
Formalization in PVS of Balancing Properties
Necessary for the Security of the Dolev-Yao

Cascade Protocol Model

Yuri Santos Rêgo1 and Mauricio Ayala-Rincón1,2∗

Departments of 1Matematics and 2Computer Science
Universidade de Braśılia, 70910-900 Braśılia D.F., Brazil

e-mail: ayala@unb.br

February 22, 2012

Abstract

Nowadays, formalizing computationally the security of crypto-
graphic protocols is a highly sophisticated task of great relevance.
In this work, we present an algebraic approach for modeling the two-
party cascade protocol of Dolev-Yao in the specification language of
the Prototype Verification System PVS. Although cascade protocols
could be argued to be a very limited model, it should be stressed here
that they are the basis of more sophisticated protocols of great ap-
plicability such as those which allow treatment of multiparty, tuples,
nonces, stamps, signatures, etc. Thus, obtaining a complete computa-
tional formalization of this basic model is in fact a non trivial task of
great scientific and practical interest as a first fundamental and neces-
sary step towards the complete formalization of security, authenticity
and other relevant properties of more elaborated classes of protocols.
In the current algebraic approach, steps of the protocol are modeled
in a monoid freely generated by the cryptographic operators. Words
in this monoid are specified as finite sequences and the whole protocol
is a finite sequence of (sequences) protocol steps. In previous work,

∗Corresponding author.

1

assuming that for balanced protocols admissible words produced by a
potential intruder should be balanced, a formalization of the charac-
terization of security of this kind of protocols was given in PVS. In
this work the previously assumed property is also formalized obtain-
ing in this way a more robust mechanical proof which mathematically
guarantees the security of these protocols. Although this property is
relatively easy to be specified, when several aspects related with the
data structures applied are axiomatized (i.e., assumed without proofs),
its proof requires an exhaustive effort, because several algebraic prop-
erties should be formalized in the underlying data structure of finite
sequences used in the specification. The difficulties presented in this
formalization are presented in detail in this work.

1 Introduction

Motivation and proposal
A diversity of cryptographic protocols that are based on the seminal

Dolev-Yao (DY) model are currently applied in computational systems.
Rules stablished by these protocols are usually guided by a given algorithm
implemented in software or hardware and applied in order to preserve infor-
mation in several manners. Although the programing techniques used in this
kind of development are of high quality in general, formal mathematical and
logical analysis is necessary in several steps of this algorithmic development
in order to guarantee that the implemented protocol is in fact secure and
efficient. In a broader context, the security analysis of cryptographic proto-
cols is a tricky issue: proofs of security are rather difficult to check and there
are many cases reported in the literature of protocols and security proofs
which were later proven to be wrong [Mea03]. Automated reasoning and
formal methods came up to the scene as a possible way to turn the security
analysis of protocols more reliable and less error prone. Perhaps, the most
popular example of this success is the discovery of a possible attack upon
the Needham-Schroeder protocol [NS78]. With the help of formal meth-
ods, Gavin Lowe discovered a gap in the Needham-Schroeder protocol after
seventeen years of its introduction, a period during which the protocol was
assumed correct [Low95]. The protocol was then modified and mechanically
proved correct [Low96].

In this work, a formal approach to certify security of cryptographic sys-
tems is applied in order to proof that the DY two-party cascade protocol

2

model [DY83] is in fact secure, whenever the conditions of security are ful-
filled. Elements of the DY model conform the basis of a great number of
more elaborated useful protocols and because of this, a great deal of the
effort necessary to formalize their security consists in a full formalization of
the security of the DY basic model as has been done in the current work.
The current presentation focuses on the difficulties inherent to the proof of
algebraic properties reflected in the selected data structures used to repre-
sent protocols. The complexity of the formalization of these basic properties
at the level of granularity of the selected data structures is higher than the
one of the proofs of the security properties of the protocols, from the logical
point of view.

In previous work [NdMNAR10], the general lines of the formalization
were presented, but several facts related with properties of words and finite
sequences were assumed. In that work, the characterization of security of the
protocol was formalized; that is, security holds whenever two conditions can
be guaranteed:

• firstly, an initial condition that forces the existence of encryption op-
erators in the first step of the protocol and,

• secondly, a balancing property that holds for each step of the protocol.

The latter property, essentially forces occurrences of decryption operators for
each user for which at least an encryption operator occurs in any step of the
protocol. The security is a consequence of the fact that following this balanc-
ing discipline in the construction of protocols the admissible language used
by any potential intruder will be also balanced, which makes it impossible
the isolation of the decryption operators from the whole language allowed to
the intruder. Axiomatization of this fact makes it possible the formalization
of the characterization of security of cascade protocols in the deductive lan-
guage of the proof assistant PVS ([OS97]), as presented in [NdMNAR10], but
in order to obtain a complete formalization no assumptions are admissible,
which makes it necessary the proof of an exhaustive series of basic lemmas
related with the balancing property of the admissible language, both

• in the context of this algebraic approach of specification of the proto-
cols (as words in a monoid freely generated by the cryptographic oper-
ators modulo the congruence of inversion of the respective encryption-
decryption operators) and

3

• in the level of granularity of the data structure of finite sequences used
to represent words of this monoid (that is, protocol steps or words of
the admissible language of the intruder) and finite sequences of words
(that is, protocols and sequences of words extracted by the intruder).

