen as

g = hσ, σ ∈ Sym(d), h ∈ st(1) ∼= Aut Td × d. . .× Aut Td

In other words, every f ∈ Aut Td can be written as

f = (f1, . . . , fd)a,

where fi ∈ Aut Td and a is rooted corresponding to some
permutation σ ∈ Sym(d).

25



EXAMPLE

Let f ∈ Aut Td with f = (f1, f2, . . . , fd)a, where fi ∈ Aut Td and a is
rooted corresponding to σ. If f1 = f2 = · · · = fd = 1, then f is rooted.

Do you remember?

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

ε ε ε

ε ε ε ε ε ε ε ε ε

· · ·
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EXAMPLE: GENERAL CASE

Let f ∈ Aut Td with f = (f1, f2, . . . , fd)a, where fi ∈ Aut Td and a is
rooted corresponding to σ.
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· · ·

· · ·
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EXAMPLE (ANOTHER!)

If T2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1,b)a.

How does b act on T2?

...
...

...
...

...
...
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EXERCISE

If T7 is the 7-adic tree and a is rooted corresponding to (1 2 3 4 5 6 7),
let

b = (a,a−1,a2, 1, 1, 1,b)a.

How does b act on T7?

30



EXERCISE

If T7 is the 7-adic tree and a is rooted corresponding to (1 2 3 4 5 6 7),
let

b = (a,a−1,a2, 1, 1, 1,b)a.

How does b act on T7?

30



SELF-SIMILAR GROUPS



DO YOU REMEMBER THE SECTION OF AN AUTOMORPHISM?

Let u be a vertex of T , and g ∈ Aut T .

We denote with gu the section
of g at the vertex u, that is the action of g on the subtree Tu that
hangs from the vertex u. If f ∈ Aut T and u, v are vertices of the tree,
we can define the section fu by the formula f(uv) = f(u)fu(v).

u f(u)

f

uv f(u)w

fu

v w

Example: consider a = (a, 1, 1)(23), we have

• a(21322) = a(2)a2(1322) = 31322
• a(1321) = a(1)a1(321) = 1a(321) = 1a(3)a3(211) = 1211
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SELF-SIMILAR GROUPS

Let G ≤ Aut T .

• A group G is said to be self-similar if taken g = (g1, . . . ,gd)σ ∈ G
we have gi ∈ G for any i = {1, . . . ,d}.

• Example: Aut T is self-similar, the first Grigorchuk is self-similar,
Gupta-Sidki p-groups are self-similar for any p.

• Non-example: The group G = 〈a,b〉, where a = (b, c)σ and c /∈ G,
then G is not self-similar.

• An automata group is a finitely generated self-similar and
finite-state group (i.e. {gu | u ∈ X∗} is finite).
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AUTOMATA GROUPS VS SELF-SIMILAR GROUPS

a b

0|0 1|1

0|1

1|0

Suppose we have w = 01. Denote blue: output, purple: states.

Consider b(01) = b(0)b0(1) = 1a(1) = 11.
The set of states of the automaton corresponds to a generating set
of the self-similar group.
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BRANCH GROUPS



INTRODUCTION

• Branch groups were introduced by Grigorchuk in 1997.

• Recall that in the full group of automorphisms we have

st(n) ' Aut T × dn· · · × Aut T ,

since ψn : st(n) −→ Aut T × dn· · · × Aut T is an isomorphism.
• If G ≤ Aut T , we have

ψn : stG(n) −→ ψn(stG(n)),

where ψn(stG(n)) need not be a direct product.
• The question is: given G ≤ Aut T , can we find for every n ∈ N a
subgroup (eventually of finite index) of stG(n) which is a direct
product?
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RIGID STABILIZERS

The rigid stabilizer of the vertex u is

rstG(u) = {g ∈ G : g fixes all vertices outside Tu}

n-th level

The rigid stabilizer of the nth level is rstG(n) =
∏

u∈Xn rstG(u).
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ABOUT THE “QUESTION”

• If G is the whole Aut T then the rigid stabilizer coincides with
the nth level stabilizer.

