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Introduction

About the development of work

This presentation is based in my masters
final work, Syntactc, Commutative and
Associative Anti-Unification, that was
presented in the final of the last year and
was supervised by Daniele Nantes.
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Introduction

This talk

We will present the Anti-Unification Problem modulo empty (∅) and
associative (A) theories;
We will present algorithms AUnifE based on simplification rules for each of
these cases:

pointing out the different results obtained for each equational theory,
give examples;

Analyse the termination, confluence and correctness properties of the
anti-unification algorithms,

with an especial attention on the prove of completeness of AUnifA, that is
different from the original approach in [AEEM14].
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Introduction

History

First notions:
Popplestone [Pop70],
Plotkin [Plo70],
and Reynolds [Rey70],
Machine Intelligence Journal.

Important results:
Existence of the solutions of the
Syntactic, Commutative and
Associative Anti-Unification Problems
[Baa91],
Development of methods to solve
these problems [AEEM14].
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Basic Notions

Syntax

Before define the Anti-Unification Problem we need to define some basic concepts
Finite Signature: σ = Σ∅ ∪ ΣA ∪ ΣC .

Σ∅ = {a : 0, b : 0, c : 0, d : 0︸ ︷︷ ︸
constants

, f : n, . . . } without an equational theory.

ΣA = {h : 2} with the associative function symbol

A = {h(x , h(y , z)) ≈ h(h(x , y), z)}.

Gabriela Ferreira (PPGMAT) GTC-UnB February 10, 2023 6 / 39



Basic Notions

Generalizer

Definition (Generalizer)

Given two terms s, t ∈ T (X ,Σ∅). A generalizer of s and t is a term r ∈ T (X ,Σ)
for which there exists a pair of substitutions θ = (θ1, θ2) such that rθ1 = s and
rθ2 = t.

gen(s, t).

Definition (Least General Generalization)

Given a signature Σ and terms s and t ∈ T (X ,Σ). We define the the least
general generalization of s and t as the greatest lower bound generalizer of
s and t. In other words:

lgg(s, t) = {r ∈ gen(s, t) | r ′ ≤ r , ∀r ′ ∈ gen(s, t)}
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Basic Notions

Example - Generalizers

s = f (f (a, b), a) and t = f (f (c , b), c)

x trivial generalizer

f (x , y) generalizer

f (f (z , b), z)

θ1={z 7→a} θ2={z 7→c}

lgg(s, t)

f (f (a, b), a) f (f (c , b), c))
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Basic Notions

Comparing term structures

The least general generalizer of s and t is the generalizer which maintains more
the structure of s and t as possible.

s :

f

f a

a b

t :

f

f c

c b

lgg :

f

f z

z b
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Basic Notions

Syntactic Anti-Unification Problem (AUP)

Definition (A⟨s, t⟩)
Given: terms s and t ∈ T (X ,Σ∅),
Find: The least general generalizer of s and t.

Example

Let s = f (f (a, b), a) and t = f (f (c , b), c). Then, r = f (f (z , b), z) it is an
solution for the AUP A⟨s, t⟩.
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Basic Notions

A rule based anti-unification algorithm

Input: A⟨s, t⟩

AUnif∅ − rules

��⟨{x : s ≜ t} | ∅ | id⟩ +3 . . . +3 ⟨∅ | S | σ⟩

initial state

OO

final state

OO

Output: xσ ∈ lgg(s, t)

Gabriela Ferreira (PPGMAT) GTC-UnB February 10, 2023 11 / 39



Basic Notions

AUnif∅ rules

(Dec) : Decompose:

⟨P ∪ {x : f (sn) ≜ f (tn)} | S | σ⟩ =⇒ ⟨P ∪


x1 : s1 ≜ t1,

...

xn : sn ≜ tn

 | S | σ{x 7→ f (xn)}⟩

where x1, . . . , xn are fresh variables.

(Sol): Solve: If root(s) ̸= root(t) and there is no constraint {y : s ≜ t} ∈ S

⟨P ∪ {x : s ≜ t} | S | σ⟩ =⇒ ⟨P | S ∪ {x : s ≜ t} | σ⟩

(Rec): Recover: If root(s) ̸= root(t)

⟨P ∪ {x : s ≜ t} | S ∪ {y : s ≜ t} | σ⟩ =⇒ ⟨P | S ∪ {y : s ≜ t} | σ{x 7→ y}⟩

Gabriela Ferreira (PPGMAT) GTC-UnB February 10, 2023 12 / 39



Basic Notions

Example

Consider the AUP A⟨s, t⟩ for s = f (f (a, b), a) and t = f (f (c , b), c).