Related work
In addition to [NdMNAR10], other works apply PVS to check properties

of cryptographic protocols. In [DS97, ES00] PVS was used to analyze the
security of authentication protocols. In [MR00] it is presented a dedicated
strategy in order to perform proofs of security protocols, which is based on
protocol representation theories on a state-transition model. This contrasts
with the simple representation of protocols as sequences of words used in
the current algebraic approach that can be considered more adequate for the
treatment of the original DY model. In [CMR01] the inductive engine of PVS
has been used in order to develop a methodology of proof of inductiveness of
secrecy and authenticity properties. That methodology is sound but incom-
plete failing to proof secrecy of secure protocols; in fact, secrecy is known
to be a undecidable property. The paper [LHT07] provided a specification
and verification in PVS of the intrusion-tolerant protocol enclaves [DCS02].
That work deals with a distributed protocol where the protocol goal has to
be fulfilled even when a subset of the players are corrupted by a malicious
party and can arbitrarily deviate from the protocol specifications (the so-
called Byzantine faults). Moreover, [LHT07] is not fully analyzed by using
PVS. Its authenticity was treated using the model checker Murphi. Also,
[BJ03] reports the use of PVS for formally verifying a system for ordered
secure message transmission, but it does not provide the corresponding PVS
specification code.

Many work on formalization of security of protocols has been done in
other proof assistants [ABC+06], this includes, among others, the remark-
able inductive approach by L. Paulson in Isabelle [Pau99] and more recently
the Coq development CertiCrypt which includes probability, complexity and
game theoretical techniques in order to verify security [BGZB09]. More re-
cently, Benäıssa presented a verification of security of the DY model in event

B [Ben08]. Although the existence of these works, we believe the current PVS
development is of great interest because it improves the scenario of available
public libraries for the analysis of security and because it chooses an alge-
braic straightforward specification of the DY framework, framework that has
been widely used to model cryptographic protocols and is known, in some

4

cases, to provide security against all possible adversaries even when we do
not consider perfect cryptography.
Organization

Section 2 presents the algebraic approach used to model the DY model
and analytic sketches of the proofs. Section 3 presents details of the formal-
ization of some of the key lemmas involved in the PVS development. Section
4 concludes and presents future work. As usual, in papers related with for-
malizations, in the onymous version of this work the whole development in
PVS will be made available through a link to the author’s institution web
page.

2 The Dolev-Yao Model and its Security

Characterization

The model is based on a system of public key cryptography in which each
user u ∈ U , where U is a finite set of users, owns an encryption operator Eu

and a decryption operator Du. A public secure directory includes all pairs
(u,Eu), but ∀u ∈ U , only u has knowledge about Du. Suppose that the
malicious users belong also to the set of users U of the system, and that they
can obtain information through passive observation or active interaction in
the communication net.

Encryption and decryption operators are algebraically inverse operators
for each user: ∀u ∈ U, EuDu = DuEu = λ, where λ denotes the empty
word. Users interchange arbitrary information that is codified and decoded
through encryption and decryption operators. Thus, this can be modeled as
the monoid freely generated by the cryptographic operators. In this structure
only strings built with the generators should be considered.

Let Σ = E ∪ D = {Eu | u ∈ U} ∪ {Du | u ∈ U}, and Σ∗ the set of all
finite strings over the alphabet of symbols in Σ. ∀γ ∈ Σ∗, |γ| denotes the
length of the string γ, and ∀i such that 0 ≤ i < |γ|, γi denotes the (i+ 1)th

symbol (operator) of the string γ. Also, ∀i, j such that 0 ≤ i ≤ j < |γ|, γi,j
denotes the substring of γ from the (i+ 1)th until the (j + 1)th symbol.

An arbitrary cryptographic operator will be denoted as O, and when nec-
essary as Ou, in order to refer to its user u ∈ U . The opposite cryptographic
operator of Ou is denoted as Oc

u. Thus, Ec
u = Du and Dc

u = Eu.
Whenever σ ∈ Σ∗ has some substring of the form EuDu or DuEu, that is

5

either σ = σ′EuDuσ
′′ or σ = σ′DuEuσ

′′, for some u ∈ U, σ′, σ′′ ∈ Σ∗, it is
said that σ can be normalized with respect to u, and one denotes as σu the
normalization of σ with respect to u, and as σ the normalization of σ with
respect to all users. Thus, normalization means the repeatedly elimination
from each word of all pairs of contiguous cancelable operators, according to
the congruence of the monoid: ∀u ∈ U, EuDu = DuEu = λ. From the
algebraic point of view, in this quotient monoid it is only necessary to work
with normal or canonical forms, but in the context of the specification, that
is the same of cryptography, discrimination between different representations
of words or sequences of operators in the same equivalence class is essential.

Definition 1 (Two-party Cascade Protocol). A two-party cascade protocol
determines how users in a communication net should communicate and con-
sists of a finite and non empty sequence of functions from pairs of different
users into sequences of operators, α = αn−1αn−2 · · ·α2α1α0, where n ≥ 1,
and αi : U × U → Σ∗, ∀i such that 0 ≤ i < n. Additionally, ∀i such that
0 ≤ i < n, ∀x, y, u, v ∈ U , the following constraints hold:

i. αi(x, y) 6= λ and is normalized;

ii. αi(x, y) ∈ {Ex, Dx, Ey}∗ if i is even;

iii. αi(x, y) ∈ {Ey, Dy, Ex}∗ if i is odd;

iv. |αi(x, y)| = |αi(u, v)|;

v. ∀ 0 ≤ j < |αi(x, y)| :

v.1) (αi(x, y))j = Ex ⇐⇒ (αi(u, v))j = Eu;

v.2) (αi(x, y))j = Ey ⇐⇒ (αi(u, v))j = Ev;

v.3) (αi(x, y))j = Dx ⇐⇒ (αi(u, v))j = Du;

v.4) (αi(x, y))j = Dy ⇐⇒ (αi(u, v))j = Dv.

Given x, y ∈ U and M , the communication is done in the following man-
ner:

x sends a message to y following the first step of the protocol,
α0(x, y)M ;

y answers to x with α1(x, y)α0(x, y)M ;

6

x answers to y with α2(x, y)α1(x, y)α0(x, y)M ,

and so on.

