An Intersection Type System for Nominal Terms

Mauricio Ayala-Rincón Maribel Fernández Ana Cristina Rocha-Oliveira

Grupo de Teoria da Computação - UnB - Brasília - Brasil Department of Informatics - KCL - London - UK

Work supported by CAPES/Brazil

29th January, 2016 Seminário Informal (, mas Formal!), Brasília/DF, Brasil

1 Motivation

- 2 Nominal Syntax
- 3 Intersection Types for Nominal Terms
- 4 Conclusion and Future Work

What is nominal good for?

- Deal with binders in an elegant way.
- Built in α -equivalence.
- First-order substitutions.
- Decidable and efficient unification/matching.
- Frameworks based on nominal setting: α -Prolog, Fresh ML, $C\alpha$ Im...

Specifying binding operations:

• Explicit substitutions:

$$M\{x \mapsto N\} \rightarrow M \quad (x \notin fv(M))$$

Specifying binding operations:

• Explicit substitutions:

$$M\{x \mapsto N\} \rightarrow M \quad (x \notin fv(M))$$

• π -calculus:

$$P \mid \nu a.Q \rightarrow \nu a.(P \mid Q) \quad (a \notin fv(P))$$

Specifying binding operations:

• Explicit substitutions:

$$M\{x \mapsto N\} \rightarrow M \quad (x \notin fv(M))$$

• π -calculus:

$$P \mid va.Q \rightarrow va.(P \mid Q) \quad (a \notin fv(P))$$

Logic:

$$P \text{ and } (\forall x.Q) \rightarrow \forall x.(P \text{ and } Q) \quad (x \notin fv(P))$$

$$t ::= a \mid \pi \cdot X \mid [a]s \mid f(t_1, \ldots, t_n)$$

 α -equivalence deduction rules:

$$\frac{ \frac{ds(\pi,\pi')\#X \subseteq \nabla}{\nabla \vdash a \approx_{\alpha} a} (\approx_{\alpha} a) \qquad \frac{ds(\pi,\pi')\#X \subseteq \nabla}{\nabla \vdash \pi \cdot X \approx_{\alpha} \pi' \cdot X} (\approx_{\alpha} X) }{ \frac{\nabla \vdash s_{1} \approx_{\alpha} t_{1} \dots \nabla \vdash s_{n} \approx_{\alpha} t_{n}}{\nabla \vdash f(s_{1},\dots,s_{n}) \approx_{\alpha} f(t_{1},\dots,t_{n})} (\approx_{\alpha} f) }{ \frac{\nabla \vdash s \approx_{\alpha} t}{\nabla \vdash [a]s \approx_{\alpha} [a]t} (\approx_{\alpha} absa) } \frac{\nabla \vdash s \approx_{\alpha} (a b) \cdot t \quad \nabla \vdash a\#t}{\nabla \vdash [a]s \approx_{\alpha} [b]t} (\approx_{\alpha} absb)$$

where $\nabla = \{a_1 \# X_1, a_2 \# X_2, \dots, a_n \# X_n\}.$

Freshness deduction rules:

Nominal Syntax

$$\frac{\nabla \vdash a\#\bar{b}}{\nabla \vdash a\#\bar{b}} \, (\#\mathrm{ab}) \qquad \frac{(\pi^{-1}(a),X) \in \nabla}{\nabla \vdash a\#\pi \cdot X} \, (\#\mathrm{X}) \\ \frac{\nabla \vdash a\#()}{\nabla \vdash a\#()} \, (\#\mathrm{unit}) \qquad \frac{\nabla \vdash a\#s}{\nabla \vdash a\#s} \, (\#\mathrm{f}) \\ \frac{\nabla \vdash a\#s_1}{\nabla \vdash a\#(s_1,s_2)} \, (\#\mathrm{pair}) \\ \frac{\nabla \vdash a\#[a]s}{\nabla \vdash a\#[a]s} \, (\#\mathrm{absa}) \qquad \frac{\nabla \vdash a\#s}{\nabla \vdash a\#[b]s} \, (\#\mathrm{absb})$$

