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At the center of PCA lie the policies
and the use of formal proofs.
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Access control logics for distributed systems
[Abadi et al. ’93].

Modal Logics:
P ⊃ K says P

K says (P1 ⊃ P2) ⊃ K says P1 ⊃ K says P2

K says (K says P) ⊃ K says P

Γ
Policy

Authorization Logics

Proof-Carrying Authorization (PCA)



Authorization Logics

In many situations, we would like to express effect-based
policies

Γ
Policy

“A principal may have access to a room at most once.”

“A principal may not withdraw more money than the money
available in her bank account.”

Linear Authorization Logics [Garg et al. ESORICS’06]

Proof-Carrying Authorization (PCA)



Authorization Logics
Proof

We propose a logical framework where different linear
authorization logics may live together. We show that in this
framework one can express a wider range of policies.

“A principal may use a set of (low-ranked) policy rules, but
not a set of (high-ranked) policy rules.”

Our main contributions
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Complexity Results

Our main results

MELL Undecidable

FOL Balanced
Bipoles

PSPACE-complete

Provability Problem for LAL

Notice that for
MELL the same
problem is still

open.

Propositional
Classical auth.
logics is also

PSPACE-complete
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Multiplicative Fragment

Γ, F,G −→ H
Γ, F ⊗G −→ H

⊗L
Γ1 −→ F Γ2 −→ G

Γ1,Γ2 −→ F ⊗G
⊗R

Γ1 −→ F Γ2,G −→ H
Γ1,Γ2, F ( G −→ H

(L
Γ, F −→ G

Γ −→ F ( G
(R
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Three Families of Modalities

K says P

Linear Authorization Logics[Garg et al.]



Three Families of Modalities

K says P

A lax modality denoting that the principal K affirms the
formula P:

Γ, P −→ K says G
Γ,K says P −→ K says G

saysL
Γ −→ P

Γ −→ K says P
saysR

Linear Authorization Logics[Garg et al.]
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Three Families of Modalities

K knows P

Since knowledge is unrestricted, one is allowed to contract
as well as weaken it:

Γ −→ G
Γ,K knows P −→ G W

Γ,K knows P,K knows P −→ G
Γ,K knows P −→ G C

Linear Authorization Logics [Garg et al.]



Three Families of Modalities

K knows P

Γ, P −→ G
Γ,K knows P −→ G

knowsL
Ψ −→ P

Ψ −→ K knows P
knowsR

where Ψ contains only formulas of the form K knows F.

Linear Authorization Logics [Garg et al.]



Three Families of Modalities

K has P

A restricted modality denoting that the principal K has the
consumable resource P:

Γ, P −→ G
Γ,K has P −→ G

hasL
Ψ,∆ −→ P

Ψ,∆ −→ K has P
hasR

where Ψ contains only formulas of the form K knows F,
while ∆ contains only formulas of the form K has F.

Linear Authorization Logics [Garg et al.]
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Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G

C

Subexponentials with index a ∈ U
can weaken and contract:

Introduction Rules

!x1 F1, . . . !xn Fn −→ G
!x1 F1, . . . !xn Fn −→ !aG

!a
R

!x1 F1, . . . !xn Fn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?a
L

where a � xi for all i.
Γ −→ G

Γ, !aP −→ G
W
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Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G

C

Subexponentials with index a ∈ U
can weaken and contract:

Introduction Rules

!x1 F1, . . . !xn Fn −→ G
!x1 F1, . . . !xn Fn −→ !aG

!a
R

!x1 F1, . . . !xn Fn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?a
L

where a � xi for all i.

Theorem: For any subexponential signature, Σ, SELLΣ

admits cut-elimination.

Γ −→ G
Γ, !aP −→ G

W

Linear Logic with Subexponentials [NM’09, DJS’93]
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Encoding Linear Authorization Logics

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal has sayslinear

hk1

· · ·

· · ·

hki

hkn

lin

sk1

· · ·

· · ·

ski

skn

!gl{Θ}, !kK {Γ} −→ F
!gl{Θ}, !kK {Γ} −→ !kK F

!gl{Θ}, !kK {Γ}, !hK {∆} −→ F
!gl{Θ}, !kK {Γ}, !hK {∆} −→ !hK F

~F knows K�L = !kK~F�L ~F knows K�R = !kK~F�R

~F has K�L = !hK~F�L ~F has K�R = !hK~F�R

gl

global



Encoding Linear Authorization Logics

Γ, P −→ K says G
Γ,K says P −→ K says G

~Γ�L, ~P�L −→ ?sk~G�R

~Γ�L, !lin?sk~P�L −→ ?sk~G�R

~F says K�L = !lin?sk~F�L

~F says K�R = ?sk~F�R

gl

kk1
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· · ·

kki

kkn

knowsglobal has sayslinear

hk1

· · ·

· · ·

hki

hkn

lin

sk1

· · ·

· · ·
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Encoding Linear Authorization Logics

