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Abstract. A variant of the Ford-Johnson or merge insertion sorting al-
gorithm that we called four Ford-Johnson (4FJ, for short) is presented
and proved to execute exactly the same number of comparisons than the
Ford-Johnson algorithm. The main advantage of our algorithm is that, in-
stead of recursively working over lists of size the half of the input, as the
Ford-Johnson algorithm does, 4FJ recursively works over lists of size the
quarter of the input. This allows for implementations of data structures
for coordinating the recursive calls of size only 33% of the ones needed for
the Ford-Johnson algorithm.
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1 Introduction

Searching for optimal sorting algorithms is a fascinating field of research in com-
puter science which in short will complete fifty years [3, 2]. One of the most relevant
and nice pieces of work in this direction is the merge insertion algorithm discov-
ered by Lester Ford and Selmer Johnson, that we will call the Ford-Johnson or FJ
algorithm, for short [3]. This algorithm gives rise to a lot of work on developing
optimal sorting algorithms as close as possible to the information-theoretic lower
bound of dlog2n!e comparisons for sets of n keys. The question What is the best

possible way to sort? is pointed out in the famous Donald Knuth third volume on
Sorting and Searching of The Art of Computer Programming [4] (page 180 of the
second edition) focused mainly in optimizing the number of comparisons. There
the Ford-Johnson algorithm was described and the number of comparisons the al-
gorithm makes were compared with the theoretical lower bound. After this work,
the running time of the FJ algorithm has been proved not optimal: in [6] it is
proved that the FJ algorithm can be beaten for infinitely many values of n start-
ing with n = 189 and in [9] starting with n = 47. The method presented in [6] has
been improved in [7] obtaining sorting of lists of 52 keys with 230 comparisons:
one less than with the FJ algorithm. But an optimum algorithm even for sets of
small size (such as 14, 15, or 16 elements) remains unknown [5]. Progress in this
direction has been obtained recently: although the theoretical lower bound is 33,
in [8] it is proved that sorting 13 keys requires 34 comparisons using a refinement
of Wells algorithm [10]. This is the number of comparisons needed as well by the
FJ (and our variant) algorithm.
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The FJ algorithm has not been of practical use because of the inherent com-
plexity of the data structures needed for its implementation. In particular, this
algoritm requires an administrative memory for the recursive bookkeeping which
consists of the memory needed in each recursive environment for providing a sublist
of keys (of size the half of the list of the environment) as argument of one recursive
call and the memory necessary for maintaining the changes of positions of these
keys after the recursive call returns the ordered list. The former corresponds to
the necessary memory used by data structures such as lists of words of the same
size used by the keys being sorted and the latter corresponds to the necessary
memory used by structures such as lists of pointers. The space used by these data
structures is defined as the administrative or bookkeeping memory. The variant
of the FJ algorithm that we propose in this paper is proved to execute exactly
the same number of comparisons between keys than the Ford-Johnson algorithm,
but the required administrative memory is smaller, since it executes at most the
half of the recursive calls (over lists of size the quarter of the lists of the recur-
sive environments) that FJ executes and these recursive calls are invoked over a
total of keys and pointers corresponding only to 33% of the data processed by the
recursive calls of the FJ algorithm.

After briefly describing the FJ algorithm in the section 2, our variant, the 4FJ
algorithm, is introduced and its running time is analyzed counting the needed
number of comparisons in section 3. Then the FJ and 4FJ running time and
administrative memory are compared in section 4 before concluding and discuss
future work.

2 Merge Insertion or the Ford-Johnson algorithm (FJ)

A brief description of the merge insertion or FJ sorting algorithm is given, which is
based in the elegant presentation of D. Knuth [4] (page 184 of the second edition).