Nominal Rewriting Systems

$$\nabla \vdash I \rightarrow r$$
 $Vars(r, \nabla) \subseteq Vars(I)$

$$\begin{array}{lll} (\mathrm{Beta}) \colon & \vdash (\lambda[a]X)X' \to X\{a \mapsto X'\} \\ (\sigma_{\mathrm{app}}) \colon & \vdash (X \: X')\{a \mapsto Y\} \to X\{a \mapsto Y\} \: X'\{a \mapsto Y\} \\ (\sigma_{\mathrm{var}}) \colon & \vdash a\{a \mapsto X\} \to X \\ (\sigma_{\epsilon}) \ \colon a\#Y \vdash Y\{a \mapsto X\} \to Y \\ (\sigma_{\mathrm{lam}}) \colon b\#Y \vdash (\lambda[b]X)\{a \mapsto Y\} \to \lambda[b](X\{a \mapsto Y\}) \\ \end{array}$$

Notation: $X\{a \mapsto Y\} = \text{subst}([a]X, Y)$.

Confluence of orthogonal NRSs does not hold in general.

Confluence of orthogonal NRSs does not hold in general.

Example:
$$R = \vdash f(X) \rightarrow f([a]X)$$

$$\begin{array}{c} f(a) \\ \langle R, \epsilon, \mathbf{I}, [X \mapsto a] \rangle \\ \hline f([a]a) & \not\approx_{\alpha} & f([b]a) \end{array}$$

Confluence of orthogonal NRSs does not hold in general.

Example:
$$R = \vdash f(X) \rightarrow f([a]X)$$

Solution:

- Additional conditions (α-stability); or
- Transform the notion of rewriting (closed rewriting).

Nominal Syntax

Confluence of orthogonal NRSs does not hold in general.

Example:
$$R = \vdash f(X) \rightarrow f([a]X)$$

Solution:

- Additional conditions (α-stability); or
- Transform the notion of rewriting (closed rewriting).

What about types?

Importance of Types

- Add formalism to programming languages.
- Prevent errors.
- Existing nominal type systems: simple, polymorphic and dependent type systems.

Grammar of types

- ullet A set of type variables ${\mathbb T}$
- A set of type constructors as $\mathbb{T}_{\mathcal{C}}$ (bool, nat, real, list etc)
- A signature Σ with function symbols and their corresponding type declarations $\sigma \hookrightarrow \tau$
- Types are given by

$$\tau ::= \beta \mid () \mid (\tau \times \tau) \mid C\tau \mid [\tau]\tau \mid \tau \cap \tau.$$

Grammar of types

- A set of type variables T
- A set of type constructors as \mathbb{T}_C (bool, nat, real, list etc)
- A signature Σ with function symbols and their corresponding type declarations $\sigma \hookrightarrow \tau$
- Types are given by

$$\tau ::= \beta \mid () \mid (\tau \times \tau) \mid C\tau \mid [\tau]\tau \mid \tau \cap \tau.$$

Partial order between types

$$\begin{array}{|c|c|c|c|c|}\hline (A1) & \sigma \leq \sigma & (A2) & \sigma \cap \tau \leq \sigma & (A3) & \sigma \cap \tau \leq \tau \\ \hline (R1) & \frac{\sigma \leq \tau, \sigma \leq \rho}{\sigma \leq \tau \cap \rho} & (R2) & \frac{\sigma \leq \tau, \tau \leq \rho}{\sigma \leq \rho} \\ \hline \end{array}$$

Type Inference Rules: Quasi-derivations

$$\begin{array}{ll} \text{(a)} & \frac{}{\Gamma \bowtie a:\sigma,\Delta \vdash a:\sigma} & \text{(var)} & \frac{}{\Gamma \bowtie X:\sigma,\Delta \vdash \pi \cdot X:\sigma} \\ \\ \text{(abs)} & \frac{\Gamma \bowtie a:\sigma,\Delta \vdash t:\tau}{\Gamma,\Delta \vdash [a]t:[\sigma]\tau} & \text{(\cap_I)} & \frac{\Gamma,\Delta \vdash t:\sigma_1}{\Gamma,\Delta \vdash t:\sigma_1\cap\sigma_2} \\ \\ \text{(\cap_E)} & \frac{\Gamma,\Delta \vdash t:\sigma_1\cap\sigma_2}{\Gamma,\Delta \vdash t:\sigma_i} & \text{(\times)} & \frac{\Gamma,\Delta \vdash t_1:\sigma_1}{\Gamma,\Delta \vdash (t_1,t_2):(\sigma_1\times\sigma_2)} \\ \\ \text{(\times_0)} & \frac{\Gamma,\Delta \vdash (\land) \cap \sigma_2}{\Gamma,\Delta \vdash (\land) \cap \sigma_2} & \text{(f)} & \frac{\Gamma,\Delta \vdash (t_1,t_2):(\sigma_1\times\sigma_2)}{\Gamma,\Delta \vdash (t_1,t_2):(\sigma_1\times\sigma_2)} \\ \\ \text{(\times_0)} & \frac{\Gamma,\Delta \vdash (\land) \cap \sigma_2}{\Gamma,\Delta \vdash (\land) \cap \sigma_2} & \text{(f)} & \frac{\Gamma,\Delta \vdash (t_1,t_2):(\sigma_1\times\sigma_2)}{\Gamma,\Delta \vdash (t_1,t_2):(\sigma_1\times\sigma_2)} \\ \\ \end{array}$$