⟨{x : f (f (a, b), a) ≜ f (f (c, b), c)} | ∅ | id⟩

(Dec)

⟨{x1 : f (a, b) ≜ f (c, b), x2 : a ≜ c} | ∅ | {x 7→ f (x1, x2)}︸ ︷︷ ︸
σ1

⟩
(Sol)

⟨{x1 : f (a, b) ≜ f (c, b)} | {x2 : a ≜ c} | σ1⟩

(Dec)

⟨{x3 : a ≜ c, x4 : b ≜ b} | {x2 : a ≜ c} | σ1{x2 7→ f (x3, x4)}︸ ︷︷ ︸
σ2

⟩

(Rec)

⟨{x4 : b ≜ b} | {x2 : a ≜ c} | σ1{x3 7→ x2}︸ ︷︷ ︸
σ3

⟩

(Dec)

⟨∅ | {x2 : a ≜ c} | σ1{x4 7→ b}︸ ︷︷ ︸
σ4

⟩
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Basic Notions

Example - Continuation

Consider the AUP A⟨s, t⟩ for s = f (f (a, b), a) and t = f (f (c , b), c).

⟨{x : f (f (a, b), a) ≜ f (f (c , b), c)} | ∅ | id⟩ ∗
=⇒AUnif∅ ⟨∅ | {x2 : a ≜ c} | σ1{x4 7→ b}︸ ︷︷ ︸

σ4

⟩

Then, AUnif∅(s, t) gives xσ4 = f (f (x2, b), x2).

f (f (x2, b), x2)
{x2 7→a}

vv

{x2 7→c}

((
f (f (a, b), a) f (f (c , b), c)
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Basic Notions

Properties of AUnif∅

Let A⟨s, t⟩ be an AUP,
Termination AUnif∅ terminates
Confluence AUnif∅ has a unique normal form except for variable renaming,
Correctness r ∈ lgg(s, t) iff there exists a derivation

⟨{x : s ≜ t} | ∅ | id⟩ ∗
=⇒AUnif∅ ⟨∅ | S | σ⟩

such that xσ ≡ r .
Therefore A⟨s, t⟩ always will have a solution that is unique, except for variable
renaming.
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Associative Anti-Unification

The Associative Anti-Unification Problem

Definition (Associative Anti-Unification Problem - AUPA)

Given: Two terms s and t ∈ T (X ,Σ∅∪A),
Find: The set lggA(s, t).

r
θ1≡A

��

θ2≡A

��
s t

The AUPA for s and t is denoted by AA⟨s, t⟩.
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Associative Anti-Unification

Flattening

Given h the associative function symbol with n ≤ 2 arguments, flattened terms are
canonical forms w.r.t. the set of rules given by the following rule schema

h(x1, . . . , h(t1, . . . , tn), . . . , xn) −→ h(x1, . . . , t1, . . . , tn, . . . , xn)

Gabriela Ferreira (PPGMAT) GTC-UnB February 10, 2023 17 / 39



Associative Anti-Unification

AUnifA: simplification rules

(Dec): Decompose (f ∈ Σ∅ and x ∈ X )

(Sol): Solve

(Rec): Recover

(A-Dec): Associative Decompose
(A-Left)
(A-Right)
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Associative Anti-Unification

Associative for left and right sides

(A-Left) Associative-Left Decompose
⟨P ∪ {x : h(s1, . . . , sn) ≜ h(t1, . . . , tm)} | S | σ⟩

=⇒ ⟨P ∪

{
x1 : h(s1, . . . , sk) ≜ t1

x2 : h(sk+1, . . . , sn) ≜ h(t2, . . . , tm)

}
| S | σ{x 7→ h(x1, x2)}⟩

with k ≤ n − 1.

(A-Right) Associative-Right Decompose

⟨P ∪ {x : h(s1, . . . , sn) ≜ h(t1, . . . , tm)} | S | σ⟩

=⇒ ⟨P ∪

{
x1 : s1 ≜ h(t1, . . . , tk)

x2 : h(s2, . . . , sn) ≜ h(tk+1, . . . , tm)

}
| S | σ{x 7→ h(x1, x2)}⟩

with and 1 < k ≤ m − 1.
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Associative Anti-Unification

Example: AUPA.

