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Motivation: classic teaching approach

Propositional logic

Semantic entailment vs deduction - completeness

Predicate logic

Semantic entailment vs deduction - completeness

Undecidability

Compactness and Löwenheim-Skolem theorems

Resolution

The focus on understanding formal logic notions gives no time for a

careful analysis of deduction technologies and their usefulness in CS.



Motivation: formalization - proofs & deduction Computational proofs - logic & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Formalizations versus programs Conclusions and Future Work

Motivation: computational teaching approach

Propositional and Predicate logic

Semantic entailment vs deduction - completeness

Tableaux

Sat solvers

Resolution

Model cheking

Formal Verification

The focus on teaching a variety of deduction approaches gives no time

for assimilating the related technologies - the more ..., the less ...
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Motivation: computational logic for CS

Induction and recursion

Classical and Intiutionistic Propositional and Predicate logic

Semantic entailment vs deduction - completeness

Natural deduction vs Gentzen Calculus

Program verification with induction and first-order deduction

Restricting computational logic to understand deduction and how this is

applied in programming languages and program verification increases

interest of CS and engineer students.
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Computational proofs - logic & deduction

Table : Natural deduction for intuitionistic propositonal logic

introduction rules elimination rules

ϕ ψ

ϕ ∧ ψ
(∧i )

ϕ ∧ ψ
ϕ

(∧e )

ϕ

ϕ ∨ ψ
(∨i )

ϕ ∨ ψ

[ϕ]u

.

.

.
χ

[ψ]v

.

.

.
χ

χ
(∨e ) u, v

[ϕ]u

.

.

.
ψ

ϕ → ψ
(→i ) u

ϕ ϕ → ψ

ψ
(→e )

[ϕ]u

.

.

.
⊥
¬ϕ (¬i ) u

ϕ ¬ϕ
⊥

(¬e )
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Computational proofs - logic & deduction

Table : Natural deduction for classical predicate logic

introduction rules elimination rules

[¬ϕ]u

.

.

.

⊥
ϕ

(PBC) u

ϕ{x/x0}
∀xϕ

(∀i )
∀xϕ

ϕ{x/t}
(∀e )

where x0 cannot occur free
in any open assumption.

ϕ{x/t}
∃xϕ

(∃i )
∃xϕ

[ϕ{x/x0}]u

.

.

.
χ

χ
(∃e ) u

where x0 cannot occur free in any open
assumption on the right and in χ.
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Mathematical proofs - logic & deduction

Table : Encoding ¬ - Rules of natural deduction for
classical logic

introduction rules elimination rules

[ϕ]u

...
⊥
¬ϕ (¬i ), u

ϕ ¬ϕ
⊥ (¬e)

[ϕ]u

...
⊥

ϕ→ ⊥ (→i ), u
ϕ ϕ→ ⊥

⊥ (→e)
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Mathematical proofs - logic & deduction

Interchangeable rules:

¬¬φ
φ

(¬¬e)
φ ∨ ¬φ

(LEM)

[¬φ]u

...
⊥
φ

(PBC) u
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Mathematical proofs - logic & deduction

Examples of deductions. Assuming (¬¬e), (LEM) holds:

[¬(φ ∨ ¬φ)]x

[¬(φ ∨ ¬φ)]x
[φ]u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬φ
(¬i ) u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬¬(φ ∨ ¬φ)
(¬i ) x

φ ∨ ¬φ
(¬¬e)

Notation: ¬¬φ ` φ ∨ ¬φ
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Mathematical proofs - logic & deduction

A derivation of Peirce’s law, ((φ→ ψ)→ φ)→ φ:

[¬φ]u
[((φ → ψ) → φ)]x

[¬φ]u

¬ψ → ¬φ
(→i ) ∅

[¬ψ]v

¬φ
(→e )

[φ]w

⊥
(¬e )

ψ
(PBC) v

φ → ψ
(→i ) w

φ
(→e )

⊥
(¬e )

