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Generalization: an abstract view

O: a set of syntactic objects.

B Typically, expressions (e.g., terms, formulas, ...) in some
formal language.

M: a set of mappings from O to O.

B Typically, variable substitutions.
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Generalization: an abstract view

O: a set of syntactic objects.

B Typically, expressions (e.g., terms, formulas, ...) in some
formal language.

M: a set of mappings from O to O.

B Typically, variable substitutions.

1(0) is called an instance of the object O with respect to
we M.
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Generalization: an abstract view
A base relation B is a binary reflexive relation on O.
An object G € O is a generalization of the object O € O with

respect to B and M (briefly, Br(-generalization) if B(u(G), O)
holds for some mapping p € M.

B | H

©
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Generalization: an abstract view

A preference relation P: a binary reflexive transitive relation
on O.

P(01, O2) indicates that the object O is preferred over Os.

It induces an equivalence relation =p:

01 =p 02 iff 'P(Ol, 02) and ’P(Og, 01)
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Generalization: an abstract view

The base relation B and the preference relation P are
consistent on O with respect to M or, shortly, M-consistent, if
the following holds:

B If G, is a By-generalization of O and P(Gy, G2) holds for
some Go, then Gs is also a Bas-generalization of O.
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Generalization: an abstract view

The base relation B and the preference relation P are
consistent on O with respect to M or, shortly, M-consistent, if
the following holds:

B If G, is a By-generalization of O and P(Gy, G2) holds for
some Go, then Gs is also a Bas-generalization of O.

We consider only consistent base and preference relations.
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Generalization: an abstract view

An object G is called a most P-preferred common
Ba-generalization of objects Oy, .. ., 0, n>2if

B Gis a By-generalization of each O;, and

W for any G’ that is also a B-generalization of each O, if
P(G/, G), then G’ =p G.
(If G’ is P-preferred over G, then they are P-equivalent.)
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Generalization: an abstract view

(Ba, P)-generalization problem over O:

Given: Objects O4,...,0, €O, n > 2.

Find: An object G € O that is a most P-preferred
common By-generalization of Oy, ..., 0,.
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Generalization: an abstract view

(Ba, P)-generalization problem over O:

Given: Objects O4,...,0, €O, n > 2.

Find: An object G € O that is a most P-preferred
common By-generalization of Oy, ..., 0,.

This problem may have zero, one, or more solutions.

Two reasons of zero solutions:

B either the objects Oy, ..., O,, have no common
Ba-generalization at all (i.e, Oq, ..., 0, are not
generalizable), or

B they are generalizable but have no most P-preferred

common B-generalization.
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Generalization: an abstract view

To characterize “informative” sets of possible solutions, we
introduce two notions: P-complete and P-minimal complete
sets of common Bas-generalizations of multiple objects.
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Generalization: an abstract view

A set of objects G C O is called a P-complete set of common
B -generalizations of the given objects O, ...,0,, n > 2, if
the following properties are satisfied:

B Soundness: every G € G is a common B-generalization
of O1,...,0,, and

B Completeness: for each common B-generalization G’ of
04,...,0, there exists G € G such that P(G, G).
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Generalization: an abstract view

A set of objects G C O is called a P-complete set of common
B -generalizations of the given objects O, ...,0,, n > 2, if
the following properties are satisfied:

B Soundness: every G € G is a common B-generalization
of 04,...,0,, and

B Completeness: for each common B-generalization G’ of
O1,...,0, there exists G € G such that P(G, G).