• And if G ≤ Aut T ?
• Bad news: this is not usually the case for arbitrary subgroups of
Aut T .

• Good news: in some cases, there exist “nice” rigid stabilizers.
• Informally speaking: the subgroup ψn(rstG(n)) is the largest
subgroup of ψn(stG(n)) which is a “geometric” direct product.
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BRANCH GROUPS

Let G ≤ Aut T a spherically transitive group (a group that acts
transitively on each level of T ).

Digression: It is true that a
spherically transitive group cannot be finite? Think about it :)

• We say that G is a branch group if for all n ≥ 1, the index of the
rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,

|G : rstG(n)| <∞.
• We say that G is a weakly branch group if all of its rigid vertex
stabilizers are nontrivial for every vertex of the tree.

• Branch −→ weakly branch.
• These groups try to approximate the behaviour of the full group
Aut T , where rst(n) = st(n) is as large as possible.

• The most important families of subgroups of Aut T consist
almost entirely of (weakly) branch groups.

• The first Grigorchuk group is a branch group.
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REGULAR BRANCH GROUPS

Let G be a self-similar group. We say that G is a regular branch if
there exists a subgroup K of stG(1) of finite index such that

ψ(K) ⊇ K× d. . .× K.

More precisely we have this situation:

G G× d. . .× G

stG(1)
ψ

// ψ(stG(1))

K ψ
// ψ(K)

L ψ
// K× d. . .× K
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REGULAR BRANCH GROUPS

• We say that G is a weakly regular branch group if K has infinite
index in G.

• If we want to emphasize the subgroup K, we say that G is
(weakly) regular branch over K.

• Regular branch −→ branch.
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EXAMPLES OF (WEAKLY) BRANCH GROUPS

Now we will present the following groups of automorphisms of
rooted trees together with their main properties:

• The Grigorchuk groups
• The GGS-groups
• The Basilica group
• The Hanoi Tower group
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THE FIRST GRIGORCHUK GROUP (FINALLY!)

Γ = 〈a,b, c,d〉

a = (1, 1)(12) b = (a, c) c = (a,d) d = (1,b)

b
(12) c
(12) d

ϵ b
(12) c...

c
(12) d

ϵ b
(12) c
(12) d...

d
ϵ b
(12) c
(12) d

ϵ b...
Can you guess what is the Grigorchuk automaton?
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THE GRIGORCHUK AUTOMATON
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THE GRIGORCHUK GROUPS



THE (FIRST) GRIGORCHUK GROUP

Γ = 〈a,b, c,d〉

a = (1, 1)(12) b = (a, c) c = (a,d) d = (1,b)

b

(12) c
(12) d

1 b
(12) c...

c

(12) d
1 b
(12) c
(12) d...

d

1 b
(12) c
(12) d

1 b...
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Γ AS A COUNTEREXAMPLE TO THE GBP

The group Γ is an infinite 2-group −→ it is a counterexample to the
General Burnside Problem (GBP).

• Proof that Γ is finitely generated: ✓
• Proof that Γ is infinite:

• Idea: find a proper subgroup of Γ that projects surjectively onto Γ

• Note that a /∈ stΓ(1) (⋆)
• Consider the map ρ = π1(ψ(stΓ(1)):

ρ : stΓ(1) → Γ× Γ → Γ

b→ (a, c) → a
da → (b, 1) → b
ba → (c, a) → c
ca → (d, a) → d

• Then stΓ(1) is onto Γ (⋆)
• (⋆) + (⋆) = Γ is infinite.
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Γ AS A COUNTEREXAMPLE TO THE GBP

• Proof that Γ is torsion:

• First step: prove that a2 = b2 = c2 = d2 = 1.
• a2 = 1 ✓
• What about b, c and d?

