
A Nonstandard Standardisation Theorem

Eduardo Bonelli
Joint work with Beniamino Accattoli, Delia Kesner and Carlos

Lombardi

December 9, 2013

Overview

1. Introduce a calculus of explicit substitutions called the Linear
Substitution Calculus λ∼lsub

2. Introduce the notion of standardisation

3. Say a thing or two about standardisation for λ∼lsub

Approach:

I Informal, mostly via examples

I Intersperse the use of slides and the whiteboard

Lambda Calculus and Explicit Substitutions

Standardisation in the λ calculus

Standardisation for λ∼lsub

Review of the Lambda Calculus

t ::= x | t t | λx .t

(λx .s)t 7→β s{x := t}

Explicit Substitutions

t ::= x | t t | λx .t | t[x/t]

(λx .t)u 7→beta t[x/u]

I We add rules describing behaviour of t[x/t]

I Typical examples

(tu)[x/v] 7→app t[x/v]u[x/v]
(λy .t)[x/u] 7→abs λy .t[x/u] y /∈ fv(u)
x [x/u] 7→var u

Problem with Traditional Presentations of ES

I Structure of reduction space is not amenable to algebraic
treatment

I In particular, no obvious theory of residuals

I For example, the beta redex is lost in this step
(non-orthogonality)

((λy .t)u)[x/v] 7→app (λy .t)[x/v]u[x/v]

Recently – ES that act at a distance

I λ∼lsub or the Linear Substitution Calculus

I Arises from work of Milner on the one hand, and that of
Accattoli and Kesner on the other

I Has two parts: rewrite rules + equations

I Rewrite rules:

(λx .t)Lu 7→db t[x/u]L
C [[x]][x/u] 7→ls C [[u]][x/u]
t[x/u] 7→gc t if x /∈ fv(t)

I L = [x1/t1] . . . [xk/tk] (k may be 0)
I C context (term with a hole); in C [[u]] the free variables of u

are not captured by C

λ∼lsub

I Rewrite rules

(λx .t)Lu 7→db t[x/u]L
C [[x]][x/u] 7→ls C [[u]][x/u]
t[x/u] 7→gc t if x /∈ fv(t)

I Equations (generate what we call graphical equivalence ∼)

t[x/u][y/v] ≈CS t[y/v][x/u] x /∈ fv(v) & y /∈ fv(u)
(λy .t)[x/u] ≈σ1 λy .t[x/u] y /∈ fv(u)
(tv)[x/u] ≈σ2 t[x/u]v x /∈ fv(v)

I Sample reduction (on the board): (λx .x [y/u]v)(λz .z)

Lambda Calculus and Explicit Substitutions

Standardisation in the λ calculus

Standardisation for λ∼lsub

Introduction

I Sorting a list of numbers.

[3,4,1,2]

⇒ [3,1,4,2]

⇒ [3,1,2,4]

⇒ [1,3,2,4]

⇒ [1,2,3,4]

I We would like to do a similar thing with derivations: sort the
redexes in a derivation

Sorting Redexes in Derivations

I left-to-right order

(Ix)(Iy) //

��

(Ix)y

��v~
x(Iy) // xy

I Gets a little tricky due to duplication (below) and erasure

(λx .xx)(Iy) //

��

(λx .xx)y

��qy
(Iy)(Iy) // // yy

I These can be made into “square” diagrams using a notion of
simultaneous rewrite step (not developed in this talk)

Residuals in λ-calculus

I Needed to formalise notion of sorting

I The idea: follow a redex along a derivation by coloring it or
labeling it

I Example of labeling for λ-calculus:

I Labeled terms

t ::= x | tt | λx .t | (λxα.s)t

I Labeled β

(λxα.s)t 7→β s{x := t}

I Example of the residual relation A/B (on the board): the
residuals of redex A after performing B

Residuals in λ∼lsub (1/2)

I Labeled terms

t ::= x | xα | tt | λx .t | λxα.t | t[x/t] | t[xα/t]

I Labeled rewriting

(λxα.t)Lu
α7→dB t[x/u]L

C [[xα]][x/u]
α7→ls C [[u]][x/u]

t[xα/u]
α7→gc t x /∈ fv(t)

I Anchor of a labeled redex is the variable containing the label

I Note: there is an additional well-labeled condition required
which is omitted here (eg. λx .xα is not well-labeled)

I What about the graphical equivalence? We can do the same
(next slide)

Residuals in λ∼lsub (2/2)

I Labeled rewriting (same as above)

(λxα.t)Lu
α7→dB t[x/u]L

C [[xα]][x/u]
α7→ls C [[u]][x/u]

t[xα/u]
α7→gc t x /∈ fv(t)

I Labeled equivalence ((α) means α may or may not appear)

t[x (α)/u][y (β)/v] ≈CS t[y (β)/v][x (α)/u] x /∈ fv(v) & y /∈ fv(u)
(λy (β).t)[x (α)/u] ≈σ1 λy (β).t[x (α)/u] y /∈ fv(u)
(tv)[x (α)/u] ≈σ2 t[x (α)/u]v x /∈ fv(v)

I Note: it can be shown that s ∼ t determines a bijective
relation between the redexes of s and t

I Examples (on the board)

Standardisation via Inversion (for total orders)