Type Inference Rules: Quasi-derivations

$$\begin{array}{ll} \text{(a)} & \frac{}{\Gamma \bowtie a : \sigma, \Delta \vdash a : \sigma} & \text{(var)} & \frac{}{\Gamma \bowtie X : \sigma, \Delta \vdash \pi \cdot X : \sigma} \\ \\ \text{(abs)} & \frac{\Gamma \bowtie a : \sigma, \Delta \vdash t : \tau}{\Gamma, \Delta \vdash [a]t : [\sigma]\tau} & \text{(\cap_I)} & \frac{\Gamma, \Delta \vdash t : \sigma_1}{\Gamma, \Delta \vdash t : \sigma_1 \cap \sigma_2} \\ \\ \text{(\cap_E)} & \frac{\Gamma, \Delta \vdash t : \sigma_1 \cap \sigma_2}{\Gamma, \Delta \vdash t : \sigma_i} & \text{(\times)} & \frac{\Gamma, \Delta \vdash t_1 : \sigma_1}{\Gamma, \Delta \vdash t_1 : \sigma_1} & \Gamma, \Delta \vdash t_2 : \sigma_2}{\Gamma, \Delta \vdash (t_1, t_2) : (\sigma_1 \times \sigma_2)} \\ \\ \text{(\times_0)} & \frac{\Gamma, \Delta \vdash () : ()}{\Gamma, \Delta \vdash () : ()} & \text{(f)} & \frac{\Sigma_f = \tau \hookrightarrow \gamma \quad \tau \le \sigma \quad \Gamma, \Delta \vdash t : \sigma}{\Gamma, \Delta \vdash f \ t : \gamma} \\ \end{array}$$

Definition (Essential environment)

For a quasi-derivation of Γ' , $\Delta \vdash t : \tau$, let $\Gamma \bowtie X : \sigma$, $\Delta \vdash \pi \cdot X : \sigma$ be a leaf of it such that $X \in Vars(t)$. Thus, the set $\pi^{-1}\Gamma \setminus \{a: \tau' | \Delta \vdash a\#X\}$ is an **essential environment** of the quasi-derivation with respect to X.

Definition (Essential environment)

For a quasi-derivation of Γ' , $\Delta \vdash t : \tau$, let $\Gamma \bowtie X : \sigma$, $\Delta \vdash \pi \cdot X : \sigma$ be a leaf of it such that $X \in Vars(t)$. Thus, the set $\pi^{-1}\Gamma \setminus \{a : \tau' | \Delta \vdash a\#X\}$ is an **essential environment** of the quasi-derivation with respect to X.

Definition (Diamond property)

A quasi-derivation of Γ' , $\Delta \vdash t : \tau$ has the **diamond property** if, for each $X \in \mathit{Vars}(t)$, the essential environments with respect to X are equal.

Results

Lemma (Subtype property)

If
$$\Gamma, \Delta \vdash t : \tau$$
 and $\tau \leq \tau'$, then $\Gamma, \Delta \vdash t : \tau'$.

Results

Lemma (Subtype property)

If $\Gamma, \Delta \vdash t : \tau$ and $\tau \leq \tau'$, then $\Gamma, \Delta \vdash t : \tau'$.

Lemma (Object level equivariance)

If Γ , $\Delta \vdash t : \sigma$, then ${}^{\pi}\Gamma$, $\Delta \vdash \pi \cdot t : \sigma$.