φ
(PBC) u

((φ → ψ) → φ) → φ
(→i ) x

Notation: ` ((φ→ ψ)→ φ)→ φ
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Mathematical proofs - logic & deduction

More examples. A derivation for ¬∀x φ ` ∃x ¬φ
[¬φ{x/x0}]u

∃x ¬φ (∃i ) [¬∃x ¬φ]v

⊥ (¬e)

φ{x/x0}
(PBC) u

∀x φ
(∀i ) ¬∀x φ

⊥ (¬e)

∃x ¬φ (PBC) v

A derivation for ∃x ¬φ ` ¬∀x φ

∃x ¬φ

[¬φ{x/x0}]u
[∀x φ]v

φ{x/x0}
(∀e)

⊥ ¬e

¬∀x φ
(¬i ) v

¬∀x φ
(∃e) u
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Mathematical proofs - logic & deduction

More examples. A derivation for ¬∃x φ ` ∀x ¬φ
[φ{x/x0}]u

∃x φ
(∃i ) ¬∃x φ

⊥ (¬e)

¬φ{x/x0}
(¬i ) u

∀x ¬φ (∀i )

A derivation for ∀x ¬φ ` ¬∃x φ

[ ∃x φ ]u

∀x ¬φ
¬φ{x/x0}

(∀e)
[φ{x/x0} ]v

⊥ (¬e)

⊥ (∃e) v

¬∃x φ
(¬i ) u
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Gentzen Calculus

sequents:

Γ ⇒ ∆

↑ ↑
antecedent succedent
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Gentzen Calculus

Table : Rules of deduction à la Gentzen for predicate logic

left rules right rules
Axioms:

Γ, ϕ⇒ ϕ,∆ (Ax) ⊥, Γ ⇒ ∆ (L⊥)

Structural rules:

Γ ⇒ ∆
ϕ, Γ ⇒ ∆

(LWeakening)
Γ ⇒ ∆

Γ ⇒ ∆, ϕ
(RWeakening)

ϕ,ϕ, Γ ⇒ ∆

ϕ, Γ ⇒ ∆
(LContraction)

Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ
(RContraction)
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Gentzen Calculus

Table : Rules of deduction à la Gentzen for predicate logic

left rules right rules
Logical rules:

ϕi∈{1,2}, Γ ⇒ ∆

ϕ1 ∧ ϕ2, Γ ⇒ ∆
(L∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(R∧)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(L∨)

Γ ⇒ ∆, ϕi∈{1,2}

Γ ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(L→)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(R→)

ϕ[x/t], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(L∀)

Γ ⇒ ∆, ϕ[x/y ]

Γ ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

ϕ[x/y ], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

Γ ⇒ ∆, ϕ[x/t]

Γ ⇒ ∆, ∃xϕ
(R∃)
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Gentzen Calculus

Derivation of the Peirce’s law:

(R→)

(RW )
ϕ⇒ ϕ (Ax)

ϕ⇒ ϕ,ψ

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)
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Gentzen Calculus

Cut rule:

Γ⇒ ∆, ϕ ϕ, Γ′ ⇒ ∆′

ΓΓ′ ⇒ ∆∆′ (Cut)
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Gentzen Calculus

Example of application of (Cut): ` ⇒ ¬¬(ψ ∨ ¬ψ).

ψ ⇒ ψ,⊥ (Ax)

⇒ ψ,¬ψ
(R→)

⇒ ψ ∨ ¬ψ,¬ψ
(R∨)

⇒ ψ ∨ ¬ψ,ψ ∨ ¬ψ
(R∨)

⇒ ψ ∨ ¬ψ
(RC)

(Ax) ψ ∨ ¬ψ ⇒ ψ ∨ ¬ψ ⊥ ⇒ ⊥ (L⊥)

ψ ∨ ¬ψ,¬(ψ ∨ ¬ψ) ⇒ ⊥
(R→)

