
SOLVING AND COMPUTING
WITH VARIADIC TERMS

Temur Kutsia
RISC, Johannes Kepler University Linz



Variadic languages

Variadic alphabet: The arity of function symbols is not fixed.

Variables: Term variables x, y, z, . . . and sequence variables
X,Y, Z, . . ..

Terms: A term variable or a compound term of the form
f(s1, . . . , sn).

Sequences: s1, . . . , sn, n ≥ 0, where each si is either a
sequence variable or a term.

Intuitive explanation rather than a formal definition.

For readability, sequences usually are put in the parentheses: (s1, . . . , sn).

1 / 58



Variadic languages

Variadic alphabet: The arity of function symbols is not fixed.

Variables: Term variables x, y, z, . . . and sequence variables
X,Y, Z, . . ..

Terms: A term variable or a compound term of the form
f(s1, . . . , sn).

Sequences: s1, . . . , sn, n ≥ 0, where each si is either a
sequence variable or a term.

Intuitive explanation rather than a formal definition.

For readability, sequences usually are put in the parentheses: (s1, . . . , sn).

1 / 58



Properties of sequences

Sequences are flat:

(s1, s2, (t1, t2), s3, ()) = (s1, s2, t1, t2, s3).

Sequences also flatten under function symbols:

f(a, (b, (c, d)), ()) = f(a, b, c, d).

Singleton sequence and its element are not distinguished:

(t) = t.

2 / 58



Terminology

Alternative names for variadic terms:

� flexary terms

� flexible arity terms

� polyadic terms

� multi-ary terms

� unranked terms

Alternative names for variadic term sequences:

� hedges

� (variadic, flexary, . . . ) forests

3 / 58



Terminology

Sometimes term variables are called individual variables.

Sequence variables are also referred to as hedge variables.

4 / 58



Variadic terms

Example

f(g(X), f(Y ), g(a, z)) f

g

X

f

Y

g

a z

� The arity of function symbols is not fixed.

� Different occurrences of the same function symbol may
have different number of arguments.

5 / 58



Variadic term sequences

Example

f(g(X), f(Y ), g(a, z)), X, g(z)

f

g

X

f

Y

g

a z

X g

z

� Finite, possibly empty, sequences of variadic terms.

6 / 58



Substitutions

Substitution: a mapping

� from term variables to terms,

� from sequence variables to sequences,

which is identity almost everywhere.

7 / 58



Terms and substitutions

Example

f(g(X), f(Y ), g(a, z))

f

g

X

f

Y

g

a z

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

z

g

a f

a

{X 7→ (), Y 7→ (g(a), z), y 7→ f(a)}

X 7→

Y 7→ g

a

z

z

7→ f

a

8 / 58



Terms and substitutions

Example

f(g(X), f(Y ), g(a, z))

f

g

X

f

Y

g

a z

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

z

g

a f

a

{X 7→ (), Y 7→ (g(a), z), y 7→ f(a)}

X 7→

Y 7→ g

a

z

z

7→ f

a

8 / 58



Terms and substitutions

Example

f(g(X), f(Y ), g(a, z)), X, g(z)

f

g

X

f

Y

g

a z

X g

z

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

f(g, f(g(a), z), g(a, f(a))), g(f(a))

f

g f

g

a

z

g

a f

a

g

f

a

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

9 / 58



Terms and substitutions

Example

f(g(X), f(Y ), g(a, z)), X, g(z)

f

g

X

f

Y

g

a z

X g

z

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

f(g, f(g(a), z), g(a, f(a))), g(f(a))

f

g f

g

a

z

g

a f

a

g

f

a

{X 7→ (), Y 7→ (g(a), z), z 7→ f(a)}

X 7→

Y 7→ g

a

z

z 7→ f

a

9 / 58



Variadic terms and sequences

Convenient and useful feature for

� formalizing mathematical texts
(LFS, OpenMath, MathML, Mizar, Theorema),

� interchange languages
(KIF, Common Logic)

� representing symbolic computation data structures
(Mathematica, Theorema),

� modeling XML documents
(XCentric),

� expressing patterns in declarative programming
(Wolfram, ρLog),

� etc.

10 / 58



Outline

Solving

Computing

11 / 58



Solving problems

Unification:

Given: Two (variadic) terms s and t.
Find: A substitution σ such that sσ = tσ.

σ: a unifier of s and t.

If such a σ exists, s and t are unifiable.

Example

s = f(X, f(a), Y )

t = f(a, f(z), b, f(u), c)

σ = {X 7→ a, z 7→ a, Y 7→ (b, f(u), c)}
sσ = f(a, f(a), b, f(u), c) = tσ

12 / 58



Solving problems

Matching:

Given: Two (variadic) terms s and t.
Find: A substitution σ such that sσ = t.

σ: a matcher of s to t.

If such a σ exists, s matches t.