Results

Lemma (Subtype property)

If $\Gamma, \Delta \vdash t : \tau$ and $\tau \leq \tau'$, then $\Gamma, \Delta \vdash t : \tau'$.

Lemma (Object level equivariance)

If $\Gamma, \Delta \vdash t : \sigma$, then ${}^{\pi}\Gamma, \Delta \vdash \pi \cdot t : \sigma$.

Lemma (α -equivalence preserves types)

If $\Gamma, \Delta \vdash t : \tau$ and $\Delta \vdash t \approx_{\alpha} s$, then $\Gamma, \Delta \vdash s : \tau$.

Typeability

Definition (Typeability problem)

A given term in context $\Delta \vdash t$ is a typeability problem that asks if there exist a solution $\langle \Gamma, \tau \rangle$ such that $\Gamma, \Delta \vdash t : \tau$.

Typeability

Definition (Typeability problem)

A given term in context $\Delta \vdash t$ is a typeability problem that asks if there exist a solution $\langle \Gamma, \tau \rangle$ such that $\Gamma, \Delta \vdash t : \tau$.

Definition (Principal typings)

A pair $\langle \Gamma, \tau \rangle$ is a principal typing of $\Delta \vdash t$ if it solves this typeability problem and, for any other solution $\langle \Gamma', \tau' \rangle$, $\Gamma' \leq \Gamma$ and $\tau \leq \tau'$ hold.

Definition (Typeable closed rules)

A typeable closed rule Φ , $\nabla \vdash I \rightarrow r : \tau$ satisfies:

- $Vars(\Phi, \nabla, r) \subseteq Vars(I)$;
- $\langle \Phi, (\tau \times \tau) \rangle$ is a principal typing of $\nabla \vdash \langle I, r \rangle$.
- $\nabla \vdash I \rightarrow r$ is a closed rule (it matches a freshened version).
- If $\Sigma_f = \tau \hookrightarrow \gamma$ and $\Gamma, \Delta \vdash f t : \gamma$ occurs in the derivation of types, then $\Gamma, \Delta \vdash t : \sigma$ and $\tau \leq \sigma$.

Definition (Typeable closed rules)

A typeable closed rule Φ , $\nabla \vdash I \rightarrow r : \tau$ satisfies:

- $Vars(\Phi, \nabla, r) \subseteq Vars(I)$;
- $\langle \Phi, (\tau \times \tau) \rangle$ is a principal typing of $\nabla \vdash \langle I, r \rangle$.
- $\nabla \vdash I \rightarrow r$ is a closed rule (it matches a freshened version).
- If $\Sigma_f = \tau \hookrightarrow \gamma$ and $\Gamma, \Delta \vdash f t : \gamma$ occurs in the derivation of types, then $\Gamma, \Delta \vdash t : \sigma$ and $\tau < \sigma$.

Lemma (Subject Reduction)

Given a typeable closed rule $\Phi, \nabla \vdash I \rightarrow r : \tau$, if $\Gamma, \Delta \vdash s : \sigma$ and $\Delta \vdash s \stackrel{R}{\rightarrow}_{c} t$, then $\Gamma, \Delta \vdash t : \sigma$.

Conclusion and Future Work

- We have a preliminary intersection type system for nominal terms that preserves types for α -equivalent terms.
- It is expected to develop an algorithm to return principal typings for terms in context.
- The conditions in which subject reduction (expansion) holds must be studied.

Conclusion and Future Work

Elliot Fairweather, Maribel Fernández, and Murdoch James Gabbay.

Principal types for nominal theories.

In Fundamentals of Computation Theory - 18th International Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings, pages 160-172, 2011.

Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro Tasistro.

Dependent types for nominal terms with atom substitutions.

In 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, pages 180-195, 2015.

M. Fernández and M. J. Gabbay.

Nominal rewriting (journal version).

Information and Computation, 205(6):917-965, June 2007.

Steffen van Bakel.

Rank 2 intersection type assignment in term rewriting systems.

Fundam, Inform., 26(2):141-166, 1996.

Steffen van Bakel and Mariangiola Dezani-Ciancaglini.

Characterising strong normalisation for explicit substitutions.

In LATIN 2002: Theoretical Informatics, 5th Latin American Symposium, Cancun, Mexico, April 3-6, 2002. Proceedings, pages 356-370, 2002.