Following the rules of a given protocol α, two users in communication
x and y ∈ U , the constraints ii) and iii) basically restrict the use of the
decryption operator Dx and Dy, respectively, to the user sending the message
in each step of the protocol (even steps for x and odd for y). Constraints iv)
and v) guarantee that the protocol has exactly the same behavior for each
pair of users.

2.1 Security Characterization of Cascade Protocols

The following items characterize the admissible language of a possible sabo-
teur in a communication net in which the users follow a well-defined cascade
protocol α.

Let x, y and z ∈ U , where z is a possible saboteur. z can force applications
of any step αi of the protocol α, for i > 0, twofold: either supplanting x in
order to obtain answers from y (odd steps of the protocol) or intercepting an
eventual communication started between x and y and supplanting y in order
to obtain answers from x (even steps of the protocol). This is described in
detail in the two items presented below.

1. z can obtain αi(x, y), for all 1 ≤ i < |α| odd, starting a communication
with y supplanting x. In the ith step of the communication, z sends to
y any message M , obtaining as answer αi(x, y)M (since y is following
the protocol). This allows z to apply αi(x, y) to any selected message
M , for i odd;

2. z can obtain αi(x, y), for all 2 ≤ i < |α| even, observing passively the
net and waiting until the moment in that x establishes communication
with y. Then, in the i−1th step of the communication, z intercepts the
answer from y to x and replaces it sending to x any selected message
M . Thus, x answers to z αi(x, y)M , allowing z to apply αi(x, y) to any
selected M , for |α| > i ≥ 2 even.

In addition to the two previous tricks, a potential saboteur z can use the
language of words of the monoid generated by all the encryption operators
and its own decryption operator.

7

3. Since z is a user of the communication net, he can use the language
generated by the admissible alphabet Σ0(z) := E ∪Dz.

Definition 2 (Admissible Language). Given a well-defined cascade protocol
α and denoting the set of words, related to the first and second items above, as
Σ1 := {αi(x, y) | x, y ∈ U, x 6= y, 0 < i < |α|}, one defines the admissible
language of a possible saboteur z as

AL(z) := (Σ0(z) ∪ Σ1)
∗

Definition 3 (Insecure/Secure Protocol). Consider a well-defined two-party
cascade protocol given as α = αn−1 · · ·α1α0, n ≥ 1, and let x, y, z ∈ U be
different users. The protocol is said to be insecure if ∃γ ∈ AL(z) such that,
for some 0 < j < n

γ(αj−1(x, y) · · ·α0(x, y)) = λ

Otherwise the protocol is said to be secure.

2.2 Characterization of the Security of Cascade Pro-
tocols

An initial condition and a balancing property characterize security of two-
party cascade protocols.

Definition 4 (Security Initial Condition - IC). A cascade protocol satisfies
the initial condition (IC) if ∀x, y ∈ U, ∃i, 0 ≤ i < |α0(x, y)| such that
(α0(x, y))i = Eu, where u ∈ {x, y}; i.e., if the initial step of the protocol
includes at least an encryption operator.

Definition 5 (Balanced Word - BP). A word σ ∈ Σ∗ owns the balancing
property (BP) with respect to a user u ∈ U if, whenever there is some i,
0 ≤ i < |σ| such that σi = Du, there is j, 0 ≤ j < |σ|, such that σj = Eu.

Definition 6 (Balanced Protocol). A cascade protocol α is said to be balanced
if, ∀x, y ∈ U, ∀ |α| > i ≥ 0, αi(x, y) satisfies BP with respect to x if i is
even and with respect to y if i is odd. In other words, for any step of the
protocol, if it has a decryption operator, then it has an encryption operator,
both for the same user.

8

The following lemma, perhaps the most difficult or at least the most
elaborated part of the analytic theory of the DY model, deals with the bal-
ancing property relative to words in the admissible language of an intruder z,
AL(z). This lemma simplifies the proof of the Theorem 1 of characterization
of security, presented at the end of this section, because it encapsulates the
subjacent technicalities involved in its formalization.

Lemma 1 (BP for Normalized Words of the Admissible Language of Bal-
anced Protocols). Given a balanced cascade protocol α and z ∈ U . Then,
∀η ∈ AL(z), η satisfies BP with respect to all users a ∈ U, a 6= z.

Lemma 1, was only axiomatized (i.e., assumed without proof) in
[NdMNAR10] in order to present a formal proof of the Theorem 1 of char-
acterization of security, and its current formalization depends on Lemmas
9, 10 and 11 (according to the original numeration in [DY83]), that will be
presented in the sequel. Lemma 9 is necessary in order to prove Lemma 10
and both the latter lemma and Lemma 11 are necessary in order to conclude
the proof of Lemma 1. In the formalization of these Lemmas two additional
definitions related with the balancing property relative to a specific user are
necessary.

Definition 7 (Word User-Balanced). Let a ∈ U and π ∈ Σ∗. π is said
to be a-balanced if the following implication is true: π = DxδDy, for some
x, y ∈ U, x 6= a 6= y and δ

a ∩D ⊆ {Da} imply that δ
a

is balanced with respect
to a.

Definition 8 (Linkage Property - LP). Let z ∈ U and η ∈ Σ∗. η is said
to satisfy the linkage property (w.r.t. z) if for any π subword of the word
DzηDz, π is a-balanced, ∀a ∈ U, a 6= z.

The analysis of whether a word is balanced is reduced to the verification of
the balancing property for all its subwords in which only decryption operators
for a unique user happens, that is done through the verification of the linkage
property.

Lemma 9 (Linkage Property). Let µ and η ∈ Σ∗ words that satisfy LP w.r.t.
z. ηµ satisfies LP w.r.t. z.

Lemma 10 (Linkage Property for the Admissible Language). Consider a
balanced cascade protocol α, z ∈ U and let η ∈ AL(z), then η satisfies LP
w.r.t. z.