• General case: …more technical.
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PROOF THAT b2 = c2 = d2 = 1

Let us prove that b2 = 1. Recall that

a = (1, 1)(12) b = (a, c) c = (a,d) d = (1,b).

• We have b2 = (a2, c2) = (1, c2).
• Also c2 = (a2,d2) = (1,d2) and d2 = (1,b2).

1

1 c2

1

1 1

1 d2

1

1 1

1 1

1 b2

• Then the only possibility is that b2 = 1.
• As a consequence, c2 = d2 = 1.
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SUMMARIZING SOME PROPERTIES OF Γ

• It is a self-similar group.

• It is a torsion 2-group.
• It is just-infinite.
• It is a regular branch group over the subgroup K = 〈(ab)2〉Γ.
• It has intermediate word growth.
• It is amenable but not elementary amenable.
• Many other exotic properties ….
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GRIGORCHUK GROUPS

b

σ c
σ d
1 b
σ c...

c

σ d
1 b
σ c
σ d...

d

1 b
σ c
σ d
1 b...

where σ = (1 2).

Let 0, 1, 2 be the three non-trivial homomorphisms from
C2 × C2 = {1,b, c,d} to C2 = {1, σ} such that:

0 : b 7→ σ 1 : b 7→ σ 2 : b 7→ 1
c 7→ σ c 7→ 1 c 7→ σ

d 7→ 1 d 7→ σ d 7→ σ.
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GRIGORCHUK GROUPS

Example 1: 0 , 1 , 1 , 0 …

b

σ c
σ d
σ b
σ c...

c

σ d
1 b
1 c
σ d...

d

1 b
σ c
σ d
1 b...
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GRIGORCHUK GROUPS

Example 2: 0 , 2 , 2 , 2 …

b

σ c
1 d
1 b
1 c...

c

σ d
σ b
σ c
σ d...

d

1 b
σ c
σ d
σ b...
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GRIGORCHUK GROUPS

b

σ c
σ d
1 b
σ c...

c

σ d
1 b
σ c
σ d...

d

1 b
σ c
σ d
1 b...

• Let Ω = {0, 1, 2}∞ be the space of infinite sequences over letters
{0, 1, 2}.

Given ω ∈ Ω the Grigorchuk group is Gω = 〈a,bω, cω,dω〉.
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GRIGORCHUK GROUPS: PROPERTIES

• The first Grigorchuk group corresponds to the periodic sequence
ω = 012012 . . . .

• If ω is eventually constant then Gω is virtually abelian.
• Otherwise, Gω is of intermediate growth.
• The group Gω is periodic if and only if ω contains all three letters
0, 1, 2 infinitely often.
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THE GGS-GROUPS



THE GGS-GROUPS

Let p be an odd prime and Tp the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

• a = (1, . . . , 1)(1 2 . . . p)
• b = (ae1 ,ae2 , . . . ,aep−1 ,b)

where e = (e1, . . . , ep−1) ∈ (Z/pZ)p−1 is its defining vector.

The group Ge = 〈a,b〉 is the GGS-group corresponding to the
defining vector e.

A GGS-group is torsion if and only if
∑p−1

i=1 ei ≡ 0 mod p.
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A SPECIFIC EXAMPLE: THE GUPTA-SIDKI p-GROUP

Let e = (1,−1, 0, . . . , 0). The Gupta-Sidki group G = G(1,−1,0,...,0) is
generated by a,b, where

• a = (1, . . . , 1)(1 2 . . . p)
• b = (a,a−1, 1, . . . , 1,b)

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

1

1a a−1

a a−1 b

· · ·

• Can you prove that this group is infinite and generated by
elements of order p? And that is a p-group?.
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GRIGORCHUK GROUP VS GGS-GROUPS

Counterexamples to the General Burnside Problem (GBP):

• GGS-groups: G = 〈a,b〉, with a,b of order p, with p odd.
• What if p = 2?
• G = 〈a,b〉 is generated by elements of order 2.
• Either G is a finite dihedral group or the infinite dihedral group.
• In both cases G is not a counterexample to the GBP.
• Then if you want a group generated by elements of order 2, you
must add generators: Γ = 〈a,b, c,d〉.
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THE BASILICA GROUP



THE BASILICA GROUP

Let T2 be the binary tree. Define a and b as follows:

a 1

1 σ

1 1

1 σ

1 1...

b σ

1 1

1 σ

1 1

1 σ...