Example

s = f(X1, y,X2, y,X3)

t = f(a, f(a), f(a), a, b)

σ = {y 7→ a,X1 7→ (), X2 7→ (f(a), f(a)), X3 7→ b}
sσ = f(a, f(a), f(a), a, b) = t

13 / 58



Solving problems

Anti-unification:

Given: Two (variadic) terms s and t.
Find: A (variadic) term r that matches both s and t.

r: a generalization of s and t.

Example

s = g(f(a), b, c, f(a), b, c)

t = g(f(a), f)

r = g(f(a), X, f(Y ), X)

r{X 7→ (b, c), Y 7→ a} = s

r{X 7→ (), Y 7→ ()} = t

14 / 58



Notation

Unification problem: s =? t.

Matching problem: s �? t.

Anti-unification problem s ,? t.

15 / 58



Unification

Word unification is a special case of variadic unification.

It uses

� one variadic function symbol on the top position,

� any other function symbol without arguments,

� only sequence variables (no term variables).

Word unification problem

XaY =? aXabc

encoded as a variadic unification problem

f(X, a, Y ) =? f(a,X, a, b, c).

16 / 58



Unification

Word unification is a well-studied classical problem.

It is decidable [Makanin 1977] and infinitary [Plotkin 1970,
Siekmann 1978].

Variadic unification is also decidable and infinitary.

Example

Variadic unification problem: f(X, a) =? f(a,X)

Unifiers:

{X 7→ ()}
{X 7→ a}
{X 7→ (a, a)}
. . .

17 / 58



Unification: unitary/finitary fragments

Fragment 1: the KIF fragment (KIF).

KIF: Knowledge Interchange Format.

Sequence variables occupy only the last argument position in
each subterm where they occur.

Unification type is unitary: a single most general unifier exists.

Example

f(f(a,X), g(x, y,X), Y ) =? f(f(x, a, Y ), g(a, Z), U)

mgu: {x 7→ a,X 7→ (a, U), Y 7→ U,Z 7→ (y, a, U)}
common instance: f(f(a, a, U), g(a, y, a, U), U)

18 / 58



Unification: unitary/finitary fragments

Fragment 2: the linear fragment (LIN).

In unification problems, no variable appears more than once.

Unification type is finitary: every solvable problem has a finite
set of incomparable most general unifiers.

Example

f(X, f(x, c)) =? f(a, b, f(Y,Z))

mcsu: {σ1, σ2, σ3}, where

σ1 = {X 7→ (a, b), Y 7→ (), Z 7→ (x, c)},
σ2 = {X 7→ (a, b), Y 7→ x, Z 7→ c}
σ3 = {X 7→ (a, b), Y 7→ (x, c), Z 7→ ()}

common instance for σ1: f(a, b, f(x, c))

19 / 58



Unification: unitary/finitary fragments

Fragment 3: unique postfix fragment (UPOST).

The sequence t1, . . . , tn is called a postfix of X in the term
f(s1, . . . , sm, X, t1, . . . , tn).

For instance, the postfixes of X in f(a,X, b,X, g(X)) are
(b,X, g(X)) and g(X).

In the unique postfix fragment of variadic unification, each
sequence variable occurring in the unification problem has the
same postfix in all subterms it occurs.

20 / 58



Unification: unitary/finitary fragments

Fragment 3: unique postfix fragment (UPOST).

Example

f(f(a,X, f(Y, b), y), g(Z,U)) =? f(x, g(X, f(Y, b), y))

UPOST-unification problem.

Postfixes of variables:

For X: (f(Y, b), y)

For Y : b

For Z: U

For U : ()

21 / 58



Unification: unitary/finitary fragments

Fragment 3: unique postfix fragment (UPOST).

KIF, LIN: special cases of UPOST.

UPOST is finitary.

Example

f(X, f(Y, b), Z, b) =? f(f(a, b), f(b), Y, b)

mcsu: {σ1, σ2}, where

σ1 = {X 7→ (), Y 7→ a, Z 7→ (f(b), a)},
σ2 = {X 7→ f(a, b), Y 7→ (), Z 7→ ()}

common instance for σ1: f(f(a, b), f(b), a, b)

common instance for σ2: f(f(a, b), f(b), b)

22 / 58



Unification: unitary/finitary fragments

Fragment 4: inverse KIF fragment (I-KIF).

In unification problems, sequence variables occupy only the
first argument position in each subterm where they occur.

I-KIF is unitary.

Fragment 5: unique prefix fragment (UPREF).

Dual to UPOST: every sequence variable has the same prefix
in all subterms.

UPREF is finitary.

I-KIF and LIN are special cases of UPREF.

23 / 58



Unification: unitary/finitary fragments

Fragment 6: unique variables in one side (UV).

In unification problem s =? t, each variable that occurs in t has
the unique occurrence in the problem.