9

Lemma 11 (Normal Forms Preserve Linkage Property). Let η ∈ Σ∗ such
that η satisfies LP. Then η satisfies LP too.

Sketches of analytical proofs of the previous three lemmas are available
in [DY83], but their formalizations require an exhaustive series of proofs of
mundane properties of the data structures being used in order to represent
protocols. The proof of Lemma 10 is by induction on the inductive con-
struction of the admissible language ((Σ0(z)∪Σ1)

∗) and depends on proving
that words in Σ0(z) ∪ Σ1 satisfy LP (basis of the induction) and applica-
tion of Lemma 9 in the inductive step. The proof of Lemma 11 is also done
by induction, in this case on the number of recursive steps applied in the
normalization of the word η. In the induction basis, it is proved that after
eliminating from η the first, from left to right, occurrence of contiguous op-
posite operators, either DuEu or EuDu, for some u ∈ U , the resulting word
satisfies LP. In the inductive step this argumentation is applied once again.

In PVS, the formalization of Lemma 11 depends on the specification of
the notion of normalization that is given basically through two specified func-
tions presented below. The function first cancelable takes as argument
a reducible sequence and detects the first contiguous occurrence of opposite
operators. The second function, normalizeseq uses the first function in or-
der to detect recursively the first occurrence of contiguous opposite operators
and eliminate them from the sequence.

first_cancelable(seq : reduzibleseq) : RECURSIVE nat =

IF areopcomplements?(seq(0),seq(1)) THEN 0

ELSE 1 + first_cancelable(^(seq,(1,seq‘length-1)))

ENDIF

MEASURE seq‘length-1

normalizeseq(seq : seqOps) : RECURSIVE seqOps =

IF normalseq?(seq) THEN seq

ELSE LET (firstCancPos : nat) = first_cancelable(seq) IN

IF firstCancPos=0 THEN normalizeseq(seq^(2,seq‘length-1))

ELSE normalizeseq(seq^(0,firstCancPos-1) o

seq^(firstCancPos+2,seq‘length-1))

ENDIF

ENDIF

MEASURE seq‘length

Several decisions taken during the specification are relevant in order
to obtain a full formalization of the main lemmas. Observing the func-
tion fist cancelable, one notices that the input sequence seq is in-
dexed from 0 to its length minus one (seq`length - 1). The function

10

areopcomplements? checks whether two operators either are opposite or
not. The type of the parameter of the function first cancelable is the
type of reducible sequences that is a subtype of the type of sequences of op-
erators (SeqOps) as used for the parameter of the function normalizeseq.
The operators “ˆ ” and “o” denote respectively, subsequences and con-
catenation or append of sequences. Thus, (seq^ (0,firstCancPos-1) o

seq^ (firstCancPos+2,seq`length-1) denotes the sequence obtained by
eliminating the operators at positions firstCancPos and firstCancPos +

1 of the sequence seq, that, in other words, is the sequence obtained by elim-
inating the first contiguous occurrence of opposite operators in seq, since
firstCancPos was set as the position of the first cancelable contiguous oc-
currence.

The next theorem, whose proof depends on Lemma 1, characterizes secu-
rity of two-party cascade protocols.

Theorem 1 (Characterization of Security of Cascade Protocols ([DY83])).
A two-party cascade protocol is secure if and only if

• it satisfies the initial condition and

• is balanced.

The proof of Theorem 1 is divided in the proof of necessity and the proof
of sufficiency:

The former, that is to prove that a secure protocol satisfies the initial
condition and should be balanced, is obtained by contrapositive argu-
mentation: if a protocol does not satisfy the initial condition or is not
balanced it is proved to be insecure.

The latter is proved by contradiction. Let x, y ∈ U , and suppose that
x starts communication with y. Suppose, by reduction to the absurd,
that the protocol satisfies IC and is balanced, but it is insecure; thus,
there exists γ ∈ AL(z), such that γα0(x, y) = λ. A separation in two
cases is then possible: in the first case, Ey appears in α0(x, y), and then
it is possible to show, that γ is not balanced, because it should contain
an operator Dy (since Dy does not occur in α0(x, y)), which contradicts
Lemma 1; in the second case, Ey does not appear in α0(x, y), which
implies that Dx also does not occur in the first step of the protocol and
consequently Lemma 1 is contradicted again.

11

3 Formalization in PVS

In this section, several deductive techniques applied in the formalization of
the balancing properties of the DY model are presented. The formalization
is available in the PVS files. Here only a brief description is possible focusing
on the most relevant aspects.

The Prototype Verification System PVS is a higher order proof assistant
with an elaborated type system in which subtyping and dependent types are
allowed. In a higher order logic language, as the one of the specification
language of PVS, one can quantify relational variables. This makes straight-
forward the specification of properties of two-party cascade protocols that are
sequences of relational (functional) objects according to Definition 1. For in-
stance, sufficiency lemma related to the proof of Theorem 1 is specified as the
lemma below, in which a well-defined protocol prot is universally quantified.
Also dependent types are used in order to quantify triplets of users x, y and
z such that are mutually different.

alpha0_and_bal_secure : LEMMA

FORALL (prot : welldefined_protocol,

x : U, y : U | x /= y,

z : U | z /= x AND z /= y) :

alpha0ContainsE?(prot, x, y) AND

balanced_cascade_protocol?(prot) =>

secure_protocol?(prot, x, y, z)

The basic data structures used in the formalization are
finite sequences and sets that are available in the prelude theory
of PVS[OS97]. The whole hierarchy of the formalization is presented in
Fig. 1. The main theory, named CascadeProtocolsSecurity, contains
the specification of Theorem 1 and imports subtheories for the formal-
ization of sufficiency and necessity, respectively, SecurityNecessity and
SecuritySufficiency. The focus in this paper, is on the formalization
of lemmas related with balancing properties (Lemmas 9, 10 and 11),
which are formalized inside the subtheories UserBalancingProperties and
UserMonoidCryptOps.