The key idea of the FJ algorithm is to explore binary insertion maximally: it
is better to binary insert a key in a sorted list of size 2k+1 − 1 than in a list of
size 2k because in both cases k + 1 comparisons are needed. Notice that this is
not explored by well-known efficient sorting algorithms such as binary insertion

sort : when ordering, for instance, a list of five different keys the third placed key
is inserted in a sorted list of size two (with two comparisons in the worst-case)
and the last placed key in a list of size four (with three comparisons in the worst-
case). By applying binary insertion sort, a list of five different keys is sorted with a

total of 8 comparisons in the worst-case:
∑5

i=1
dlog2(i)e, which is bad. To explore

binary insertion maximally over five keys (see the Figure 1), say a, b, c, d, e, we
firstly insert isolated keys over unitary lists obtaining an ordering structure of the
form a < b, c < d, e. From that point, notice that inserting the remaining isolated
key e into one of the two sorted lists of size 2 is not convenient, because is better
to binary insert a key in a list of size 3 (since we will need two comparisons in the
worst-case, for both). Then we compare the two greater keys of the two ordered
lists of size two, obtaining the quadruplet structure illustrated in the third step of
the Figure 1. Observe that this step resumes to binary insertion in a unitary list.
Then the remaining isolated key, e, can be inserted in a list of size three, giving as
result either the situation illustrated in the fourth step of the figure or a simpler
one where the key e results greater than the greatest key of the quadruplet. Finally,
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in the fifth step, the pending key is binary inserted in a list of size two or three.
Observe that in the later two steps binary insertion is explored maximally too.

e
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Binary insertion

Fig. 1. Ordering five keys exploring binary insertion maximally.

The FJ algorithm sorts a set of keys of size n by exploring binary insertion
maximally according to the following three steps.

1. The given input set of keys is divided into bn/2c subsets of two keys that are
ordered as pairs, whose greater and smaller keys are denoted as max and pend

elements, respectively. The remaining key, in the case n is odd, is considered
a pend element.

2. Recursively, order the set of bn/2c max elements obtaining a structure as the
one presented in the Figure 5.

3. In this step the “hanging” dn/2e pend elements are inserted in the upper-line
ordered list consisting of the max elements, that is called the main chain. The
pend elements are inserted in the main chain by exploring binary insertion
maximally, as follows:

– the left-most pend element is yet in the correct order.
– The third pend element is selected as pivot and inserted in the list of size

three containing the two left-most max elements and the left-most pend

elements. Then the second left-most pend element is inserted in a list of
size less than or equal to three, which contains the left-most max and pend

elements, and, probably, the second pend element. Now, the main chain
consists of all the max and the third left-most pend elements.

– The fifth pend element is selected as pivot and can now be inserted into
its proper place in the first seven elements of the main chain and after
this, the fourth pend element is inserted into its proper place in the first
segment of the main chain to the left of its associated max element. Notice
that this list is limited to seven elements too. Now, the main chain consists
of all the max and the fifth left-most pend elements.

– The eleventh pend element is selected as pivot and can now be inserted
into its proper place in the segment of the main chain consisting of the
ordered ten left-most max and the five left-most pend elements, which is
a sorted list of size fifteen. Then the ninth, the eight, the seventh and the
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sixth left-most pend elements are inserted in lists limited to size fifteen.
Now, the main chain consists of all the max and the eleventh left-most
pend elements.

– The remaining pend elements are inserted following this order, by selecting
adequate “pivots”, which maximize the application of binary insertion.

The worst-case number of comparisons executed by the FJ algorithm for an
input of size n, F (n), as denoted in [4] is given by the equation

F (n) = b
n

2
c + F (b

n

2
c) + G(d

n

2
e) (1)

where, G(dn/2e) denotes the number of comparisons needed for inserting dn/2e
keys into a main chain of bn/2c elements. G(m) is defined from the sequence that
defines the “pivots” of the order of the binary insertion of “hanging” keys into a
main chain: t1 = 1, t2 = 3, t3 = 5, t4 = 11, . . .. More specifically,

tk =

{
1 if k = 0 or k = 1,
2k − tk−1 if k > 1.

