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Generalization: an abstract view

O: a set of syntactic objects.

� Typically, expressions (e.g., terms, formulas, . . . ) in some
formal language.

M: a set of mappings from O to O.

� Typically, variable substitutions.

µ(O) is called an instance of the object O with respect to
µ ∈M.
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Generalization: an abstract view

A base relation B is a binary reflexive relation on O.

An object G ∈ O is a generalization of the object O ∈ O with
respect to B andM (briefly, BM-generalization) if B(µ(G),O)

holds for some mapping µ ∈M.

G

O

B µ
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Generalization: an abstract view

A preference relation P: a binary reflexive transitive relation
on O.

P(O1,O2) indicates that the object O1 is preferred over O2.

It induces an equivalence relation ≡P :

O1 ≡P O2 iff P(O1,O2) and P(O2,O1).
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Generalization: an abstract view

The base relation B and the preference relation P are
consistent on O with respect toM or, shortly,M-consistent, if
the following holds:

� If G1 is a BM-generalization of O and P(G1,G2) holds for
some G2, then G2 is also a BM-generalization of O.

G1 G2
P

O

B µ1 B µ2

We consider only consistent base and preference relations.
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Generalization: an abstract view

An object G is called a most P-preferred common
BM-generalization of objects O1, . . . ,On, n ≥ 2 if

� G is a BM-generalization of each Oi, and

� for any G′ that is also a BM-generalization of each Oi, if
P(G′,G), then G′ ≡P G.
(If G′ is P-preferred over G, then they are P-equivalent.)

5 / 33



Generalization: an abstract view

(BM,P)-generalization problem over O:

Given: Objects O1, . . . ,On ∈ O, n ≥ 2.

Find: An object G ∈ O that is a most P-preferred

common BM-generalization of O1, . . . ,On.

This problem may have zero, one, or more solutions.

Two reasons of zero solutions:

� either the objects O1, . . . ,On have no common
BM-generalization at all (i.e, O1, . . . ,On are not
generalizable), or

� they are generalizable but have no most P-preferred
common BM-generalization.
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Generalization: an abstract view

To characterize “informative” sets of possible solutions, we
introduce two notions: P-complete and P-minimal complete
sets of common BM-generalizations of multiple objects.
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Generalization: an abstract view

A set of objects G ⊆ O is called a P-complete set of common
BM-generalizations of the given objects O1, . . . ,On, n ≥ 2, if
the following properties are satisfied:

� Soundness: every G ∈ G is a common BM-generalization
of O1, . . . ,On, and

� Completeness: for each common BM-generalization G′ of
O1, . . . ,On there exists G ∈ G such that P(G,G′).

The set G is called P-minimal complete set of common
BM-generalizations of O1, . . . ,On and is denoted by
mcsgBM,P(O1, . . . ,On) if, in addition, the following holds:

� Minimality: no distinct elements of G are P-comparable:
if G1,G2 ∈ G and P(G1,G2), then G1 = G2.
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Generalization: an abstract view

The type of the (BM,P)-generalization problem between
generalizable objects O1, . . . ,On ∈ O is

� unitary (1): if mcsgBM,P(O1, . . . ,On) is a singleton,

� finitary (ω): if mcsgBM,P(O1, . . . ,On) is finite and contains
at least two elements,

� infinitary (∞): if mcsgBM,P(O1, . . . ,On) is infinite,

� nullary (0): if mcsgBM,P(O1, . . . ,On) does not exist
(i.e., minimality and completeness contradict each other).
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Generalization: an abstract view

The type of (BM,P)-generalization over O is

� unitary (1): if each (BM,P)-generalization problem
between generalizable objects from O is unitary,

� finitary (ω): if each (BM,P)-generalization problem
between generalizable objects from O is unitary or finitary,
and there exists a finitary problem,

� infinitary (∞): if each (BM,P)-generalization problem
between generalizable objects from O is unitary, finitary, or
infinitary, and there exists an infinitary problem,

� nullary (0): if there exists a nullary (BM,P)-generalization
problem between generalizable objects from O.
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Generalization: an abstract view

Let S ⊆ O.

S-fragment of the generalization problem:

� the given objects O1, . . . ,On are restricted to belong to S:

O1 ∈ S, . . . ,On ∈ S

S-variant of the generalization problem:

� the desired generalizations G are restricted to belong to S:

G ∈ S

It also makes sense to consider an S1-variant of an S2-fragment
of the problem, where S1 and S2 are not necessarily the same.
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Generalization: an abstract view

Interesting questions:

� Generalization type: What is the (BM,P)-generalization
type over O?

� Generalization algorithm/procedure: How to compute
(or enumerate) a complete set of generalizations
(preferably, mcsgBM,P ) for objects from O.
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Some concrete cases: FOSG

First-order syntactic generalization:

Generic Concrete (FOSG)

O First-order terms
M First-order substitutions
B .

= (syntactic equality)
P �: s � t iff s .