ψ ∨ ¬ψ ⇒ ¬¬(ψ ∨ ¬ψ)
(R→)

⇒ ¬¬(ψ ∨ ¬ψ)
(Cut)
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The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a specification language:

based on higher-order logic;
a type system based on Church’s simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on Gentzen sequent calculus.
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The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library includes

Structures, analysis, algebra, Graphs, Digraphs,
real arithmetic, floating point arithmetic, groups, interval
arithmetic,
linear algebra, measure integration, metric spaces,
orders, probability, series, sets, topology,
term rewriting systems, unification, etc. etc.
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Sequent calculus

Sequents of the form: Γ ` ∆.

Interpretation: from Γ one obtains ∆.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed.

Example:
Γ ` ∆

Γ′ ` ∆′

Goal: ` ∆.
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Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command (R) corresponds to the reverse
application of an inference rule.

In general:
Γ ` ∆

Γ1 ` ∆1...Γn ` ∆n
(R)
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Some inference rules in PVS

Structural:

Γ, Γ′ ` ∆,∆′

Γ ` ∆
(hide) (W )

Γ, Γ′ ` ∆,∆′

Γ, Γ′, Γ′ ` ∆,∆′,∆′ (copy) (C )

Axioms:

Γ,A ` A,∆ (Ax) (Ax)

Γ,FALSE ` ∆ (False`) (L⊥) Γ ` TRUE ,∆; (`True) (L⊥)
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Some inference rules in PVS

Logical (propositional) rules:

Γ ` ∆, ψ ∨ ϕ
Γ,` ∆, ψ, ϕ

(flatten) (R∨)

ψ ∧ ϕ, Γ,` ∆

ψ,ϕ, Γ ` ∆
(flatten) (L∧)

Γ ` ∆, ψ → ϕ

ψ, Γ ` ∆, ϕ
(flatten) (R→)
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Some inference rules in PVS

Logical (propositional) rules:

ψ ∨ ϕ, Γ ` ∆

ψ, Γ ` ∆ ϕ, Γ ` ∆
(split) (L∨)

Γ ` ∆, ψ ∧ ϕ
Γ ` ∆, ψ Γ ` ∆, ϕ

(split) (L∧)

ψ → ϕ, Γ ` ∆

ϕ, Γ ` ∆ Γ ` ∆, ψ
(split) (L→)
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Some inference rules in PVS

Logical (classical) rules:

∀xψ, Γ ` ∆

ψ[x/t], Γ ` ∆
(inst) (L∀)

Γ ` ∆, ∀xψ
Γ ` ∆, ψ[x/x0]

(skolem) (R∀)

Γ ` ∆,∃xψ
Γ ` ∆, ψ[x/t]

(inst) (R∃)
∃xψ, Γ ` ∆

ψ[x/x0], Γ ` ∆
(skolem) (L∃)
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PVS vs Gentzen Rules

(flatten) (split) (inst) (skolem)

(L∨) ×
(R∨) ×
(L∧) ×
(R∧) ×
(L→) ×
(R→) ×
(L∀) ×
(R∀) ×
(L∃) ×
(R∃) ×
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PVS propositional derivation example

Derivation of the Peirce’s law:

(R→)
ϕ⇒ ϕ,ψ (Ax)

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)

` ((ϕ→ ψ)→ ϕ)→ ϕ

(ϕ→ ψ)→ ϕ ` ϕ

(flatten)
` ϕ,ϕ→ ψ

ϕ ` ϕ,ψ (Ax) ϕ ` ϕ (Ax)

(split)

(flatten)



Motivation: formalization - proofs & deduction Computational proofs - logic & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Formalizations versus programs Conclusions and Future Work

Additional rules in PVS

Case:

Corresponds to the rule (Cut).

Γ ` ∆
Γ,A ` ∆ Γ ` A,∆

(Case“A”)

Conditional: IF-THEN-ELSE.

