
Formal computational models and
non-standard finiteness

Edward Hermann Haeusler

Department of Informatics - PUC-Rio - Brasil
hermann@inf.puc-rio.br

VII workshop de verão Matemática UnB



Foundational motivation

Phi What is a finite collection of objects ?

Phi/Math What is an infinite collection of objects ?

Science What is a computable collection of objects ?



Preamble: The Ontology of Mathematics

Sets (XIX c.) versus Categories (XX c.)

∈ versus→

“identity provided as free” vs “identity on arrows”
Categorification

Translating ontologies: “Language of Sets” to
“Language of Cats”
Comparing concepts by means of their models

Example I Emptiness in SetsC

Example II Dedekind finiteness in SetsM (action of monoids).



Monoid actions (M-Sets)

Let M be a monoid and A be a set.

A : A×M → A is a M-Set, iff, A(s,m ? n) = (A(s,m),n).

Let A and B be M-Sets.

F : A → B is a morphism in SetsM , iff, F : A→ B
F (A(x ,m)) = B(F (x),m).

M-Sets and morphisms between M-Sets form a category and is
a topos.



A motivating example

Let M be the free monoid generated by {mi/i ∈ N}

A={an/n ∈ N}, B={bn/n ∈ N}, and C = A ∪ B

Let C : M × C → C be the action of M on C, such that,

C(mn, x) =


ak if x = ak and k 6= n
bk if x = ak and k = n
bk if x = bk

Any injective morphism F : C → C is the identity IdC

Let G : B 7→ B be an injective function that is not bijective. The
action B(mn,bk ) = bk is not Dedekind finite.



Foundational motivation

I It seems that infiniteness happens only in math;
I Infiniteness (finiteness) had to be defined (1800’s);
I Dedekind (D), Kuratowski (K), Peano (P) and many other

provided finiteness definitions;
I In 1924 Tarksi proved D, K and P are equivalent, using

Axiom of Choice;
I This talk: What happens when computational ideas come

to the scenario ?



Known definitions for finite sets

Dedekind
A is D-finite, iff, every injective function f : A→ A is onto



Known definitions for finite sets

Kuratowski/Sierpinski/Russell (proof-theoretical version)
A is K-finite, iff, one can prove:
I A is empty, or;
I A is a singleton (A = {a}, for some a), or;
I A = A1 ∪ A2, and A1 and A2 are K-finite.



Known definitions for finite sets

Kuratowski/Sierpinski/Russell (algebraic version I)
A is K-finite, iff,
I

K (A) =


∅ ∈ S

S : ∀a ∈ A, {a} ∈ S
∀A1,A2 ∈ 2A, if A1,A2 ∈ S then A1 ∪ A2 ∈ S


I A ∈ K (A)



Known definitions for finite sets

Kuratowski/Sierpinski/Russell (algebraic version II)
A is K-finite, iff, the free semi-lattice generated by ∪ from ∅ and
the singletons {a} (a ∈ A), contains A



Known definitions for finite sets

R. Squire (1997)
A is Squire-finite, iff,
I Let φp be the formula

∨
i,j≤p(xi = xj) (there is at most p

things)
I Lp(A) = {S : S ∈ 2A and S |= φp}
I A ∈ Lp(A)



Known definitions for finite sets

Peano
A is Peano-finite, iff, A ' [p] = {1, . . . ,p} ⊆ N



Known definitions for finite sets

Remember !!!

I Every “finite” set is Dedekind, Peano, Kuratowksi, Squire
and etc, finite

I The above notions are not equivalence without the Axiom
of Choice



Finiteness in Computation

Usual assumptions on (classical) computational models

prog The size of any program is finite
data The amount of resource (memory/input) used is

(stepwise) finite
time Meaningful computations should stop (elapsed time is

finite)



Finiteness in Computation

Set-theoretical description of Turing Machines

Syntax1 〈Q,Σ, {qo}, {qf}, δ〉, and, δ ⊆ 2Σ×Q×{←,→}×Σ×Q

Syntax2 If Q and Σ are finite then δ is finite too.
Seman1 δ̂ : Σ? ×Q −→ Q
Seman2 Σ? and δ̂ come from Σ and δ by induction/recursion.



Finiteness in Computation

Turing Machines expressed in a local language

I Fix a finiteness definition fin(X )

I Use fin(X ),Syntax1,Syntax2fin, Seman1fin and Seman2fin to define
TMComputable(f )



Finiteness in Computation

δ̂ without NNO

I T : Pos −→ Σ

I fδ : P(Q × Pos × Tfin) −→ P(Q × Posfin ×Q), such that
Tfin = {h/fin({p ∈ Pos : h(p) 6=6 b})}

I X = P(Q × Pos × Tfin), St(X ) = {S ⊆ X : fδ(S) ⊆ S}
I i : St(X ) ↪→ P(X ) has left adjoint O : P(X )→ St(X ),
O(Z ) =

⋂
{S ∈ St(X ) : Z ⊆ S}

I O ◦ i is a closure operator, then δ̂ = O ◦ i

I f =
{〈xΣ?

, yΣ?〉/< q, zPos, yT >∈ δ̂◦ < qQ
0 ,o

Pos, xT > and final(q)}



Finiteness in Computation

Depending on fin(X ), one may have:

I Infinitely long deterministic programs (externally).
I Infinitely branching non-deterministic programs.