Example

f(X, a,X) =? f(a, Y, a) is in UV.

f(f(a,X), f(X, a)) =? f(y, z) is in UV.

f(f(a,X), f(X, a)) =? f(y, y) is not in UV.

f(a,X) =? f(X, a) is not in UV.

UV is finitary.

24 / 58



Unification: unitary/finitary fragments

Fragment 7: matching fragment (M).

Matching problem s �? t can be also seen as a special case of
unification, when t does not contain variables.

It is a special case of UV and is finitary.

Example

s = f(X1, y,X2, y,X3)

t = f(a, f(a), f(a), a, b)

σ1 = {y 7→ a,X1 7→ (), X2 7→ (f(a), f(a)), X3 7→ b}
σ2 = {y 7→ f(a), X1 7→ a,X2 7→ (), X3 7→ (a, b)}

25 / 58



Unification: unitary/finitary fragments

Relations between various unitary or finitary fragments:

UPOST UPREF

LIN

KIF I-KIF
M UV

26 / 58



Unification: termination

Unification procedures from [Kutsia 2007] and [Kutsia & Marin,
2012] stop for these unitary or finitary fragments.

In general, termination is not granted even if the problem is
unitary/finitary, because there might exist infinitely failing
derivations (unless the decision algorithm is incorporated in the
computation process).

It is possible to obtain a terminating algorithm for a special kind
of infinitary problem, where no variable occurs more than twice:
requires cycle checks and special representation of solutions.

27 / 58



Unification Procedure

Example

{f(X, a) =? f(a,X)}

∅ {f(X, a) =? f(a,X)}

X 7→ ()

∅

X 7→ a

{f(X, a) =? f(a,X)}

X 7→ (a,X)

∅

X 7→ a

{f(X, a) =? f(a,X)}

. . .

X 7→ (a,X)

28 / 58



Unification Procedure

Example

{f(X, a) =? f(a,X)}

∅ {f(X, a) =? f(a,X)}

X 7→ ()

∅

X 7→ a

{f(X, a) =? f(a,X)}

X 7→ (a,X)

∅

X 7→ a

{f(X, a) =? f(a,X)}

. . .

X 7→ (a,X)

28 / 58



Unification Procedure

Example

{f(X, a) =? f(a,X)}

∅ {f(X, a) =? f(a,X)}

X 7→ ()

∅

X 7→ a

{f(X, a) =? f(a,X)}

X 7→ (a,X)

∅

X 7→ a

{f(X, a) =? f(a,X)}

. . .

X 7→ (a,X)

28 / 58



Unification Procedure

Example

{f(X, a) =? f(a,X)}

∅ {f(X, a) =? f(a,X)}

X 7→ ()

∅

X 7→ a

{f(X, a) =? f(a,X)}

X 7→ (a,X)

∅

X 7→ a

{f(X, a) =? f(a,X)}

. . .

X 7→ (a,X)

28 / 58



Matching

Variadic matching is NP-complete.

Hardness can be shown by reducing from positive 1-in-3-SAT.

In positive 1-in-3-SAT, each clause contains three propositional
variables and exactly one from them should be assigned true.

Reduction:

� Introduce a sequence variable Xp for each propositional variable
p appearing in a positive 1-in-3-SAT problem.

� Translate each clause p1 ∨ p2 ∨ p3 into a variadic matching
problem f(Xp1

, Xp2
, Xp3

) �? f(t).

� Three possible matchers:
{Xpi 7→ t,Xpj 7→ (), Xpk

7→ ()} for {i, j, k} = {1, 2, 3}
; pi = true, pj = false, pk = false

Linear variadic matching can be decided in time O(n3).

29 / 58



Matching

Variadic matching is NP-complete.

Hardness can be shown by reducing from positive 1-in-3-SAT.

In positive 1-in-3-SAT, each clause contains three propositional
variables and exactly one from them should be assigned true.

Reduction:

� Introduce a sequence variable Xp for each propositional variable
p appearing in a positive 1-in-3-SAT problem.

� Translate each clause p1 ∨ p2 ∨ p3 into a variadic matching
problem f(Xp1

, Xp2
, Xp3

) �? f(t).

� Three possible matchers:
{Xpi 7→ t,Xpj 7→ (), Xpk

7→ ()} for {i, j, k} = {1, 2, 3}
; pi = true, pj = false, pk = false

Linear variadic matching can be decided in time O(n3).

29 / 58



Matching

Variadic matching is NP-complete.

Hardness can be shown by reducing from positive 1-in-3-SAT.

In positive 1-in-3-SAT, each clause contains three propositional
variables and exactly one from them should be assigned true.

Reduction:

� Introduce a sequence variable Xp for each propositional variable
p appearing in a positive 1-in-3-SAT problem.