Γ,A ∧ B ` ∆ Γ,¬A ∧ C ` ∆

Γ, IF(A,B,C ) ` ∆
(split)

Γ,A→ B ` ∆ Γ,¬A→ C ` ∆

Γ ` IF(A,B,C )∆
(split)
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Case Study: insertion sort

insert(x : N, l : list[N]) : RECURSIVE list[N] =
if null?(l) then

cons(x , null)
else

if x ≤ car(l) then
cons(x , l)

else
cons(car(l), insert(x , cdr(l)))

end

end
MEASURE length(l)
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Case Study: insertion sort

in sort(l : list[N]) : RECURSIVE list[N] =
if null?(l) then

null
else

insert(car(l), in sort(cdr(l)))
end
MEASURE length(l)
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Insertion sort — correctness

insert preserves order : LEMMA ∀(l : list[nat], x : nat) :
is sorted?(l)→ is sorted?(insert(x , l))

insertion sort works : LEMMA
∀(l : list[nat]) : is sorted?(in sort(l)) ∧

permutations(l , in sort(l))
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Insertion sort — correctness formalization

The proof is by induction on |l |. Induction hypothesis (IH):
∀(l ′, x ′) : |l ′| < |l | → (is sorted?(l ′)→ is sorted?(insert(x ′, l ′))

Sequent:

∀(l ′, x ′) : |l ′| < |l | → (is sorted?(l ′)→ is sorted?(insert(x ′, l ′))
⇒
is sorted?(l)→ is sorted?(insert(x , l))

... two interesting sequents should be proved:

null?(l), is sorted?(l), IH is sorted?(l), IH

⇒ and ⇒
is sorted?(insert(x , l)) null?(l), is sorted?(insert(x , l))
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Insertion sort — correctness formalization

The former sequent is easily proved. For the latter sequent,
insert is expanded obtaining:

is sorted?(l), IH
⇒
null?(l),
is sorted?( if x ≤ car(l) then cons(x , l) else
cons(car(l), insert(x , cdr(l))))

Applying logical commands such as (lift-if) and (prop), that
guided an application of the (Cut) rule by the guard x ≤ car(l) of
the if-then-else command this gives two sequents:

x ≤ car(l), is sorted?(l), IH ⇒ null?(l),
is sorted?(cons(x , l))

and is sorted?(l), IH ⇒ null?(l), x ≤ car(l),
is sorted?(cons(car(l), insert(x , cdr(l))))
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Insertion sort — correctness formalization

The former sequent is easily proved. For the latter one, the IH is
used by applying the PVS instantiation command (inst) which
corresponds to (L∃), obtaining the sequent:

is sorted?(l),
|cdr(l)| < |l | → (is sorted?(cdr(l))→
is sorted?(insert(x , cdr(l)))
⇒
null?(l), x ≤ car(l)
is sorted?(cons(car(l), insert(x , cdr(l))))
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Insertion sort — correctness formalization

By applications of the command (prop), guided applications of
(L→) by the premises of the implications in the antecedent, that is,
|cdr(l)| < |l | and is sorted?(cdr(l)), are done, obtaining the
interesting sequent below that follows easily.

is sorted?(l),
|cdr(l)| < |l |,
is sorted?(cdr(l)),
is sorted?(insert(x , cdr(l)))
⇒
null?(l), x ≤ car(l)
is sorted?(cons(car(l), insert(x , cdr(l))))
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Conclusions

Nowadays, computational logic is intensively applied in formal
methods.

In computer sciences, a useful training on “computational”
logic should focus on derivation/proof techniques.

Understanding proof theory is essential to mastering proof
assistants:

to provide mathematical proofs of robustness of computational
systems and
well-accepted quality certificates.
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Work in Progress

Textbook on truly computational logic with concrete
applications.

M.Ayala-Rincón & F.L.C.de Moura Applied Logic for
Computer Scientists: computational deduction and formal
proofs, 2014, UTiCS series, Springer.

GTC at the Universidade de Braśılia.
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