= tσ for some σ
≡P Equi-generality: � and �

Type Unitary
Algorithm [Plotkin70, Reynolds70, Huet76]

Example

mcsg(f(a, f(a, c)), f(b, f(b, c))) = {f(x, f(x, c))}.
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Some concrete cases: FOEG

First-order equational generalization modulo an equational theory E:

Generic Concrete (FOEG)

O First-order terms
M First-order substitutions
B .

=E (equality modulo the theory E)
P �E: s �E t iff s .

=E tσ for some σ.
≡P Equi-generality modulo E: �E and �E

Type Depends on a particular E
Algorithm Depends on a particular E
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Some concrete cases: FOEG, AC

First-order equational generalization, the AC case:

Generic Concrete (FOEG: AC)

O First-order terms
M First-order substitutions
B .

=AC (equality modulo AC)
P �AC: s �AC t iff s .

=AC tσ for some σ.
≡P Equi-generality modulo AC: �AC and �AC

Type Finitary
Algorithm [Alpuente et al, 2014]

Example

If f is an AC symbol, then

mcsg(f(f(a, a), b), f(f(b, b), a)) = {f(f(x, x), y), f(f(x, a), b)}.
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Some concrete cases: FOEG, Abs

First-order equational generalization, the absorption case.
Axioms: f(x, e) = e, f(e, x) = e.

Generic Concrete (FOEG: Abs)

O First-order terms
M First-order substitutions
B .

=Abs (equality modulo Abs)
P �Abs: s �Abs t iff s .

=Abs tσ for some σ.
≡P Equi-generality modulo Abs: �Abs and �Abs

Type Infinitary
Algorithm Andres Gonzalez et al, ongoing work

16 / 33



Some concrete cases: FOEG, GSC

First-order equational generalization for a ground subterm-collapsing
theory, axiomatized with two equalities f(a) = a, f(b) = b.

Generic Concrete (FOEG: GSC)

O First-order terms
M First-order substitutions
B .

=GSC (equality modulo GSC)
P �GCS: s �GSC t iff s .

=GSC tσ for some σ.
≡P Equi-generality modulo GSC: �GSC and �GSC

Type Nullary
Algorithm TBD

Example

The problem a ,?
GSC b has no mcsg: the complete set of generaliza-

tions contains an infinite chain x �GCS f(x) �GCS f(f(x)) · · · .
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Summary for some FOEG theory types

� A, C, AC: finitary [Alpuente et al, 2014]

� U>1, (ACU)>1, (CU)>1, (AU)>1, (AU)(CU): nullary
Their single-symbol versions as well as linear variants are
finitary [Cerna&Kutsia, FSCD’20];

� I, AI, CI: infinitary [Cerna&Kutsia, TOCL, 2020];

� (UI)>1, (AUI)>1, (CUI)>1, (ACUI)>1, semirings: nullary
[Cerna 2020];

� Commutative theories: unitary [Baader 1991].
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Some concrete cases: FOVG
First-order variadic generalization:

Generic Concrete (FOVG)

O Variadic terms and their sequences
M Substitutions (for terms and for sequences)
B .

= (syntactic equality)
P �: s � t iff s .

= tσ for some σ.
≡P Equi-generality: � and �

Type Finitary (also for the rigid variant)
Algorithm [Kutsia et al, 2014]

Example

mcsg(g(f(a), f(a)), g(f(a), f)) for the unrestricted case is

{g(f(a), f(X)), g(f(X,Y ), f(X)), g(f(X,Y ), f(Y ))}.

For the rigid variant, it is {g(f(a), f(X))}.
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Some concrete cases: FOCG
First-order clausal generalization.

Generic Concrete (FOCG)

O First-order clauses
M First-order substitutions
B ⊆
P �Cl: s �Cl t iff s ⊇ tσ for some σ.

(t σ-subsumes s)
≡P Equi-generality modulo Cl: �Cl and �Cl

Type Unitary
Algorithm [Plotkin, 1970]

Example

Let C1 := p(a)← q(a), q(b) C2 := p(b)← q(b), q(x)

G1 := p(y)← q(y), q(b) G2 := p(y)← q(y), q(b), q(z)

Then G1 and G2 both are lggs of C1 and C2, and G1 ≡P G2.
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Some concrete cases: HOGαβη

Higher-order αβη-generalization

Generic Concrete (HOGαβη)

O Simply-typed λ terms
M Higher-order substitutions
B ≈ (equality modulo αβη)
P %: s % t iff s ≈ tσ for a substitution σ.
≡P Equi-general (% and -) modulo αβη

Type nullary in general [Buran&Cerna, to appear]
unitary for the TMS variant [Cerna&Kutsia, 2019]

Algorithm TMS variant [Cerna&Kutsia, 2019],
patterns [Baumgartner et al, 2017]
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Some concrete cases: HOGαβη

Example

Various top-maximal shallow lggs for

λx. f(h(g(g(x))), h(g(x)), a) and λx.f(g(g(x)), g(x), h(a))

Projection-based:

λx.f(X(h(g(g(x))), g(g(x))), X(h(g(x)), g(x)), X(a, h(a))),

Common subterms:

λx.f(X(g(g(x))), X(g(x))), Z(a)),

Patterns:

λx.f(X(x), Y (x), Z).
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Some concrete cases: DLs
Description logics.