(2)

For k > 1, tk can be proved equal to (2k+1 + (−1)k)/3 [4].
Equation 1 can be simplified obtaining

F (n) =

n∑

k=1

dlog2(
3

4
k)e (3)

3 Variant of the Ford-Johnson algorithm: 4FJ

The main difference between the FJ and 4FJ algorithms is that the FJ algorithm
works recursively over a list of size the half and the 4FJ over a list of size the
quarter of the initial list. Binary insertion of keys over ordered lists follows the
same strategy in both methods.

We will describe one step of the recursive 4FJ and then we will illustrate how
it works over a list of specific size.

In each recursive call 4FJ divides the input list into disjoint subsets of four

keys and builds basic ordered structures of the form presented in the Figure 2
called quadruplets. Each of these quadruplets is built with only three comparisons.
According to their position in the quadruplet the elements are called maximum
max, pending pend, least than pending ltp and least than maximum ltm.

ltm

max

pend

ltp

Fig. 2. A quadruplet, the basic ordered structure of the 4FJ: max ≥ ltm and max ≥
pend ≥ ltp.

Our algorithm consists of the following four steps
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1. The given input set of keys is divided into bn/4c subsets of four keys that are
ordered as quadruplets. In the case n mod 4 ≥ 2, two of the remaining keys
are ordered being the greatest key considered a pending key and the other its
ltp element and the third one (when n mod 4 = 3) is considered a ltm element.
When n mod 4 = 1, the remaining key is considered a ltm element.

2. Recursively order the set of size bn/4c consisting of max keys of the quadruplets
(see Figures 3 and 4).

3. In this step, we will consider only the structure consisting of the ordered max

keys, that we will call the main chain in analogy with the FJ algorithm de-
scription1, and the pend keys. The bn/4c pending elements are inserted into
the main chain, using binary insertion, in the same order as the one followed
by the Ford-Johnson algorithm. In this step, when n mod 4 ≥ 2 the isolated
pending element is also considered being the last key to be inserted into the
main chain.

4. Now, we have a structure that consists of a main chain of size bn/2c which is
an ordered list containing all the maximal and the pending elements and their
corresponding ltm and ltp elements2. Additionally, we will have one isolated
ltm element whenever n mod 4 = 3 or n mod 4 = 1. Notice that this structure
corresponds exactly to the main configuration of the FJ algorithm. In this final
step, the ltm and ltp elements are inserted into the main chain, using binary
insertion again as is done in the FJ algorithm.

In order to give a clear description of the 4FJ algorithm, we illustrate these
steps over a set of 31 keys. After the first step we obtain the configuration given
in the Figure 3.

Fig. 3. 4FJ over a list of size 31. Step 1: quadruplets are built.

Then in the second step, the set of maximal elements are recursively ordered
giving the configuration presented in the Figure 4.

Fig. 4. 4FJ over a list of size 31. Step 2: max elements are recursively ordered.

1 More precisely, the main chain, as defined in [4], also includes the left-most pend key.
2 Again, to be more precise, the main chain, as defined in [4], is of size bn/2c + 1 and

also includes the left-most either ltp or ltm element.
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In the third step, all the pending elements are inserted into the main chain of
ordered maximal elements using binary insertion following the same order of the
FJ algorithm. We obtain a configuration similar to the one presented in the Figure
5.

Fig. 5. 4FJ over a list of size 31. Step 3: pending elements are inserted into the main
chain of maximal elements. For simplicity max keys where placed to the right of the pend

keys, but they will alternate according to their relative order.

In the last configuration, the main chain consist of the max and pend elements
and the “hanging” nodes are their ltm and ltp elements. Notice that for a set
of 31 keys, in this point of the computation, the isolated ltm element has to be
considered.

Finally, in the fourth step, all ltm and ltp elements are inserted into the main
chain using binary insertion following the order of the FJ algorithm. We obtain
the ordered list of 31 keys.

Now we will analyze the running time of the 4FJ algorithm by counting the
needed number of comparisons. We use the notations presented in the previous
section and in Section 5.3 Optimum Sorting of [4]. In particular, G(dn/2e) denotes
the number of comparisons needed for inserting dn/2e keys into a main chain of
bn/2c elements, using binary insertion in the order given by the FJ algorithm.