Consider AA⟨s, t⟩ an AUPA with s = h(h(a, a), h(b, c)) and t = h(h(b, b), c).

term s = h(h(a, a), h(b, c)) s =A h(a, h(a, h(b, c)))
term t = h(h(b, b), c) t = h(h(b, b), c)
generalizer r1 = h(h(x , x), y) r2 = h(x , y)

term s = h(h(a, a), h(b, c)) s =A h(a, h(a, h(b, c)))
term t =A h(b, h(b, c)) t =A h(b, h(b, c))
generalizer r3 = h(x , h(b, c)) r4 = h(x , h(x , y))

Notice that
r2 <A r1, r3 and r4;
r1 ≡A r4.
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Associative Anti-Unification

Example

To apply the rules of AUnifA to solve this problem we first put s and t in they
flattened form.

h(h(a, a), h(b, c))

flattening
��

h(h(b, b), c)

flattening
��

h(a, a, b, c) h(b, b, c)
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Associative Anti-Unification

Example

⟨{x : h(a, a, b, c) ≜ h(b, b, c)} | ∅ | id⟩
(A-Left)k=1 (A-Left)k=2

C1 = ⟨

{
x1 : a ≜ b

x2 : h(a, b, c) ≜ h(b, c)

}
| ∅ | {x 7→ h(x1, x2)}︸ ︷︷ ︸

σ1

⟩ ⟨

{
x1 : h(a, a) ≜ b

x2 : h(b, c) ≜ h(b, c)

}
| ∅ | σ1⟩

(Sol),(A-Left)
(A-Left)

⟨

{
x3 : a ≜ b,

x4 : h(b, c) ≜ c

}
| {x1 : a ≜ b} | σ1{x2 7→ h(x3, x4))}︸ ︷︷ ︸

σ2

⟩

(Sol),(Sol)

⟨


x1 : h(a, b) ≜ b,

x3 : b ≜ b,

x4 : c ≜ c

 | ∅ | σ2⟩

(Sol),(Dec),(Dec)

⟨∅ |

{
x1 : a ≜ b

x4 : h(b, c) ≜ c

}
| σ2{x3 7→ x1}︸ ︷︷ ︸

σ3

⟩ ⟨∅ | {x1 : h(a, a) ≜ b} | σ2{x3 7→ b, x4 7→ c}︸ ︷︷ ︸
σ4

⟩
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Associative Anti-Unification

Therefore, AUnifA gives:
xσ3 = h(x1, h(x1, x4)) ≡A r1,
xσ4 = h(x1, h(b, c)) ≡A r3,

h(x1, h(x1, x4))

λ

**

// incomparable h(x1, h(b, c))

̸≡A

��

oo

h(b, h(b, c))

Therefore, AUnifA is not confluent.
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Associative Anti-Unification

Properties of AUnifA

Let AA⟨s, t⟩ be an AUPA.
Terminates AUnifA terminates.
Sound If ⟨{x : s ≜ t} | ∅ | id⟩ ∗

=⇒AUnifC ⟨∅ | S | σ⟩ then xσ ∈ genA(s, t).
Complete If r ∈ lggA(s, t), then there exists a derivation

⟨{x : s ≜ t} | ∅ | id⟩ ∗
=⇒AUnifA ⟨∅ | S | σ⟩

such that xσ ≡A r .
There was a problem in the original proof of Completeness of AUnifA in [AEEM14].
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Associative Anti-Unification

Notions

Before explain this problem we need to establish some notions.

Definition (Associative pair of positions)

Figure: Caption
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Associative Anti-Unification

Definition (Associative Pair of Subterms)

Let s, t ∈ T (X ,Σ∅∪A) be terms in flattened form. The pair of terms (u, v) is called an
associative pair of subterms of s and t iff

1 (Regular Subterms) For each pair of positions p ∈ pos(s) and p′ ∈ pos(t) such
that s|p = u, t|p′ = v and (p, p′) is an associative pair of positions of s and t.
Or:
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Associative Anti-Unification

Definition (Associative pair of subterms)

2 (Associative pair of subterms) There are positions an associative pair of
positions (p, p′) such that
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Associative Anti-Unification

Example

h

a b c d

h

a′ b′ c ′ d ′

Given terms s = h(a, b, c , d) and t = h(a′, b′, c ′, d ′), it follows (h(a, b), h(a′, b′))
is an associative pair of s and t.
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Associative Anti-Unification

Proof of Completeness given by [AEEM14]

Now we can explain the problem in the proof.