Theorem: The sequent Γ −→ F is provable in linear authorization
logic if and only if the sequent ~Γ�L −→ ~F�R is provable in SELL.

gl
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kkn
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n ×W



Encoding Linear Authorization Logics

says

sRk1

· · ·

· · ·

sRki

sRkn

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal

· · ·

· · ·

· · ·

el

eh

e

l

h

Trigger

Lower
Ranked
Policies

Higher
Ranked
Policies

admin knows (superuser(K1)) ⊗ K1 says (K2 has P)( K2 has P
admin knows (user(K1)) ⊗ !ehK1 says (K2 has P)( K2 has P
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Two counter machine

Instructions (uniquely labelled)

(Add r1) ak: r1 = r1 + 1; goto b j

(Add r2) bk: r2 = r2 + 1; goto a j

(Sub r1) ak: r1 = r1 − 1; goto b j

(Sub r2) bk: r2 = r2 − 1; goto a j

(0-test r1) ak: if r1 = 0 then goto b j1
else goto b j2

(0-test r2) bk: if r2 = 0 then goto a j1
else goto a j2

(Jump1) ak: goto b j

(Jump1) bk: goto a j
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Undecidability of Multiplicative Linear Authorization Logic

Two counter machine

Instructions (uniquely labelled)

(Add r1) ak: r1 = r1 + 1; goto b j

(Add r2) bk: r2 = r2 + 1; goto a j

(Sub r1) ak: r1 = r1 − 1; goto b j

(Sub r2) bk: r2 = r2 − 1; goto a j

(0-test r1) ak: if r1 = 0 then goto b j1
else goto b j2

(0-test r2) bk: if r2 = 0 then goto a j1
else goto a j2

(Jump1) ak: goto b j

(Jump1) bk: goto a j

Computations

〈a1, n, 0〉
a1
−→ · · ·

b j
−→ 〈ai, ni,mi〉

ai
−→ 〈bk, nk,mk〉

bk
−→ · · ·

Final State

〈a0, 0, 0〉 The termination problem for
two-counter machines is

undecidable.
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Undecidability of Multiplicative Linear Authorization Logic

Translation

A has r1, . . . , A has r1, B has r2, . . . B has r2 −→ A has ai

〈ai, ni,mi〉

Assume two principals A and B, where A is responsible for the
register 1 and B for the register 2.

Configurations (similar for b-states)

ni copies mi copies



Undecidability of Multiplicative Linear Authorization Logic

Translation – Instructions

ADD1: (A has r1 ( B says b j)( A says ak

ADD2: (B has r2 ( A says a j)( B says bk

SUB1: (A has r1 ⊗ B says b j)( A says ak

SUB2: (B has r2 ⊗ A says a j)( B says bk

0-IF1: B has (B says b j1 )( A says ak

0-IF2: A has (A says a j1 )( B says bk

0-ELSE1: (A has r1 ( B says b j2 ) ⊗ A has r1 ( A says ak

0-ELSE2: (B has r2 ( A says a j2 ) ⊗ B has r2 ( B says bk

JUMP1 B says b j ( A says ak

JUMP2 A says a j ( B says bk

FINAL A has> ⊗ B has>( A says a0
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Undecidability of Multiplicative Linear Authorization Logic

Completeness

ADD1: (A has r1 ( B says b j)( A says ak

A says ak −→ A says ak
I

Γ, A has r1 −→ B says b j

Γ −→ A has r1 ( B says b j
(R

Γ −→ A says ak
ADD1

Backchaining
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Undecidability of Multiplicative Linear Authorization Logic

Completeness

0-IF1: B has (B says b j1 )( A says ak

A says ak −→ A says ak
I

Γ −→ B says b j1

Γ −→ B has (B says b j1 )
hasR

Γ −→ A says ak
0-IF1

Backchaining



Undecidability of Multiplicative Linear Authorization Logic

Soundness

Lemma: Sequents of the form below are not provable:

!gl{ΘM},C says qi,D says q j,Γ −→ E says qk

For soundness, we need more invariants on how says formulas move
while splitting the context.

Lemma: If the sequent of the following form is provable:

!gl{ΘM},D says q j,Γ −→ C says qk,

then
〈qk,m, n〉 −→∗ 〈q j, 0, 0〉

without any transition using the if case of zero instructions.



Undecidability of Multiplicative Linear Authorization Logic

Main Result

Theorem The encoding of two counter machines is sound and
complete.

Corollary The propositional multiplicative fragment for linear
authorization logics with two principals and no function symbols is
undecidable.