The subtheory finite sequences extras imports the prelude theory for
finite sequences and includes additional necessary lemmas and properties
about this data structure as well as about finite sets that are not avail-
able in the PVS prelude library. The subtheory MonoidCryptOps includes

12

CascadeProtocolsSecurity

wwppppppppppppppppp
++WWWWWWWWWWWW

SecuritySufficiency

��
SecurityNecessity

''NNNNNNNNNNNNNNNNN UserBalancingProperty

��
UserMonoidCryptOps

ssgggggggggggg

SecurityDefinitions

��
CascadeProtocols

��
MonoidCryptOps

��
Finite Sequences Extras

Figure 1: Hierarchy of theories and subtheories — formalization of security
of cascade protocols

general specifications about the cryptographic operators and the theory of
monoids freely generated by the language of cryptographic operators mod-
ulo the congruence given by elimination of opposite operators. In this the-
ory, the notion of normal form is given. The subtheory CascadeProtocols

formalizes the basic notions about two-party cascade protocols. The sub-
theory SecurityDefinitions formalizes the notions of security of cascade
protocols. The subtheory UserMonoidCryptOps includes specifications and
formalizations about properties of sequences of cryptographic operators rel-
ative to specific users. In this subtheory, notions similar to the ones given in
MonoidCryptOps are specified; for instance, the notion of normal form rela-
tive to an specific user is given. These relativizations are necessary in order
to deal with notions such as user balanced and linkage property (e.g., Defs. 7
and 8) among others, that are necessary to formalize the central balancing
property (Lemma 1) necessary in the proof of sufficiency of the main security
characterization theorem.

As previously mentioned, the crucial part of the theory is included in
the subtheories SecurityNecessity and SecuritySufficiency formalizing
necessity and sufficiency of Theorem 1. Here, the focus is on the balancing
properties necessary for the sufficiency that are formalized in the subtheories
UserBalancingProperty and UserMonoidCryptOps containing, the former,
the formalizations of Lemmas 1, 9, 10 and 11, and the latter, specifications

13

of properties of the theory of monoids relative to specific users.

3.1 Verification of Balancing Lemma 1

Assuming Lemmas 9, 10 and 11, Lemma 1 was formalized following the an-
alytic proof in [DY83] essentially, but it was detected the necessity of an
additional technical property in order to guarantee the integrity of the for-
malization: for any word of the form DzηDz, where η ∈ Σ∗, if for some a ∈ U ,
Da occurs in η, then there exists a subsequence of DzηDz of the form DxδDy

containing the occurrence of Da and such that x 6= a 6= y. Analytically, this
property is very simple but technically its formalization is non trivial. This
kind of mundane properties are recurrent in the formalization and represent
a great deal of the whole formalization effort.

Lemma 1 was formalized inside the subtheory UserBalancingProperty,
and its specification is given as below.

userBalancing : LEMMA

FORALL (prot : welldefined_protocol,

z : U,

gamma : gammaT | gamma_welldef?(prot,gamma, z),

w : U | w /= z) :

balanced_cascade_protocol?(prot) =>

balancedseq_wrt?(normalizeseq(extract_gamma(gamma)), w)

This PVS lemma specifies the following: let prot be a well-defined pro-
tocol, z, w ∈ U be different users and γ ∈ AL(z) a word in the admissible
language of the protocol prot for the intruder z. Thus, if prot is a balanced
protocol, then the normalization of γ, γ, is balanced with respect to the user
w. In other words, for all users different from a possible saboteur z, the
normalization of any admissible word is balanced with respect to the other
users.

In the specification above, gammaT represents the type of finite sequences
of allowed strings (finite sequences of operators) for the model of protocols
under consideration; gama welldef? is a tertiary relation that expresses the
fact that the finte sequence of words gamma is a sequence of words either in
Σ0(z) or Σ1 (according to the protocol prot), that is, the concatenation
of words in gamma belongs to the admissible language of the intruder z.
balanced cascade protocol? and balancedseq wrt? are boolean unary
and binary relations, respectively, for balanced protocols and words balanced

14

with respect to a user. The function extract gamma builds the word of
concatenation of words in the finite sequence gamma, that is a word in AL(z),
the admissible language for the intruder z according to the protocol prot.
normalizeseq, as previously mentioned, recursively builds the normalization
of the input word according to the congruence of the monoid, eliminating all
contiguous opposite operators.

The proof of Lemma 1 is done applying Lemmas 10 and 11 as follows:

Let η ∈ AL(z) be a word in the admissible language. Suppose, by
contradiction, that for some a ∈ U , η does not satisfy the balancing
property with respect to a. Thus, Da occurs in η, but Ea does not,
which implies that η does not satisfy the linkage property. This con-
tradicts Lemmas 10 and 11, since in first place, η satisfies the linkage
property because it is an admissible word built from a balanced pro-
tocol and, in second place, normalizations of words that satisfy the
linkage property preserve this property.

The language of proof of PVS follows the Gentzen sequent style. PVS
uses an interactive proof language in which inference rules of the sequent
calculus are applied by means of proof commands. The proof is started
by a sequent containing as antecedents the premisses of the conjecture or
objective to be proved and as succedents the conclusion of the conjecture to
be proved. Proof commands should be applied until the proof is concluded
or until one detects errors in the conjecture. Proofs are stored in a file of
proof commands.

The command prove starts the proof of some selected objective. This is
illustrated below for the Lemma 1. Items above the symbol |------- represent
the antecedents or premisses of the sequent, and items below this symbol,
the succedents or conclusions.

|-------

[1] FORALL (prot : welldefined_protocol, z : U,

gamma : gammaT | gamma_welldef?(prot,gamma, z),

w : U | w /= z) :

balanced_cascade_protocol?(prot) =>

balancedseq_wrt?(normalizeseq(extract_gamma(gamma)), w)

The succedent starts exactly as Lemma 1. By an application of the proof
command of Skolemization one obtains the following sequent.