Let 4F (n) be the worst-case number of comparisons required to sort n keys by
the 4FJ algorithm. The following equation defines 4F :

4F (n) =







3b
n

4
c + b(n mod 4)/2c

︸ ︷︷ ︸

Step 1

+ 4F (b
n

4
c)

︸ ︷︷ ︸

Step 2

+

+G(d(2b
n

4
c + b(n mod 4)/2c)/2e)

︸ ︷︷ ︸

Step 3

+G(d
n

2
e)

︸ ︷︷ ︸

Step 4

(4)

This equation is explained as follows.

– The term for the first step of the 4FJ algorithm is counting three comparison for
building each of the bn/4c quadruplets plus one additional possible comparison
whenever we have at least two remaining keys.

– The second term is counting the number of comparisons in the recursive call
for ordering the maximal elements.

– The term for the third step is counting the binary insertion of the pend el-
ements in the main chain of the ordered max elements. Notice that in the
substructure involved in this step we have a total 2bn/4c keys plus one extra
pend element whenever we have at least two remaining keys outside of the
basic structures.

– The term for the four step is counting the binary insertion of dn/2e keys in a
main chain of bn/2c elements.
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Equation 4 can be simplified as

4F (n) =

{
3bn

4
c + b(n mod 4)/2c+ 4F (bn

4
c) +

G(bn
4
c + b(n mod 4)/2c) + G(dn

2
e)

(5)

Since bn/2c = 2bn/4c whenever n mod 4 ≤ 1 and bn/2c = 2bn/4c+1 whenever
n mod 4 ≥ 1, which implies that 3bn/4c + b(n mod 4)/2c = bn/2c + bn/4c, the
equation 4 can be simplified as

4F (n) = b
n

2
c + b

n

4
c + 4F (b

n

4
c) + G(b

n

4
c + b(n mod 4)/2c) + G(d

n

2
e) (6)

Finally, observe that bn/4c+ b(n mod 4)/2c=dbn/2c/2e. In fact, if n mod 4 ≥
2, dbn/2c/2e = bn/4c + 1, which coincides with bn/4c + b(n mod 4)/2c since
b(n mod 4)/2c = 1; and if n mod 4 ≤ 1, dbn/2c/2e = bn/4c, which implies that
b(n mod 4)/2c = 0. Thus, we obtain the following simplified expression for 4F (n)

4F (n) = b
n

2
c + b

n

4
c + 4F (b

n

4
c) + G(db

n

2
c/2e) + G(d

n

2
e) (7)

4 Comparing the Ford-Johnson and 4FJ algorithms

4.1 Running time: number of comparisons

Now, we will compare 4F (n) and F (n); i.e., equations 7 and 1. Inductively, we will
prove that 4F (n) and F (n) coincide.

Initially, we expand F (n) (equation 1) obtaining

F (n) = bn
2
c+ bb

n

2
c/2c + F (bb

n

2
c/2c) + G(db

n

2
c/2e)

︸ ︷︷ ︸

+ G(dn
2
e)

= F (bn

2
c)

(8)

which can be written as

F (n) = b
n

2
c + b

n

4
c + F (b

n

4
c) + G(db

n

2
c/2e) + G(d

n

2
e) (9)

By induction, supposing F (bn/4c) = 4F (bn/4c), equaling equations 7 and 9
we can conclude the equality of 4F (n) and F (n).