The set G is called P-minimal complete set of common
By-generalizations of Oq, ..., 0, and is denoted by
mcsgBMﬂ;(Ol, ..., Oy) if, in addition, the following holds:

B Minimality: no distinct elements of G are P-comparable:
if Gl, Gy, € G and P(Gl, GQ), then G; = Gs.
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Generalization: an abstract view

The type of the (B, P)-generalization problem between

generalizable objects O1,...,0, € O'is
B unitary (1): if mesgg,, »(O1,...,0,) is a singleton,
B finitary (w): if mesgg,, (01, ..., Oy,) is finite and contains
at least two elements,
B infinitary (co): if mesgg,, »(O1,. .., 0,) is infinite,
B nullary (0): if mesgp, , p(O1, ..., 0,) does not exist

(i.e., minimality and completeness contradict each other).
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Generalization: an abstract view

The type of (B, P)-generalization over O is

unitary (1): if each (B, P)-generalization problem
between generalizable objects from O is unitary,

finitary (w): if each (B¢, P)-generalization problem
between generalizable objects from O is unitary or finitary,
and there exists a finitary problem,

infinitary (oo): if each (B¢, P)-generalization problem
between generalizable objects from O is unitary, finitary, or
infinitary, and there exists an infinitary problem,

nullary (0): if there exists a nullary (B, P)-generalization
problem between generalizable objects from O.
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Generalization: an abstract view
Let S C O.

S-fragment of the generalization problem:
B the given objects O4, ..., 0, are restricted to belong to S:

0,€6,...,0, €S8

S-variant of the generalization problem:
B the desired generalizations G are restricted to belong to S:

GeS

It also makes sense to consider an S;-variant of an S;-fragment
of the problem, where §; and S; are not necessarily the same.

11/33



Generalization: an abstract view

Interesting questions:

B Generalization type: What is the (B, P)-generalization
type over O7?

B Generalization algorithm/procedure: How to compute
(or enumerate) a complete set of generalizations
(preferably, mesg , p) for objects from O.
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Some concrete cases: FOSG

First-order syntactic generalization:

Generic | Concrete (FOSG)

o First-order terms
M First-order substitutions
B = (syntactic equality)
P = s tiff s =to for some o
=p Equi-generality: = and =<
Type Unitary
Algorithm | [Plotkin70, Reynolds70, Huet76]

Example

mesg(f(a, f(a,¢)), (b, f(b;¢))) = {f(x, f(z,c))}-
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Some concrete cases: FOEG

First-order equational generalization modulo an equational theory E:

Generic | Concrete (FOEG) |

o First-order terms

M First-order substitutions
B = (equality modulo the theory F)
P =g. s =g tiff s = to for some o.

=p Equi-generality modulo E: >¢ and <g

Type Depends on a particular £

Algorithm | Depends on a particular £
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Some concrete cases: FOEG, AC

First-order equational generalization, the AC case:

Generic | Concrete (FOEG: AC)
@) First-order terms
M First-order substitutions
B =ac (equality modulo AC)
P =ac: S =ac tiff s =ac to for some o.
=p Equi-generality modulo AC: =ac and =xac
Type Finitary
Algorithm | [Alpuente et al, 2014]

Example

If fis an AC symbol, then
mesg(f(f(a,a),b), f(f(b,0),a)) ={f(f(z,2),y), f(f(z,a),b)}.
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Some concrete cases: FOEG, Abs

First-order equational generalization, the absorption case.
Axioms: f(z,e) =e, f(e,z)=c.

| Generic | Concrete (FOEG: Abs)

O First-order terms

M First-order substitutions
B =abs (€quality modulo Abs)
P =Abs: S =aps tiff s =aps to fOr some o.

=p Equi-generality modulo Abs: =aps and <aps

Type Infinitary

Algorithm | Andres Gonzalez et al, ongoing work
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Some concrete cases: FOEG, GSC

First-order equational generalization for a ground subterm-collapsing
theory, axiomatized with two equalities f(a) =a, f(b) =b.