{-1} balanced_cascade_protocol?(prot)

|-------

{1}balancedseq_wrt?(normalizeseq(extract_gamma(gamma)),w)

15

As antecedent or premise one has that prot is a balanced proto-
col (that is well-defined), and one should prove that the normalization
of extract gamma(gamma), that is normalizeseq(extract gamma(gamma)),
named reducedGamma below, is balanced with respect to w. Lemmas 10 and
11 can be invoked applying the PVS proof command lemma. The application
of this command includes as new premisses of the sequent the selected lemma
and it can be instantiated according to the objective being proved.

{-1} linkage_property?(extract_gamma(gamma), z) =>

linkage_property?(reducedGamma, z)

[-2] balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(gamma), z)

[-3] balanced_cascade_protocol?(prot)

|-------

{1} balancedseq_wrt?(reducedGamma, w)

At this point, according to the analytic proof previously explained, the
conclusion appears trivial, but it involves technicalities as those mentioned.
In fact, the development of the proof is exhaustive and several properties
related with finite sequences and the theory of monoids are necessary. More
than ten additional technical lemmas were necessary in order to conclude
the proof of this lemma. The proof of this lemma uses more than 160 proof
commands.

3.2 Verification of LP for the Admissible Language
(Lemma 10)

Lemma 10 about linkage property for the admissible language is specified as

balanced_prot_imp_linkage_in_sigmas : LEMMA

FORALL(prot: welldefined_protocol, z : U,

eta : gammaT | gamma_welldef?(prot,eta, z)) :

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(eta), z)

This states that given a balanced cascade protocol prot and a user z ∈ U ,
all words of the admissible language AL(z), built in the specification as
extract gamma(eta), satisfy the linkage property.

The proof is started by applying the command prove obtaining the initial
sequent below.

|-------

{1} FORALL (prot: welldefined_protocol, z: U,

16

eta: gammaT | gamma_welldef?(prot, eta, z)):

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(eta), z)

The proof is by induction in the length of the sequence eta. This
method is selected by applying the proof command (measure-induct+
"eta`length" ("eta")) to which PVS returns the following sequent having
as first premise the inductive hypothesis, that is for any sequence with length
less than the length of the initial sequence, called now x!1, it satisfies the
linkage property.

{-1} FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

{-2} balanced_cascade_protocol?(prot)

|-------

{1} linkage_property?(extract_gamma(x!1), z)

Analytically, it is enough to apply induction and Lemma 9, but some
specificities of the data structure should be considered. The case in which
the length of x!1 is zero, is proved easily. Now, if x!1 has length equal to one
some considerations are necessary. Supposing that x!1`length = 1, one ap-
plies an auxiliary lemma called admissible language sat link property,
that states that all words of the language Σ0(z) or Σ1 satisfy the linkage
property. Invoking this auxiliary lemma gives the sequent below.

{-1} FORALL (prot: welldefined_protocol, z: U, delta: seqOps):

(balanced_cascade_protocol?(prot) AND

(member(delta, sigma2_3(prot)) OR

wellDefInSigma1?(delta, z)))

=> linkage_property?(delta, z)

[-2] x!1‘length = 1

[-3] FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

[-4] balanced_cascade_protocol?(prot)

|-------

[1] x!1‘length = 0

[2] linkage_property?(extract_gamma(x!1), z)

Lemma admissible language sat link property appearing as premise
{-1} guarantees in this case that if x!1 is a unique word, that is a sequence
of operators, it satisfies the linkage property.

Supposing now that the length of x!1 is greater than one, one has the
sequent below. Observe that the succedent formulas {1} and {2} correspond
to the antecedent x!1 is greater than one.

17

[-1] FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

[-2] balanced_cascade_protocol?(prot)

|-------

{1} x!1‘length = 1

[2] x!1‘length = 0

[3] linkage_property?(extract_gamma(x!1), z)

In order to apply the induction hypothesis, one instantiates it, that is
the antecedent [-1], with the finite sequence x!1 without its first word,
that is the sequence x!1^(1, x!1`length - 1), by applying the command
(inst -1 ’’x!1^(1, x!1`length - 1)’’). Since the sequence x!1^(1,

x!1`length - 1) has length less than the length of x!1, this sequence can
be used in the induction hypothesis. This together with the fact that prot is a
balanced protocol gives rise to the simplification of the induction hypothesis
(after this instantiation) as the premise {-1} in the sequent below, that
states that extract gamma(x!1^(1, x!1`length - 1)) satisfies the linkage
property.

{-1} linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-2] balanced_cascade_protocol?(prot)

|-------

[1] x!1‘length = 1

[2] x!1‘length = 0

[3] linkage_property?(extract_gamma(x!1), z)

Selecting the previous sequence for the instantiation of the induction hy-
pothesis is adequate for the application of Lemma 9, because this lemma
guarantees that the concatenation of words that satisfy the linkage prop-
erty also satisfies this property. Lemma 9 is specified in PVS with the name
linkage property composition and its invocation at this point of the proof
gives the sequent below in which the first premise corresponds to this lemma.

{-1} FORALL (mu, eta: seqOps, z: U):

linkage_property?(mu, z) AND linkage_property?(eta, z) =>

linkage_property?(mu o eta, z)

[-2] linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-3] balanced_cascade_protocol?(prot)

|-------

[1] x!1‘length = 1

[2] x!1‘length = 0

[3] linkage_property?(extract_gamma(x!1), z)

18

The first word of the finite sequence x!1, that is x!1`seq(0), belongs
either to Σ0(z) or Σ1 and consequently, it satisfies the linkage property, as
previously mentioned. By induction hypothesis, the rest of the sequence,
that is x!1^(1, x!1`length - 1), satisfies this property as well. Lemma 9
is instantiated with mu as x!1`seq(0), the first element of x!1, and eta as
the rest of the sequence. Since x!1`seq(0) o extract gamma(x!1 ^ (1,
x!1`length - 1)) = extract gamma(x!1), one concludes that the linkage
property also holds for x!1. Proving this equality also requires several ad-
ditional technicalities (almost ninety PVS proof commands are applied) not
presented here, but available in the PVS formalization. One obtains as last
sequent the one presented below.