Main Result
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T ::= K says A | K has A | K says T | K has T

No knowledge as one can easily use it to encode the existential
Horn implication problem, which is undecidable.

Can we interpret policies as multiset rewrite rules?

States



T ::= K says A | K has A | K says T | K has T

Policy Rules (Bipoles)

∀~y [!eT1 ⊗ · · · ⊗ !eTm]( ∃~x.[T ′1 ⊗ · · · ⊗ T ′n]

Pre-condition Post-condition

Fresh Values

Can we interpret policies as multiset rewrite rules?

States
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Can we interpret policies as multiset rewrite rules?

States

T ::= K says A | K has A | K says T | K has T

Policy Rules (Bipoles)

T ′′1 −→ T1 · · · T ′′m −→ Tm !h{ΓH},T ,T ′1, . . . ,T
′
k −→ G

!h{ΓH},T ,T ′′1 ,T
′′
2 , . . . ,T

′′
m −→ G

Simple proofs!

∀~y [!eT1 ⊗ · · · ⊗ !eTm]( ∃~x.[T ′1 ⊗ · · · ⊗ T ′n]

Pre-condition Post-condition

Fresh Values



T ′′1 −→ T1 · · · T ′′m −→ Tm !h{ΓH},T ,T ′1, . . . ,T
′
k −→ G

!h{ΓH},T ,T ′′1 ,T
′′
2 , . . . ,T

′′
m −→ G

Simple proofs!

Lemma: Checking whether a sequent of the form T −→ T ′ is provable
is in NP. It is bounded by the number of modalities in T and T ′.

Can we interpret policies as multiset rewrite rules?
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Goals
!eTG ⊗ >

Can we interpret policies as multiset rewrite rules?

States



T ::= K says A | K has A | K says T | K has T

Goals
!eTG ⊗ >

Simple proofs!

T ′′ −→ TG !h{ΓH},T −→ >
>R

!h{ΓH},T ,T ′′ −→ !eTG ⊗ >

States

Can we interpret policies as multiset rewrite rules?



T ::= K says A | K has A | K says T | K has T

Goals
!eTG ⊗ >

Simple proofs!

T ′′ −→ TG !h{ΓH},T −→ >
>R

!h{ΓH},T ,T ′′ −→ !eTG ⊗ >

Theorem: Proof search using only derivations of the forms above is
sound and complete.

States

Can we interpret policies as multiset rewrite rules?



Can we interpret policies as rewrite rules?

A

B

C

Principals



Can we interpret policies as rewrite rules?

A

B

C

Principals Tables New Tables

Policy Rule
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∀~y [!eT1 ⊗ · · · ⊗ !eTm]( ∃~y.[T ′1 ⊗ · · · ⊗ T ′n]

n = m
Balanced Bipoles

T ′′1 −→ T1 · · · T ′′m −→ Tm !h{ΓH},T ,T ′1, . . . ,T
′
n −→ G

!h{ΓH},T ,T ′′1 ,T
′′
2 , . . . ,T

′′
m −→ G

Number of T -formulas to the left-hand-side of sequents is always the
same.

Restriction based on [Kanovich, Rowe, Scedrov]



Parameters based on [Kanovich, Ban Kirigin, Nigam, and Scedrov]

k is an upper bound on the arity of predicate symbols;

L is finite first-order alphabet without function symbols with J
predicate symbols and D constant symbols;

P is a finite set of balanced bipoles specifying the policy rules;

T is a multiset of exactly m T -formulas specifying the initial
contents of the sequent.

G is G-formula appearing at the right-hand-side of the sequent.

Problem

The sequent !h{P},T −→ G is provable or not in SELL

Theorem: There is an algorithm that determines whether a sequent
!h{P},T −→ G is provable or not and runs in PSPACE with respect to
the parameters above.



PSPACE-completeness

PSPACE lower bound

Easy sound and complete encoding of a Turing Machine that accepts
in space n.

PSPACE upper bound

Lemma: Checking whether a sequent of the form T −→ T ′ is provable
is in NP. It is bounded by the number of modalities in T and T ′.

Lemma: The upper bound M on the number of modalities in a
T -formula appearing in a sequent S is the same as the upper bound
in any one of its cut-free proofs.

Lemma: There are at most MJ(D + 2mk)k different T -formulas.

Theorem: There is an algorithm that determines whether a sequent
!h{P},T −→ G is provable or not and runs in PSPACE with respect to
the parameters above.



Conclusions and Future Work

Investigate the use of subexponentials on formulas
appearing in the postcondition of rules. [CONCUR’13]

We proposed a logical framework for linear authorization
logics.

We showed that the MELL fragment of LAL is undecidable.

We proposed a novel first-order fragment of LAL for which
provability is PSPACE-complete.

Future Work

Decidable fragments when using knows modalities.



Questions