4.2 Recursive bookkeeping: administrative memory

Differently from the Ford-Johnson algorithm, most of the work done by the 4FJ
algorithm is executed locally to each recursive environment originated by a recur-
sive call. In fact, in an invocation of the 4FJ quadruplets are built over local data
structures and a recursive call over a list of size a quarter of the initial size is done.
Then for a list of size n, 4FJ is recursively invoked over one list of size bn/4c, one
of size bn/42c, etc. These lists of keys conform the first part of the administra-
tive memory. The second part of the administrative memory is the one needed for
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maintaining references between the positions of the keys of the input lists given as
argument to the recursive calls and the positions of these keys in the ordered lists
returned by these recursive invocations. For this we will need only data structures
such as lists of pointers of the same length as the one of the input lists. This gives a

total of
∑dlog4ne−1

i=1
bn/4ic extra memory for the lists of keys and the same number

for the pointers. Similarly, for the FJ algorithm, we use
∑dlog2ne−1

i=1
bn/2ic extra

memory for the keys and the same number for the pointers for maintaining the
necessary connections between the original and modified key positions during the
recursive calls. For estimating the difference, suppose n = 4k. Then for the 4FJ
algorithm we have

dlog4ne−1
∑

i=1

b
n

4i
c =

k−1∑

j=1

4j 1

3
(4k − 1) − 1 =

1

3
n −

4

3

Similarly, for FJ we obtain

dlog2ne−1
∑

i=1

b
n

2i
c =

2k−1∑

j=1

2j = 22k − 1 − 1 = n − 2

Supposing that the memory used by a pointer is the same than the one used
by a key, we have an administrative memory for the 4FJ of

2(
1

3
n −

4

3
) and, similarly, for FJ the administrative memory is 2(n − 2).

This means that the 4FJ algorithm needs only 33% of the administrative space
that the FJ algorithm needs for maintaining the ordering correspondence in each
local recursive environment and all the recursive invocations.

Notice that the use of pointers can be avoided moving explicitly the keys during
the recursive calls, but this should be done coordinately for quadruplets, 42-tuples,
etc., which increases dramatically the running time. Consequently, this alternative
to reduce the administrative space should be discarded.

Additionally, notice that the number of recursive calls in 4FJ is less or equal
than the half of the ones needed by the FJ algorithm: blog4nc/blog2nc < 1/2.

5 Conclusions and future work

Although our variant of the Ford-Johnson algorithm, the 4FJ algorithm, executes
exactly the same number of comparisons than the Ford-Johnson algorithm, we
believe this method is of theoretical interest because it uses less administrative
memory than the FJ algorithm for maintaining and coordinating the partially
computed orderings during the recursive calls.

Future work could be focused on the development of adequate data structures
which allow for reasonable implementations of the 4FJ algorithm. This is of im-
portance not only for obtaining acceptable implementations of the 4FJ algorithm
itself, but also for obtaining more practicality in implementations of other methods
which apply the FJ algorithm. In fact, methods that improve the number of com-
parisons of the FJ algorithm, such as the ones presented in [6, 9, 7], are based on
dividing the lists of keys into sublists which are firstly ordered applying the FJ al-
gorithm and then efficiently merged for computing the whole ordered lists. In these
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methods the use of 4FJ is also possible (replacing all applications of FJ with 4FJ)
and reducing in this way the needed administrative or bookkeeping memory used
for controlling the recursive calls. Of course, additional considerations about the
use of administrative memory are necessary, since merging of lists requires extra
space. In [7], lists of 52 keys are split into lists of 10 and 42 keys which are sorted
by applications of the FJ algorithm (with 22 and 171 comparisons, resp.) and then
merged with Christen’s merging algorithm [1] (with 37 comparisons, which gives
a total of 230 comparisons: one less than F (52) = 4F (52) = 231). In [9], lists
of size 42 and 5 are merged with 22 comparisons. Then, to sort lists of size 47,
sublists of 42 and 5 keys are sorted separately by applying the FJ algorithm (with
171 and 7 comparisons, resp. which gives a total of 200 comparisons: one less than
F (47) = 4F (47) = 201).

Additionally, current effort is focused on generalizing the 4FJ algorithm for
octuplets, pairs of octuplets and so on. In fact, the philosophy of this method
could be extended for giving a more general method 2kFJ, which works with “2k-
tuplets”, for k > 0. The cases k = 1 and k = 2 correspond to FJ and 4FJ.
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