Generic | Concrete (FOEG: GSC) |
O First-order terms
M First-order substitutions
B =gsc (equality modulo GSC)
P =ccs: s =gsc tiff s =gsc to for some o.
=p Equi-generality modulo GSC: =¢sc and =<gsc
Type Nullary
Algorithm | TBD

Example

The problem a £%¢ b has no mesg: the complete set of generaliza-
tions contains an infinite chain « <gcs f(x) <gcs f(f(z))---
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Summary for some FOEG theory types

B A, C, AC: finitary [Alpuente et al, 2014]

B U”!, (ACU)”!, (CU)™L, (AU)™L, (AU)(CU): nullary
Their single-symbol versions as well as linear variants are
finitary [Cerna&Kutsia, FSCD’20];

B |, Al, Cl: infinitary [Cerna&Kutsia, TOCL, 2020];

B (UL, (AU~ (CUl™L, (ACUI™Y, semirings: nullary
[Cerna 2020];

B Commutative theories: unitary [Baader 1991].
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Some concrete cases: FOVG

First-order variadic generalization:

| Generic | Concrete (FOVG) |

o Variadic terms and their sequences
M Substitutions (for terms and for sequences)
B = (syntactic equality)
P = s tiff s=to for some o.
=p Equi-generality: > and <
Type Finitary (also for the rigid variant)
Algorithm | [Kutsia et al, 2014]

Example

mesg(g(f(a), f(a)), g(f(a), f)) for the unrestricted case is
{9(f(a), f(X)), 9(f(X,Y), f(X)), g(f(X,Y), f(Y))}.
For the rigid variant, itis {g(f(a), f(X))}.

19/33



Some concrete cases: FOCG

First-order clausal generalization.

| Generic | Concrete (FOCG)
o First-order clauses
M First-order substitutions
B c
P =c: 8 »=c tiff s Dto for some o.

(t o-subsumes s)
=p Equi-generality modulo Cl: =¢ and <¢
Type Unitary

Algorithm | [Plotkin, 1970]

Example
Let  Ci:=pla) « qla),qb)  Cz:=p(b) + q(b),q(z)
G1:=p(y) < a(y),a®)  G2:=p(y) < q(y),q(b), q(z)
Then G; and G5 both are Iggs of C; and Cs, and G; =p Gs.
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Some concrete cases: HOG,3,

Higher-order afn-generalization

| Generic | Concrete (HOGas,)
@] Simply-typed A terms
M Higher-order substitutions
B ~ (equality modulo «afn)
P = s = tiff s ~ to for a substitution o.
=p Equi-general (> and ) modulo afn
Type nullary in general [Buran&Cerna, to appear]
unitary for the TMS variant [Cerna&Kutsia, 2019]
Algorithm | TMS variant [Cerna&Kutsia, 2019],
patterns [Baumgartner et al, 2017]
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Some concrete cases: HOG,3,

Example

Various top-maximal shallow Iggs for
Az. f(h(g(g(x))), h(g(x)),a) and Az. f(g(g(x)), 9(), h(a))
Projection-based:

Az f(X (h(g(9(2))); 9(9(x))), X (h(g(2)), 9(x)), X (a, h(a))),

Common subterms:

Az f(X(g(9(x))), X(9(2))), Z(a)),

Patterns:
e f (X (z),Y (), Z).
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Some concrete cases: DLs
Description logics.
Decidable fragments of first-order logic.

The basic syntactic building blocks in DLs:

B (primitive) concept names P, @, ... (unary predicates),
B role names r, q, ... (binary predicates),
B individual names a, b, ... (constants).
Starting from these constructions, complex concept descriptions and

roles are built using constructors, which determine the expressive
power of the DL.

&: C,D=P|T|CNOD]|3IrC.
FLE: C,D:=P|T|CNOD|IrC|VrC.
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Some concrete cases: DLs

An interpretation Z = (Az, -T) consists of

B a non-empty set AZ, called the interpretation domain, and

B a mapping -Z, called the extension mapping.
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Some concrete cases: DLs

An interpretation Z = (Az, -T) consists of

B a non-empty set AZ, called the interpretation domain, and

B a mapping -Z, called the extension mapping.
The mapping maps

B every concept name P to a set P C Ay,

B every role name r to a binary relation rZ C Az x Ar.
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Some concrete cases: DLs