� Translate each clause p1 ∨ p2 ∨ p3 into a variadic matching
problem f(Xp1

, Xp2
, Xp3

) �? f(t).

� Three possible matchers:
{Xpi 7→ t,Xpj 7→ (), Xpk

7→ ()} for {i, j, k} = {1, 2, 3}
; pi = true, pj = false, pk = false

Linear variadic matching can be decided in time O(n3).
29 / 58



Anti-unification

Variadic anti-unification is finitary.

Example

g(f(a), f(a)) and g(f(a), f) have three incomparable least
general generalizations:

g(f(a), f(a)) g(f(a), f)

g(f(a), f(X))

{X 7→ a} {X 7→ ()}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(X))

{X 7→ a, Y 7→ ()} {X 7→ (), Y 7→ a}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(Y ))

{X 7→ (), Y 7→ a} {X 7→ a, Y 7→ ()}

30 / 58



Anti-unification

Variadic anti-unification is finitary.

Example

g(f(a), f(a)) and g(f(a), f) have three incomparable least
general generalizations:

g(f(a), f(a)) g(f(a), f)

g(f(a), f(X))

{X 7→ a} {X 7→ ()}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(X))

{X 7→ a, Y 7→ ()} {X 7→ (), Y 7→ a}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(Y ))

{X 7→ (), Y 7→ a} {X 7→ a, Y 7→ ()}

30 / 58



Anti-unification

Variadic anti-unification is finitary.

Example

g(f(a), f(a)) and g(f(a), f) have three incomparable least
general generalizations:

g(f(a), f(a)) g(f(a), f)

g(f(a), f(X))

{X 7→ a} {X 7→ ()}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(X))

{X 7→ a, Y 7→ ()} {X 7→ (), Y 7→ a}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(Y ))

{X 7→ (), Y 7→ a} {X 7→ a, Y 7→ ()}

30 / 58



Anti-unification

Variadic anti-unification is finitary.

Example

g(f(a), f(a)) and g(f(a), f) have three incomparable least
general generalizations:

g(f(a), f(a)) g(f(a), f)

g(f(a), f(X))

{X 7→ a} {X 7→ ()}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(X))

{X 7→ a, Y 7→ ()} {X 7→ (), Y 7→ a}

g(f(a), f(a)) g(f(a), f)

g(f(X,Y ), f(Y ))

{X 7→ (), Y 7→ a} {X 7→ a, Y 7→ ()}

30 / 58



Rigid variadic generalizations: idea

Restricted variant of variadic anti-unification.

Emphasis on keeping the common structure, rather than on
uniform generalization of distinct parts.

Avoiding consecutive sequence variables in the generalization.

31 / 58



Rigid variadic generalizations: idea
More specifically:

� Given two sequences

s̃ = (f1(s̃1), . . . , fn(s̃n)), t̃ = (g1(t̃1), . . . , gm(t̃m))

� Take a common subsequence of f1, . . . , fn and g1, . . . , gm.
Let it be h1, . . . , hk.

� Then a rigid generalization of s̃ and t̃ is a sequence

r̃ = (X1, h1(r̃1), X2, h2(r̃2), . . . , Xk−1, hk(r̃k), Xk),

where
� X ’s are (not necessarily distinct) new sequence variables,
� Some X ’s can be omitted,
� if hi = fj = gl, then r̃i is a rigid generalization of s̃j and r̃l.

� The algorithm is parameterized by a rigidity function.
It decides which common subsequences are taken.

32 / 58



Rigid variadic generalizations: idea
More specifically:

� Given two sequences

s̃ = (f1(s̃1), . . . , fn(s̃n)), t̃ = (g1(t̃1), . . . , gm(t̃m))

� Take a common subsequence of f1, . . . , fn and g1, . . . , gm.
Let it be h1, . . . , hk.

� Then a rigid generalization of s̃ and t̃ is a sequence

r̃ = (X1, h1(r̃1), X2, h2(r̃2), . . . , Xk−1, hk(r̃k), Xk),

where
� X ’s are (not necessarily distinct) new sequence variables,
� Some X ’s can be omitted,
� if hi = fj = gl, then r̃i is a rigid generalization of s̃j and r̃l.

� The algorithm is parameterized by a rigidity function.
It decides which common subsequences are taken.

32 / 58



Rigid variadic generalizations: idea
More specifically:

� Given two sequences

s̃ = (f1(s̃1), . . . , fn(s̃n)), t̃ = (g1(t̃1), . . . , gm(t̃m))

� Take a common subsequence of f1, . . . , fn and g1, . . . , gm.
Let it be h1, . . . , hk.

� Then a rigid generalization of s̃ and t̃ is a sequence

r̃ = (X1, h1(r̃1), X2, h2(r̃2), . . . , Xk−1, hk(r̃k), Xk),

where
� X ’s are (not necessarily distinct) new sequence variables,
� Some X ’s can be omitted,
� if hi = fj = gl, then r̃i is a rigid generalization of s̃j and r̃l.