(externally)
I Finite computations with subsequences of infinite

computations (externally)
I Internally finite !!!



Finiteness in Computation

Depending on fin(X ), one may have:

I Infinitely long deterministic programs (externally).
I Infinitely branching non-deterministic programs.

(externally)
I Finite computations with subsequences of infinite

computations (externally)
I Internally finite !!!



Examples

In SetsM , G a particular free group. fin(A) = Dedekind(A) in
SetsG

I Dedekind(A) = D(A) = ∀f ∈ AA(Mono(f )⇒ Iso(f ))

I SetsG |= ∃W (D(W ) ∧ ¬D(P(W ))

I A T.M. with states in W can be a non-standard computational
model with a D-infinitely long program, or a D-infinitely branching
non-deterministic behavior.



Examples

In Sets0→1 with fin(A) = Kuratowski(A)

Kuratowski(A) = K (A) =

∀z ∈ ΩΩA
([0→ A] ∈ z∧∀a ∈ A({a} ∈ z)∧∀y ∈ ΩA∀y′ ∈ ΩA((y ∈ z∧y′ ∈ z)⇒ (y∪y′) ∈ z)⇒ [idA] ∈ z)

I Sets0→1 |= ∃W (K (W ) ∧ ∃V (V ⊆W ∧ ¬K (V )))

I A T.M. with states in W can be a non-standard computational
model able to K-finitely compute on K-infinitely long transitions.



Examples

Externally

I A non-standard computational model with an infinitely long
program, or an infinitely branching non-deterministic behavior.

I A non-standard computational model able to finitely compute on
infinitely long transitions.



Further investigation

I How this relates to physically based non-standard computation ?

I Does anyone needs any physical assumption to provide
non-standard (hypercomputational) models of computing ?
General Relativity Topos and Malament-Hogarth relativistic
computer can be obtained on a purely foundational way ?

I How far can we go without Natural Numbers Object ??
(Benabou on Topos with NNO, Tenenbaum’s Theorem; P.Freyd
Topos Numerology !!)

I Relationship to the Effective Topos ?



Thank You!



The Effective Topos [Hyland, 1982]

A Topos holding:

(1) Bool Its internal logic proves φ ∨ ¬φ;

(2) Comp Every morphism is “computable” ;

(3) NNO It has a Natural Numbers Object.

proves that the halting problem is “computable”.



The Effective Topos [Hyland, 1982]

A Topos holding:

(1) Bool Its internal logic proves φ ∨ ¬φ;

(2) Comp Every morphism is “computable” ;

(3) NNO It has a Natural Numbers Object.

proves that the halting problem is “computable”.

Alternatives

(1+3) ⇒ Sets is such topos. FOL + Arith

(1+2) ⇒ FinSets is such topos. FiniteFOL

(2+3) ⇒ Several toposes are known: Effective Topos, Recursive
Topos, etc. ILogic. Even Martin-Löf type theory is here (cannot
be a topos !!).



Other approaches on hypercomputation

I Analogic computation;
I Smale-Blum holomorphic computation;
I Infinite Turing machines;
I Physically based computation;



Categorification

Definition
Categorification is the process of finding category-theoretic analogs of set-theoretic

concepts by replacing sets with categories, functions with functors, and equations

between functions by natural isomorphisms between functors, which in turn should

satisfy certain equations of their own, called “coherence laws”.

[Baez98,Crane96]



Categorification

A Category is composed by:

I A collection Obs of objects.

I For each pair of objects A,B ∈ Obs there is a collection
Hom(A,B) of morphisms (arrows) from A to B.

I A composition operation
◦ : Hom(A,B)× Hom(B,C)→ Hom(A,C)

I For each object A, IdA ∈ Hom(A,A).

I f ◦ IdA = IdB ◦ f = f .

I f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Category Theory defines its concepts and constructions by means of
Universal Properties providing them unique up to isomorphims.



Categorification

Example
FinSets is the categorification of the (Algebra of) Natural Numbers

x × (y + z) = x × y + x × z

x × 0 = 0

ηx,y,z : x × (y + z)
 x × y + x × z : η−1
x,y,z

εx : x × 0
 0 : ε−1
x



Categorification

Decategorification
Now, given a category C, we may “decategorify” it by forgetting about the morphisms

and pretending that isomorphic objects are equal. We are left with a set (or class)

whose elements are isomorphism classes of objects of C. This process is dangerous,

because it destroys useful information. It amounts to forgetting which road we took

from x to y, and just remembering that we got there. Sometimes this is actually useful,

but most of the time people do it unconsciously, out of mathematical naivete. We write

equations, when we really should specify isomorphisms. “Categorification” is the

attempt to undo this mistake. Like any attempt to restore lost information, it not a

completely systematic process. return

In general there is more than one way to “categorificate” a
set-theoretic concept



UniversalProperties

Disjoint Union

A + B = ({a} × A) ∪ ({b} × B)
∼ ({0} × A) ∪ ({1} × B)
...
∼ ({z} × A′) ∪ ({w} × B′)

whenever B ∼ B′and B ∼ B′

return



UniversalProperties

Categorical Co-product

A
i
// A + B B

j
oo

return



UniversalProperties

Categorical Co-product

C

A
i
//

f

<<

A + B B

g

bb

j
oo

return



UniversalProperties

Categorical Co-product

C

A
i
//

f

<<

A + B

OO

B

g

bb

j
oo

return