{-1} linkage_property?(x!1‘seq(0), z) =>

linkage_property?(extract_gamma(x!1), z)

[-2] linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-3] balanced_cascade_protocol?(prot)

|-------

[1] x!1‘length = 1

[2] x!1‘length = 0

[3] linkage_property?(extract_gamma(x!1), z)

At this point, it is enough to guarantee that x!1`seq(0) satis-
fies the linkage property. This is done in the same way as in the
case in that x!1`length = 1 by application of the auxiliary lemma
admissible language sat link property.

3.3 Formalization of technical properties

A great amount of the effort done in this formalization is related with the
construction of proofs of specific properties of the sequences representing the
quotient monoid of cryptographic operators. Here we present the formal-
ization of a specific lemma applied in the proof of Lemma 9, in order to
guarantee that the word user-balancing property of Definition 7 holds for
subsequences of the concatenation of sequences satisfying the linkage prop-
erty of definition 8. Then, it is necessary to characterize the normalization
relative to a user z of concatenation of sequences δ and σ, δσ

z
. Two cases are

to be considered: either the last operators of δ and the first of σ are opposite
for the user z, or not. In the first case, let δ = δ′Ok

z and σ = (Oc
z)

jσ′ normal
with respect to z, where k, j > 0. In the second case, δ = δ′Ou or σ = Ouσ

′

for u 6= z. Two specific lemmas arise:

Lemma 2 (Relative normalization with separation). Let δ, σ ∈ Σ∗, z, a ∈ U ,
such that z 6= a. Then

19

δOaσ
z

= δ
z
Oaσ

z

Lemma 3 (Relative normalization). Let δ, σ ∈ Σ∗ be normal sequences with
respect to z ∈ U and let j, k ≥ 1 such that j and k are maximal with δ = δ′Oj

z

and σ = (Oc
z)

kσ′. Then, j ≥ k implies

δσ
z

= δ′Oj−k
z σ′

Contrariwise,
δσ

z
= δ′(Oc

z)
k−jσ

Here, we explain the formalization of the former lemma, that has been
specified in PVS as the lemma user normalize break included below.

user_normalize_break : LEMMA FORALL (seq : seqOps, z, a : U, i : nat) :

(a /= z & i < seq‘length - 1 & user(seq(i)) = a) =>

normalizeseqZ(seq, z) =

IF i = 0 THEN

seq^(0,0) o normalizeseqZ(seq^(1, seq‘length - 1), z)

ELSE

normalizeseqZ(seq^(0,i-1), z) o seq^(i,i) o

normalizeseqZ(seq^(i+1,seq‘length - 1), z)

ENDIF

The formalization of this lemma basically is based on the application of a
number of auxiliary lemmas proved by induction, from which two key lemmas
discriminate the case in which the first part of the sequence is normal with
respect to z and the opposite case. The latter case, is specified as the lemma
below.

user normalize break included below.

user_normalize_separation2 : LEMMA FORALL (seq : seqOps,

a: U, z:U | a /= z, i : below[seq‘length]) :

(reduzibleseqZ?(seq,z) AND user(seq(i)) = a) =>

LET k = first_cancelableZ(seq,z) IN

k < i =>

normalizeseqZ(seq,z) =

normalizeseqZ(seq^(0, i-1),z) o seq^(i,i) o

normalizeseqZ(seq^(i + 1 , length(seq) - 1), z)

The proof of this lemma consists of more than two hundred proof steps
and is done basically by application of two additional auxiliary technical
lemmas: the first one states that when δ is normal with respect to z, δOaσ

z
=

20

δOaσ
z and the second one that, in general αzβ

z
= αβ

z
. From these lemmas

one has that δOaσ
z

= δ
z
Oaσ

z

= δ
z
Oaσ

z. The former lemma is specified as
user normalize separation1.

user_normalize_separation1 : LEMMA FORALL (seq : seqOps,

a: U, z:U | a /= z, i : nat | i < seq‘length) :

(reduzibleseqZ?(seq,z) AND user(seq(i)) = a) =>

LET k = first_cancelableZ(seq,z) IN

k > i =>

normalizeseqZ(seq,z) =

seq^(0, i) o normalizeseqZ(seq^(i + 1 , seq‘length - 1), z)

The formalization of this lemma is done by induction on the length of the
sequence seq and consists of more than five hundred lines of proof commands
in which thirty one invocation to other auxiliary technical lemmas are done.

This explanation can continue in this way, enumerating a long series of
necessary auxiliary lemmas, which are related with the algebraic properties
of the monoid freely generated by the cryptographic operators, the quotient
monoid and the quotient monoid relative to a specific user as well as to its
representation as the data structure of sequences of operators. Summariz-
ing, what is relevant to clarify at this point is that most of the necessary
formalization work is related with the mechanical proofs of these auxiliary
technical lemmas.

In its current state, the whole PVS development consists of the nine
subtheories depicted in Fig. 1 in which the specification part consists of
more than 1700 lines of code (or 80 KB) and the proof part consists of
more than 38000 lines of proof commands (or 2.4 MB). Auxiliary lemmas
related with the data structure of sequences, the monoid and the quotient
monoid relative to a specific user were specified respectively in the PVS theo-
ries finite sequences extras, MonoidCryptOps and UserMonoidCryptOps

(see Fig. 1). These three theories alone consist of more than 900 lines of
specification code (43 KB) and almost 26000 lines of proof commands (or 1.3
MB).