� The algorithm is parameterized by a rigidity function.
It decides which common subsequences are taken.

32 / 58



Rigid variadic generalizations: idea
More specifically:

� Given two sequences

s̃ = (f1(s̃1), . . . , fn(s̃n)), t̃ = (g1(t̃1), . . . , gm(t̃m))

� Take a common subsequence of f1, . . . , fn and g1, . . . , gm.
Let it be h1, . . . , hk.

� Then a rigid generalization of s̃ and t̃ is a sequence

r̃ = (X1, h1(r̃1), X2, h2(r̃2), . . . , Xk−1, hk(r̃k), Xk),

where
� X ’s are (not necessarily distinct) new sequence variables,
� Some X ’s can be omitted,
� if hi = fj = gl, then r̃i is a rigid generalization of s̃j and r̃l.

� The algorithm is parameterized by a rigidity function.
It decides which common subsequences are taken.

32 / 58



Rigid variadic generalizations: idea
More specifically:

� Given two sequences

s̃ = (f1(s̃1), . . . , fn(s̃n)), t̃ = (g1(t̃1), . . . , gm(t̃m))

� Take a common subsequence of f1, . . . , fn and g1, . . . , gm.
Let it be h1, . . . , hk.

� Then a rigid generalization of s̃ and t̃ is a sequence

r̃ = (X1, h1(r̃1), X2, h2(r̃2), . . . , Xk−1, hk(r̃k), Xk),

where
� X ’s are (not necessarily distinct) new sequence variables,
� Some X ’s can be omitted,
� if hi = fj = gl, then r̃i is a rigid generalization of s̃j and r̃l.

� The algorithm is parameterized by a rigidity function.
It decides which common subsequences are taken.

32 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f g

Y

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f g

Y

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f g

Y

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

Xx x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x

f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x

f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x

f f

a

Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x

f f

a

Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x

f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

f

a a

a a

f

f

c

c

g

g

f f

f f

a

a

a

a

f

f

b b

b b

g

g

f f

f f

a

a

f gY

X

x x f f

a Z

Rigidity function computes longest common subsequences.

33 / 58



Computing rigid variadic generalizations

Example

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

X

h

X

Rigidity function computes longest common subsequences of length
at least 3.

34 / 58



Computing rigid variadic generalizations

Example

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

a

h

a

f

a b c

g

X

h

X

Rigidity function computes longest common subsequences of length
at least 3.

34 / 58



Rigid anti-unification: some interesting facts

By choosing appropriate rigidity functions, rigid variadic
anti-unification can model various existing generalization
algorithms:

� Simple hedge anti-unification for inductive reasoning over
semi-structured documents [Yamamoto et al., 2001].

� Word anti-unification [Cicekli and Ciceckli, 2006].

� ε-free word anti-unification [Biere, 2003].

� First-order anti-unification [Plotkin, 1972], [Reynolds,
1972].

Combination of rigid and complete (non-rigid) variadic
anti-unification algorithms can simulate AU anti-unification
[Alpuente et al., 2014]

35 / 58



Rigid anti-unification and clone detection

Variadic representation of code pieces:

if(>=(a, b), if(>=(m, n),

then(=(c, +(d, b)), then(=(y, +(x, n)),

=(d, +(d, 1))), =(z, 1),

else(=(c, -(d, a)))) =(x, +(x, 5))),

else(=(y, -(x, m))))

An interesting generalization:

if(>=(y1, y2),

then(=(y3, +(y4, y2)),

Y,

=(y4, +(y4, y5))),

else(=(y3, -(y4, y1))))

36 / 58



Rigid anti-unification and clone detection

37 / 58



Rigid anti-unification and clone detection

� Rigid anti-unification helps to detect inserted or deleted pieces
of code, which is necessary for clones of type 3.

� If we are interested in clones whose length is greater than a
predefined threshold, we can include this measure in the
definition of the rigidity function.

� The approach is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual
and precise structural techniques and consider rigidity functions
modulo a given metrics.

� Generalizations reflect similarities between two inputs, while the
store reflects differences between them.

� The output of anti-unification can be used for comparison utilities
and for extracting a procedure. This process has a use in code
refactoring.

38 / 58



Rigid anti-unification and clone detection

� Rigid anti-unification helps to detect inserted or deleted pieces
of code, which is necessary for clones of type 3.

� If we are interested in clones whose length is greater than a
predefined threshold, we can include this measure in the
definition of the rigidity function.

� The approach is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual
and precise structural techniques and consider rigidity functions
modulo a given metrics.

� Generalizations reflect similarities between two inputs, while the
store reflects differences between them.

� The output of anti-unification can be used for comparison utilities
and for extracting a procedure. This process has a use in code
refactoring.