Decidable fragments of first-order logic.

The basic syntactic building blocks in DLs:

� (primitive) concept names P,Q, . . . (unary predicates),

� role names r, q, . . . (binary predicates),

� individual names a, b, . . . (constants).

Starting from these constructions, complex concept descriptions and
roles are built using constructors, which determine the expressive
power of the DL.

EL: C,D := P | > | C uD | ∃r.C.
FLE : C,D := P | > | C uD | ∃r.C | ∀r.C.

. . .

23 / 33



Some concrete cases: DLs
An interpretation I = (∆I , ·I) consists of

� a non-empty set ∆I , called the interpretation domain, and

� a mapping ·I , called the extension mapping.

The mapping maps

� every concept name P to a set P I ⊆ ∆I ,

� every role name r to a binary relation rI ⊆ ∆I ×∆I .

For the other concept descriptions:

� >I = ∆I ,

� (C uD)I = CI ∩DI ,

� (∃r.C)I = {d ∈ ∆I | ∃e. (d, e) ∈ rI ∧ e ∈ CI},

� (∀r.C)I = {d ∈ ∆I | ∀e. (d, e) ∈ rI ⇒ e ∈ CI}.
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Some concrete cases: DLs

A concept description C is subsumed by D, written C v D, if
CI ⊆ DI holds for all interpretations I.

C ≡ D: if C and D subsume each other.

A concept description D is called a least common subsumer of
C1 and C2, if

� C1 v D and C2 v D and

� if there exists D′ such that C1 v D′ and C2 v D′, then D v D′.

The problem of computing the least common subsumer of two or
more concept descriptions is a version of the problem of computing
generalizations in DLs.

25 / 33



Some concrete cases: DLs

A concept description C is subsumed by D, written C v D, if
CI ⊆ DI holds for all interpretations I.

C ≡ D: if C and D subsume each other.

A concept description D is called a least common subsumer of
C1 and C2, if

� C1 v D and C2 v D and

� if there exists D′ such that C1 v D′ and C2 v D′, then D v D′.

The problem of computing the least common subsumer of two or
more concept descriptions is a version of the problem of computing
generalizations in DLs.

25 / 33



Some concrete cases: DLs
DLs EL and FLE :

Generic Concrete (DL)

O Concept descriptions
M Contains only the identity mapping
B w
P v
≡P ≡: v and w

Type Unitary
Algorithm [Baader et al, 1999]

Example (EL)

C = P u ∃r.(∃r.(P uQ) u ∃s.Q) u ∃r.(P u ∃s.P )

D = ∃r.(P u ∃r.P u ∃s.Q)

LCS(C,D) = ∃r.(∃r.P u ∃s.Q) u ∃r.(P u ∃s.>)
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Some concrete cases: ProxGen

Quantitative generalization modulo fuzzy proximity relations:

Generic Concrete (ProxGen)

O First-order terms
M First-order substitutions
B ≈R,λ (approximate equality)
P �: s � t iff s .

= tσ for some σ.
≡P Equi-generality: � and �

Type Finitary
Algorithm [Kutsia&Pau, 2022]
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Some concrete cases: ProxGen

If we defined P as %R,λ where s %R,λ t iff s ≈R,λ tσ for some σ,
then it would not be consistent with B.

If R(a, b) = 0.7 and R(b, c) = 0.7, then both a and b are
(R, 0.7)-generalizations of a and b, but c is not.

But taking P = %R,λ, we would get that c is also a
(R, 0.7)-generalization of a and b, which is wrong.
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Some more concrete cases

Clausal generalization:

� based on relative θ-subsumption,
� based on T-implication.

Order-sorted generalization:

� syntactic,
� modulo equational theories.

Variadic generalization:

� for commutative (orderless) theories,
� for term-graphs.

Generalization in the description logic EL:

� an approach that allows variables in the generalization
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Some more concrete cases

Nominal generalization:

� allowing finitely many atoms
� using atom variables
� . . .

Higher-order generalization:

� simple types, modulo αβη and equational theories,
� polymorphic lambda-calculus (λ2),
� second order variadic terms,
� . . .
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Applications

Typical applications fall into one of the following areas:

� learning and reasoning,

� synthesis and exploration,

� analysis and repair.
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Future directions

� Studying the influence of the signature of equational
theories on the generalization type

� Investigating methods of combining generalization
algorithms over disjoint equational theories

� Characterization of equational theories exhibiting similar
behavior and properties for generalization problems

� Studying generalization in more expressive theories
(higher-order, quantitative, . . . )

� Studying the influence of the preference relation choice on
the type and solution set of generalization problems

� Combination with other kind of generalization and
abstraction techniques + new applications
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