4 Conclusion and Future Work

The general sketch of the formalization of the theorem of characterization
of security of two-party cascade protocols was concluded based on axioma-
tizations about balancing properties of the admissible language of potential

21

malicious users. A great variety of properties about the monoid freely gener-
ated by the language of encryption and decryption operators were necessary
as well as properties about the data structure of finite sequences. The latter
was used twofold: firstly, in order to represent words of the monoid, that are
finite sequences of cryptographic operators and secondly, to represent proto-
cols, that are finite sequences of protocol steps, that are basically words in
this monoid.

Several properties related with normalization of words in this monoid ac-
cording to the convergence given by the elimination of opposite cryptographic
operators were necessary, and in particular, these properties were relativized
to specific users. The latter was necessary in order to establish properties
such as the linkage property and the property of being user balanced.

A great deal of the effort invested in the formalization of the character-
ization of security of the DY model was concentrated on the proof of basic
technical properties over the structure of monoids and its representation as
sequences. The formalization of these auxiliary lemmas is worth because it
is fundamental in order to formalize the security of the DY model. But more
important, it is valuable because this represents an important and robust
kernel that can be applied in order to formalize logical properties of other
cryptographic protocols and models (e.g., multiparty models, models with
authentication mechanisms, models with blind signatures, etc.). In fact,
this was illustrated in this paper, when the logical sketch of the proofs of
the Theorem 1 of characterization of security and of the Lemma 1 of bal-
ancing property of normalizations of words of the admissible language were
explained.

References

[ABC+06] A. Armando, D. Basin, J. Cuellar, M. Rusinowitch, and
L. Vigano, editors. Special Issue on Automated Reasoning
for Security Protocol Analysis, volume 36. J. of Automated
Reasoning, 2006. 1

[Ben08] N. Benäıssa. Modelling Attacker’s Knowledge for Cascade
Cryptographic Protocols. In ABZ ’08: Proc. of the 1st Int.
Conf. on Abstract State Machines, B and Z, volume 5238 of

22

Lecture Notes in Computer Science, pages 251–264. Springer
Verlag, 2008. 1

[BGZB09] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal cer-
tification of code-based cryptographic proofs. In 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages POPL, pages 90–101, 2009. 1

[BJ03] M. Backes and C. Jacobi. Cryptographically Sound and
Machine-Assisted Verification of Security Protocols. In 20th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), volume 2607 of Lecture Notes in Computer
Science, pages 675–686. Springer Verlag, 2003. 1

[CMR01] V. Cortier, J. Millen, and Harald Ruess. Proving secrecy is
easy enough. In 14th IEEE Computer Security Foundations
Workshop (CSFW’01), pages 97–110. IEEE Comp. Soc. Press,
2001. 1

[DCS02] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-tolerant
enclaves. In Proc. of the IEEE International Symposium on
Security and Privacy, pages 216–224, 2002. 1

[DS97] B. Dutertre and S. Schneider. Using a PVS Embedding of
CSP to Verify Authentication Protocols. In Theorem Proving
in Higher Order Logics, TPHOL’s 97, volume 1275 of Lecture
Notes in Computer Science, pages 121–136. Springer Verlag,
1997. 1

[DY83] D. Dolev and A. C. Yao. On the Security of Public Key
Protocols. IEEE. T. on Information Theory, 29(2):198–208,
1983. 1, 2.2, 2.2, 1, 3.1

[ES00] N. Evans and S. Schneider. Analysing Time Dependent Se-
curity Properties in CSP Using PVS. In 6th European Sym-
posium on Research in Computer Security ESORICS, volume
1895 of Lecture Notes in Computer Science, pages 222–237.
Springer Verlag, 2000. 1

23

[LHT07] M. Layouni, J. Hoofman, and S. Tahar. Formal Specifica-
tion and Verification of the Intrusion-Tolerant Enclaves Proto-
col. International Journal of Network Security, 5(3):288–298,
2007. 1

[Low95] G. Lowe. An Attack on the Needham-Schroeder Public-
Key Authentication Protocol. Information Processing Letters,
56(3):131–133, 1995. 1

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. Software - Concepts and
Tools, 17(3):93–102, 1996. 1

[Mea03] C. Meadows. Methods for Cryptographic Protocol Analysis:
Emerging Issues and Trends. IEEE J. on Selected Areas in
Communications, 21(1):44–54, 2003. 1

[MR00] J. K. Millen and H. Rueß. Protocol-independent secrecy. In
IEEE Symposium on Security and Privacy, pages 110–209,
2000. 1

[NdMNAR10] R.B. Nogueira, F.L.C. de Moura, A. Nascimento, and
M. Ayala-Rincón. Formalization Of Security Proofs Using
PVS in the Dolev-Yao Model. In Computability in Europe
CiE 2010 (Booklet), 2010. 1, 2.2

[NS78] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Comm. of the ACM,
21:993–999, 1978. 1

[OS97] Sam Owre and Natarajan Shankar. The formal semantics
of PVS. Technical report, SRI-CSL-97-2, Computer Science
Laboratory, SRI International, Menlo Park, CA, August 1997.
Available at http://pvs.csl.sri.com/. 1, 3

[Pau99] L. C. Paulson. Proving Security Protocols Correct. In 14th An-
nual IEEE Symposium on Logic in Computer Science LICS,
pages 370–383, 1999. 1

24

	1 Introduction
	2 The Dolev-Yao Model and its Security Characterization
	2.1 Security Characterization of Cascade Protocols
	2.2 Characterization of the Security of Cascade Protocols

	3 Formalization in PVS
	3.1 Verification of Balancing Lemma 1
	3.2 Verification of LP for the Admissible Language (Lemma 10)
	3.3 Formalization of technical properties

	4 Conclusion and Future Work