38 / 58



Rigid anti-unification and clone detection

� Rigid anti-unification helps to detect inserted or deleted pieces
of code, which is necessary for clones of type 3.

� If we are interested in clones whose length is greater than a
predefined threshold, we can include this measure in the
definition of the rigidity function.

� The approach is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual
and precise structural techniques and consider rigidity functions
modulo a given metrics.

� Generalizations reflect similarities between two inputs, while the
store reflects differences between them.

� The output of anti-unification can be used for comparison utilities
and for extracting a procedure. This process has a use in code
refactoring.

38 / 58



Rigid anti-unification and clone detection

� Rigid anti-unification helps to detect inserted or deleted pieces
of code, which is necessary for clones of type 3.

� If we are interested in clones whose length is greater than a
predefined threshold, we can include this measure in the
definition of the rigidity function.

� The approach is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual
and precise structural techniques and consider rigidity functions
modulo a given metrics.

� Generalizations reflect similarities between two inputs, while the
store reflects differences between them.

� The output of anti-unification can be used for comparison utilities
and for extracting a procedure. This process has a use in code
refactoring.

38 / 58



Outline

Solving

Computing

39 / 58



Towards logic programming

Bad news: Logic with variadic symbols and sequence variables is not
compact.

Counterexample of compactness. An infinite set consisting of:

∃X. p(X)

¬p
∀x1. ¬p(x1)

∀x1, x2. ¬p(x1, x2)
∀x1, x2, x3. ¬p(x1, x2, x3)

. . .

Every finite subset of this set has a model, but the entire set does not.

40 / 58



Good news

The clausal fragment behaves well.

Clauses: universally closed disjunctions of literals.

∀x,X, Y, Z. p(X,x, Y, f(x), Z) ∨ ¬p(X, f(x), Y, x, Z).

Herbrand’s theorem holds.

Refutationally complete proof method possible.

Clausal fragment covers many practical cases.

Horn clauses: Clauses with at most one positive literal.

41 / 58



Good news

The clausal fragment behaves well.

Clauses: universally closed disjunctions of literals.

∀x,X, Y, Z. p(X,x, Y, f(x), Z) ∨ ¬p(X, f(x), Y, x, Z).

Herbrand’s theorem holds.

Refutationally complete proof method possible.

Clausal fragment covers many practical cases.

Horn clauses: Clauses with at most one positive literal.

41 / 58



Horn clauses

We focus on Horn clauses.

Resolution rule:

A ∨ C ¬B ∨D
(C ∨D)σ

.

where A and B are atoms and σ belongs to the minimal
complete set of unifiers of A and B: σ ∈ MCSU({A =? B}).

Resolution is refutationally complete for Horn clause sets.

We should make sure that MCSU is finite at every step.

42 / 58



Guaranteeing finite MCSU’s

The MCSU’s at each step are finite

� if each literal in each clause in the given set of Horn
clauses belongs to the same finitary fragment of
unification, or

� if each positive literal occurring in the clauses is linear.
No restriction on negative literals (leads to UV-unification
problems).

Any other case?

� Yes. Well-moded Horn clauses, using matching instead of
unification.

� It leads us to a special case: sequence transformation
rules.

43 / 58



Guaranteeing finite MCSU’s

The MCSU’s at each step are finite

� if each literal in each clause in the given set of Horn
clauses belongs to the same finitary fragment of
unification, or

� if each positive literal occurring in the clauses is linear.
No restriction on negative literals (leads to UV-unification
problems).

Any other case?

� Yes. Well-moded Horn clauses, using matching instead of
unification.

� It leads us to a special case: sequence transformation
rules.

43 / 58



Guaranteeing finite MCSU’s

The MCSU’s at each step are finite

� if each literal in each clause in the given set of Horn
clauses belongs to the same finitary fragment of
unification, or

� if each positive literal occurring in the clauses is linear.
No restriction on negative literals (leads to UV-unification
problems).

Any other case?

� Yes. Well-moded Horn clauses, using matching instead of
unification.

� It leads us to a special case: sequence transformation
rules.

43 / 58



Transformations

Ternary predicate ::→.

Atoms: ::→ (s, 〈l̃〉, 〈r̃〉), where

� 〈 〉 is an variadic function symbol.

� l̃ and r̃ are sequences.

� The term s is called a strategy.

Syntactic sugar: s :: l̃→ r̃.

Intuition: The strategy s transforms the sequence l̃ into the
sequence r̃.

(Conditional) sequence transformation rules: nonnegative Horn
clauses in this language.

Queries: negative clauses.

44 / 58



Transformations

We use special notation for rules and queries:

� Rules:

s0 :: l̃0 → r̃0 ⇐
s1 :: l̃1 → r̃1,

. . .

sn :: l̃n → r̃n.

� Queries

⇐ s1 :: l̃1 → r̃1,

. . .

sn :: l̃n → r̃n.