I ≺-inversion diagram (≺ total ordering on redexes)

s
B
//

A
��

t

A/B
��

s ′
B/A
// // t ′

A ≺ B

I ≺-inversion step ⇒≺ in a derivation:

σ1;B;A/B;σ2 ⇒≺ σ1;A;B/A;σ2
I Definition: A derivation in which no ⇒≺ steps are applicable

is said to be ≺-standard

Theorem
If σ : t �β u then there exists a unique ≺left-standard β-derivation
ρ : t �β u s.t. σ ⇒∗ ρ.
Proof: ⇒≺ SN+CR (Klop)

Standardisation via Inversion (for partial orders)

I ≺-inversion diagram (≺ partial ordering on redexes)

I Same as previous slide

I ≺-square diagram (≺ partial ordering on redexes)

s
B
//

A
��

t

A/B
��

s ′
B/A

// t ′

A 6≺ B and B 6≺ A

I ≺-square step ♦≺ (symmetric)

I ≺-inversion step ⇒♦≺ in a derivation: apply ⇒≺ modulo ♦≺
I Examples (on the board)

Standardisation via Inversion (for partial orders)

I Definition: A derivation in which no ⇒♦≺ steps are applicable
is said to be ≺-standard

Theorem
If σ : t �β u then there exists a unique ≺left-standard β-derivation
ρ : t �β u s.t. σ ⇒∗ ρ. Note: uniqueness here means modulo ♦

Proof1: Repeatedly extract external redex in ρ (Huet,Lévy,Melliès)
Proof2: ⇒♦≺ SN+CR (TERESE)

Lambda Calculus and Explicit Substitutions

Standardisation in the λ calculus

Standardisation for λ∼lsub

The requirement for the order on λ∼lsub redexes
It must preserve the graphical equivalence

∼ is a strong bisimulation
between λlsub and itself that
reduces the “same” redexes

s

A
��

t

A′
��

s ′ /o/o t ′

Thus standardisation should be
“preserved” via the equations

A1; . . . ;An standard iff A′1; . . . ;A′n
standard

s1

A1

��

t1

A′1
��

s2

A2

��

t2

A′2
��

s3 t3

sn

An

��

tn

A′n
��

sn+1 tn+1

An example

t[xα/u][yβ/v]

A
��

t[yβ/v][xα/u]

A′

��
t[yβ/v]

B

��

t[yβ/v]

B′

��
t t

I Note t[xα/u][yβ/v] ∼CS t[yβ/v][xα/u], assuming y /∈ fv(u)

I A;B standard iff A′;B ′ standard

I The left-to-right order does not make sense due to the
graphical equivalence

Action Principle as Guideline
For devising appropriate partial order on redexes in λ∼lsub

C [[x]][x/s]

C [[s]][x/s] C [[s ′]][x/s ′]

C [[x]][x/s ′]

Standard should be down-below since the ls-redex acts on
(i.e. nests) the redexes in s

Action Principle as Guideline

t[x/s] t[x/s ′]

t

Standard should be down since the erasing redex acts on the
redexes in s

Action Principle as Guideline

x [x/y][y/z]

y [x/y][y/z] z [x/z][y/z]

x [x/z][y/z]

ls-redex on x must nest the ls-redex on y

I Note that duplicated ls-redex on y is not syntactically
contained in the acting ls-redex on x

I The same diagram applies to terms like (x [x/y]yz)[y/z],
where [x/y] and [y/z] are no longer next to each other.

Action Principle as Guideline

x [x ′/y][y/z] x [x ′/z][y/z]

x [y/z]

This is the version at a distance of the erasing diagram, requiring
the same notion of nesting at a distance.

Definition of the partial “box” order

I A immediately boxes B, noted A ≺1
B B if the anchor of B

(i.e. the variable possibly carrying a label) is in the box of A

I i.e. if the pattern of A is any of (λx .t)Lu, C [[x]][x/u] or
t[x/u], then the anchor of B appears in u.

I A boxes B, noted A ≺B B if A(≺1
B)+B

I A and B are disjoint, noted A ‖ B, if A �B B and B �B A.

I Key property: box order is stable by the equivalence ∼

Some Results

Theorem (Existence of Standard Derivations for λ∼lsub)

If t �λ∼lsub
u then there is a ≺B-standard λ

∼
lsub-derivation from t to

u.

Proof uses axiomatics of Melliès

Theorem (Uniqueness Modulo for λ∼lsub)

If t �λ∼lsub
u then there exists a ≺B-standard λ

∼
lsub-derivation from

t to u that is unique modulo ♦.

Proof uses

1. Existence of Standard Derivations for λ∼lsub;

2. Uniqueness of standardisation for λlsub w.r.t. the left-to-right
order; and

3. A simple argument showing that ≺L-inversions of a
≺B-standard derivation swaps only disjoint (w.r.t. ≺B) redexes

Conclusions

I Quick overview of λ∼lsub
I Quick overview of standardisation

I Standardisation for λ∼lsub
I General context of this work: λ∼lsub as a vehicle to study the

metatheory of the λ-calculus

Further reading: Standardisation (Ch.8:TERESE), This work
(POPL 2014)

	Lambda Calculus and Explicit Substitutions
	Standardisation in the calculus
	Standardisation for lsub