• Can you define a and b from their portraits above?
•
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1 σ
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1 1...

b σ

1 1

1 σ

1 1

1 σ...

• Can you define a and b from their portraits above?
• a = (1,b) b = (1,a)σ
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A CURIOSITY ABOUT THE NAME

First: the Basilica group is B = 〈a,b〉.
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SOME PROPERTIES OF THE BASILICA GROUP

• It is torsion-free (Can you prove that a and b have infinite order?)
• It is weakly regular branch over its derived subgroup B′.

• It has exponential word growth.
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THE HANOI TOWER GROUP



THE HANOI TOWER GAME

The tower of Hanoi was invented by a French mathematician Édouard
Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:
• One disk can be moved at a time;
• Each move consists of taking the upper disk from one of the stacks
and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.
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THE HANOI TOWERS GAME

• Let 3 be the number of pegs, then consider X = {1, 2, 3}. A word
in X is a configuration of the disks and the length of the word is
the number of disks.

• Each number represents the peg in which the disk lies.
• We “read” from the smallest to the bigger disk.
• Example:

23112.
• The length of the word above is 6 −→ 6 disks.
• This means that the smaller disk is in the 2nd position, the
second smaller disk is in the 3rd position, the third smaller disk
is in the 1st position, and so on.
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THE HANOI TOWERS GAME II

• Other example: can you guess how to write the configuration
below?

• The configuration is:
13112.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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THE HANOI TOWERS GAME II

• Other example: can you guess how to write the configuration
below?

• The configuration is:
1

3112.
• Goal: to send 11 . . . 1 to 33 . . . 3.
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THE HANOI TOWERS GAME II

• Other example: can you guess how to write the configuration
below?

• The configuration is:
13

112.
• Goal: to send 11 . . . 1 to 33 . . . 3.
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THE HANOI TOWERS GAME II

• Other example: can you guess how to write the configuration
below?

• The configuration is:
131

12.
• Goal: to send 11 . . . 1 to 33 . . . 3.
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THE HANOI TOWERS GAME II

• Other example: can you guess how to write the configuration
below?

• The configuration is:
1311

2.
• Goal: to send 11 . . . 1 to 33 . . . 3.
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• Other example: can you guess how to write the configuration
below?

• The configuration is:
13112.
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THE HANOI TOWERS GAME

• Configurations (sequences of length n of 1, 2, 3) can be seen as
vertices on the n-th level in a rooted ternary tree.

∅

1 2 3

...
...

...

11 12 13 21 22 23 31 32 33

313

• Any move takes one vertex on the n-th level on the tree to
another vertex on the n-th level. Then each move can be
thought of as an automorphism of the rooted ternary tree.
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THE HANOI TOWERS GAME

Move a:

• Search for the first time a 2 or 3 appears in the configuration
• Switch them
• Apply the identity
• This means that a does the only movement we are allowed to do
between pegs 2 and 3

• Example: a(21322) = 31322

One can define elements a, b and c acting on the whole ternary tree.

H = 〈a,b, c〉

where a = (a, 1, 1)(23),b = (1,b, 1)(13), c = (1, 1, c)(12).
Example: a(21322) = a(2)a2(1322) = 31322.
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CONCLUSIONS



TO CONCLUDE …

Automata theory plays an important role not only in Computer
Science but also in group theory.

Some questions:

• What is your favourite automata group...? :)
• Nice topic: study algorithmic problems in branch groups.
• Do there exist finitely presented branch groups?
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