45 / 58



Language extension

Term and sequence variables are first-order variables.

In matching, they help to explore the term structure
“horizontally”:

� term variables: to make one step

� sequence variables: to make arbitrary finite number of
steps

But our terms (trees) have two dimensions.

Would be nice to be able to explore them not only “horizontally”,
but also “vertically”

.

46 / 58



Language extension

Term and sequence variables are first-order variables.

In matching, they help to explore the term structure
“horizontally”:

� term variables: to make one step

� sequence variables: to make arbitrary finite number of
steps

But our terms (trees) have two dimensions.

Would be nice to be able to explore them not only “horizontally”,
but also “vertically”.

46 / 58



Language extension

Second-order variables: for function symbols and for contexts.

In matching, they will help to explore the term structure
“vertically”:

� function variables: to make one step

� context variables: to make arbitrary finite number of steps

47 / 58



Language extension

Example

Matching problem: C(F (a,X)) �? g(f(a, b), h(g(a), f)).

C: context variable. F : function variable.

Solutions:

σ1 = {C 7→ g(◦, h(g(a), f)), F 7→ f,X 7→ b}
C(F (a,X))σ1 = Cσ1[F (a,X)σ1]

= g(◦, h(g(a), f))[f(a, b)]
= g(f(a, b), h(g(a), f))

48 / 58



Language extension

Example

Matching problem: C(F (a,X)) �? g(f(a, b), h(g(a), f)).

C: context variable. F : function variable.

Solutions:

σ2 = {C 7→ g(f(a, b), h(◦, f)), F 7→ g,X 7→ ()}
C(F (a,X))σ2 = Cσ2[F (a,X)σ2]

= g(f(a, b), h(◦, f))[g(a)]
= g(f(a, b), h(g(a), f))

48 / 58



Inference system: the ρLog calculus

� Resolution:

⇐ s :: l̃ → r̃ ,Q s ′ :: l̃ ′ → r̃ ′ ⇐ Body

(⇐ Body , id :: r̃ ′ → r̃ ,Q)σ
,

where σ ∈ MCSM({s ′ �? s, l̃ ′ �? l̃}).

� Identity factoring:

⇐ id :: l̃→ r̃, Q

Qσ
,

where σ ∈ MCSM({r̃ �? l̃}).
� Resolution + identity factoring is refutationally complete for

conditional sequence transformations.
� A special restriction on variable occurrences in clauses

(well-modedness) guarantees that at each step there is a
matching problem (and not unification).

49 / 58



Inference system: the ρLog calculus

� Resolution:

⇐ s :: l̃ → r̃ ,Q s ′ :: l̃ ′ → r̃ ′ ⇐ Body

(⇐ Body , id :: r̃ ′ → r̃ ,Q)σ
,

where σ ∈ MCSM({s ′ �? s, l̃ ′ �? l̃}).
� Identity factoring:

⇐ id :: l̃→ r̃, Q

Qσ
,

where σ ∈ MCSM({r̃ �? l̃}).

� Resolution + identity factoring is refutationally complete for
conditional sequence transformations.

� A special restriction on variable occurrences in clauses
(well-modedness) guarantees that at each step there is a
matching problem (and not unification).

49 / 58



Inference system: the ρLog calculus

� Resolution:

⇐ s :: l̃ → r̃ ,Q s ′ :: l̃ ′ → r̃ ′ ⇐ Body

(⇐ Body , id :: r̃ ′ → r̃ ,Q)σ
,

where σ ∈ MCSM({s ′ �? s, l̃ ′ �? l̃}).
� Identity factoring:

⇐ id :: l̃→ r̃, Q

Qσ
,

where σ ∈ MCSM({r̃ �? l̃}).
� Resolution + identity factoring is refutationally complete for

conditional sequence transformations.
� A special restriction on variable occurrences in clauses

(well-modedness) guarantees that at each step there is a
matching problem (and not unification).

49 / 58



Simple ρLog programs: duplicate merging

Program clause for finding duplicated elements in a sequence
and removing one of them:

merge_duplicates :: (X, x, Y, x, Z) =⇒ (X, x, Y, Z).

Query: merge duplicates in (a, b, c, b, a):

merge_duplicates :: (a, b, c, b, a) =⇒ X.

ρLog returns two answer substitutions:

{X 7→ (a, b, c, b)}
{X 7→ (a, b, c, a)}

50 / 58



Simple ρLog programs: duplicate merging

Program clause for merging all duplicated elements in a
sequence:

merge_all_duplicates :: X =⇒ Y ←
nf(merge_duplicates) :: X =⇒ Y.

Computes in Y a normal form of X wrt merge_duplicates.

nf : a builtin strategy for normal form computation.

Query: merge all duplicates in (a, b, c, b, a):

merge_all_duplicates :: (a, b, c, b, a) =⇒ X.