An interpretation Z = (Az, -T) consists of

B a non-empty set AZ, called the interpretation domain, and

B a mapping -Z, called the extension mapping.
The mapping maps

B every concept name P to a set P C Ay,

B every role name r to a binary relation rZ C Az x Ar.
For the other concept descriptions:

B T =Ag,
B (CnD)*=ctnDE,
B (3r.0)f ={de Az |Te.(de) ert Nee CT},
B (vr.0)f ={d e Az |Ve.(d,e) €l = e € CT}.
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Some concrete cases: DLs

A concept description C' is subsumed by D, written C' C D, if
CT C D7 holds for all interpretations .

C = D: if C and D subsume each other.

A concept description D is called a least common subsumer of
C1 and Cs, if

B C,CDandCy;C Dand

B if there exists D’ such that C; C D’ and C, C D', then D C D'.
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Some concrete cases: DLs

A concept description C' is subsumed by D, written C' C D, if
CT C D7 holds for all interpretations .

C = D: if C and D subsume each other.

A concept description D is called a least common subsumer of
Cy and Cy, if

B C,CDandCy;C Dand

B if there exists D’ such that C; C D’ and C, C D', then D C D'.

The problem of computing the least common subsumer of two or
more concept descriptions is a version of the problem of computing
generalizations in DLs.
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Some concrete cases: DLs
DLs &C and FLE:

| Generic | Concrete (DL)

@ Concept descriptions

M Contains only the identity mapping
B 3
P c

=p =:Cand 3

Type Unitary

Algorithm | [Baader et al, 1999]

Example (E£)

C=PnN3r.3Fr.(PNQ)MNIs.Q) N Ir.(PMIs.P)
D=3r (PN 3Ir.PMN3s.Q)
LCS(C,D) =3r.(Ir.PM3s.Q) N Ir.(PM3Is.T)
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Some concrete cases: ProxGen

Quantitative generalization modulo fuzzy proximity relations:

Generic \ Concrete (ProxGen) ‘

(@) First-order terms
M First-order substitutions
B ~r. (approximate equality)
P = s> tiff s = to for some o.
=p Equi-generality: > and <
Type Finitary
Algorithm | [Kutsia&Pau, 2022]
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Some concrete cases: ProxGen

If we defined P as zr \ Where s Zr » tiff s =z ) to for some o
then it would not be consistent with 5.

If R(a,b) =0.7and R(b,c) = 0.7, then both a« and b are
(R,0.7)-generalizations of a and b, but ¢ is not.

But taking P = Z%_, we would get that c is also a

(R,0.7)-generalization of a and b, which is wrong.

’
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Some more concrete cases

Clausal generalization:

B based on relative -subsumption,

B based on T-implication.
Order-sorted generalization:

B syntactic,

B modulo equational theories.
Variadic generalization:

B for commutative (orderless) theories,
W for term-graphs.

Generalization in the description logic £L:

B an approach that allows variables in the generalization
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Some more concrete cases

Nominal generalization:

B allowing finitely many atoms
B using atom variables
n ...

Higher-order generalization:

B simple types, modulo «5n and equational theories,
B polymorphic lambda-calculus (A\2),

B second order variadic terms,

n ...
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Applications

Typical applications fall into one of the following areas:

B learning and reasoning,
B synthesis and exploration,
W analysis and repair.
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Future directions

B Studying the influence of the signature of equational
theories on the generalization type

B Investigating methods of combining generalization
algorithms over disjoint equational theories

B Characterization of equational theories exhibiting similar
behavior and properties for generalization problems
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Future directions

Studying the influence of the signature of equational
theories on the generalization type

Investigating methods of combining generalization
algorithms over disjoint equational theories

Characterization of equational theories exhibiting similar
behavior and properties for generalization problems

Studying generalization in more expressive theories
(higher-order, quantitative, . . .)

Studying the influence of the preference relation choice on
the type and solution set of generalization problems

Combination with other kind of generalization and
abstraction techniques + new applications
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