Answer: {X 7→ (a, b, c)}.

51 / 58



Simple ρLog programs: duplicate merging

Program clause for merging all duplicated elements in a
sequence:

merge_all_duplicates :: X =⇒ Y ←
nf(merge_duplicates) :: X =⇒ Y.

Computes in Y a normal form of X wrt merge_duplicates.

nf : a builtin strategy for normal form computation.

Query: merge all duplicates in (a, b, c, b, a):

merge_all_duplicates :: (a, b, c, b, a) =⇒ X.

Answer: {X 7→ (a, b, c)}.

51 / 58



Simple ρLog programs: duplicate merging

It can happen that the same normal form is computed multiple
times, or there exist multiple normal forms.

If we want only one answer, we can use the builtin strategy
first_one. It stops the computation after the first applicable
strategy computes one answer.

merge_all_duplicates :: X =⇒ Y ←
first_one(nf(merge_duplicates)) :: X =⇒ Y.

Short notation for such clauses:

merge_all_duplicates ::= first_one(nf(merge_duplicates)).

52 / 58



Simple ρLog programs: duplicate merging

It can happen that the same normal form is computed multiple
times, or there exist multiple normal forms.

If we want only one answer, we can use the builtin strategy
first_one. It stops the computation after the first applicable
strategy computes one answer.

merge_all_duplicates :: X =⇒ Y ←
first_one(nf(merge_duplicates)) :: X =⇒ Y.

Short notation for such clauses:

merge_all_duplicates ::= first_one(nf(merge_duplicates)).

52 / 58



Simple ρLog programs: rewriting

Rewriting a term using some rule(s), one step:

rewrite(x) :: C(y) =⇒ C(z) ← x :: y =⇒ z.

Specifying some rewrite rules:

r :: f(x) =⇒ g(x).

r :: f(f(x)) =⇒ x.

Compute a normal form of h(f(f(a)), f(a)) with respect to r. It
should contain a subterm starting from g. Query:

nf(rewrite(r)) :: h(f(f(a)), f(a)) =⇒ C(g(X)).

A single answer:

{C 7→ h(◦, f(a)), X 7→ a}.

53 / 58



ρLog strategies

Rules are elementary strategies.

More complex strategies can be obtained by combining
strategies.

Besides first_one, nf , and id, ρLog comes with other builtin
strategies and strategy combinators. Among them:

� compose: for composing strategies

� choose: for choosing a strategy among alternatives

� map: for mapping a strategy on a sequence

54 / 58



Rule-based programming in Mathematica

Wolfram (the programming language of the software system
Mathematica) is based on variadic terms with term, sequence, and
function variables.

Slightly different syntax:

� Square brackets instead of round ones.

� Terms are allowed in the functional position: e.g., f [a][g[b], 5, ”c”]
is a valid term.

� Function variables can be instantiated by terms in the functional
position. Therefore, they syntactically do not differ from term
variables.

� Two kinds of sequence variables: for arbitrary sequences and for
nonempty sequences.

Variadic equational matching is permitted.
55 / 58



Simple Wolfram programs

Simple programs involving sequence patterns.

A function which picks out pairs of duplicated elements in h:

h[a___, x_, b___, x_, c___] :=

Sequence[{x}, h[a, b, c]]

Picking out the two paired elements from h[2,3,2,4,5,3]

In[2]:= h[2,3,2,4,5,3]

Out[2]:= Sequence[{2}, {3}, h[4, 5]]

56 / 58



Simple Wolfram programs

Simple programs involving sequence patterns.

Clear[BubbleSort]

BubbleSort[Order_][{a___, x_, y_, b___}] /;

!Order[x, y] :=

BubbleSort[Order][{a, y, x, b}]

BubbleSort[_][sorted_List] := sorted

In[2]:= BubbleSort[Greater][{3, 4, 2, 1, 5, 6}]

Out[2]:= {6, 5, 4, 3, 2, 1}

In[3]:= BubbleSort[Less][{3, 4, 2, 1, 5, 6}]

Out[3]:= {1, 2, 3, 4, 5, 6}

57 / 58



Some useful links

Library of unification and anti-unification algorithms:

www.risc.jku.at/projects/stout/library.html

Among others, contains variadic unification, matching, and
anti-unification algorithms (including extensions of variadic
anti-unification a second order case and to term-graphs).

ρLog implementations:

� PρLog, an extension of Prolog:
www.risc.jku.at/people/tkutsia/software/prholog/

� In wolfram (Mathematica):
staff.fmi.uvt.ro/˜mircea.marin/rholog/

58 / 58

https://www.risc.jku.at/projects/stout/library.html
https://www.risc.jku.at/people/tkutsia/software/prholog/
https://staff.fmi.uvt.ro/~mircea.marin/rholog/

	Solving
	Computing