Lemma (c.f. Lemma 19 in [AEEM14])

Given flattened terms t and t ′ such that every symbol in t and t ′ is either free or
associative, and a fresh variable x , then there is a sequence

⟨{y : t ≜ t ′} | ∅ | id⟩ ∗
=⇒AUnifA ⟨P ∪ {y : u ≜ v} | S | σ⟩

such that there is no variable z such that {z : u ≜ v} ∈ S if and only if (u, v) is an
associative pair of subterms of t and t ′.
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Associative Anti-Unification

Counter example: Simplification tree

Let AA⟨s, t⟩ be an AUPA, where s = h(a, b, c , d) and t = h(a′, b′, c ′, d ′), as
applying the simplification rules of AUnifA to solve this problem we obtain the
following simplification tree:
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Associative Anti-Unification

Counter example: Description of configurations

C1= ⟨{x2 : h(b, c, d) ≜ h(b′, c ′, d ′)} |{x1 : a ≜ a′}| {x 7→ h(x1, x2)}⟩,

C2 = ⟨{x2 : h(c, d) ≜ h(b′, c ′, d ′)} |{x1 : h(a, b) ≜ a′}| {x 7→ h(x1, x2)}⟩,

C3 = ⟨{x1 : h(a, b, c) ≜ a′, x2 : d ≜ h(b′, c ′, d ′)} | ∅ | {x 7→ h(x1, x2)}⟩,

C4 = ⟨{x2 : h(b, c, d) ≜ h(c ′, d ′)} |{x1 : a ≜ h(a′, b′)}| {x 7→ h(x1, x2)}⟩,

C5 = ⟨{x1 : a ≜ h(a′, b′, c ′), x2 : h(b, c, d) ≜ d ′} | ∅ | {x 7→ h(x1, x2)}⟩,

C1.1= ⟨{x3 : b ≜ b′, x4 : h(c, d) ≜ h(c ′, d ′)} | {x1 : a ≜ a′}{x 7→ h(x1, h(x3, x4))}⟩,

C1.2 = ⟨{x3 : h(b, c) ≜ b′, x4 : d ≜ h(c ′, d ′)} | {x1 : a ≜ a′} | {x 7→ h(x1, h(x3, x4))⟩,

C2.1 = ⟨{x3 : c ≜ b′, x4 : d ≜ h(c, d ′)} | {x1 : h(a, b) ≜ a′} | {x 7→ h(x1, h(x3, x4))⟩,

C2.2 = ⟨{x3 : c ≜ h(b′, c ′), x4 : d ≜ d ′ | {x1 : h(a, b) ≜ a′} | {x 7→ h(x1, h(x3, x4))⟩,

C4.1 = ⟨{x3 : b ≜ c, x4 : h(c, d) ≜ d ′} | {x1 : a ≜ h(a, b′)} | {x 7→ h(x1, h(x3, x4))⟩,

C4.2 = ⟨{x3 : h(b, c) ≜ c ′, x4 : d ≜ d ′} | {x1 : a ≜ h(a, b′)} | {x 7→ h(x1, h(x3, x4))⟩;

C1.1.1 = ⟨{x5 : c ≜ c ′, x6 : d ≜ d ′} | {x1 : a ≜ a′, x3 : b ≜ b′} | {x 7→ h(x1, h(x3, h(x5, x6)))}⟩.
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Associative Anti-Unification

Counter example: conclusion

There is no configuration ⟨P ∪ {y : h(a, b) ≜ h(a′, b′)} | S | σ⟩ in the
simplification tree of AUnifA(s, t);
Lemma 19 in [AEEM14] does not hold!

This lemma is used to prove the completeness of AUnifA in [AEEM14].
In order to show that this property still holds, we replace the Lemma 19 in
[AEEM14] for tree new lemmas (Lemma 4.2, 4.3 and 4.4) that will be stated in
the following frames.

Gabriela Ferreira (PPGMAT) GTC-UnB February 10, 2023 32 / 39



Associative Anti-Unification

Lemma (4.2)

Let AA⟨s, t⟩ an AUPA. If (p, p′) is an associative pair of positions of s and t, then
there exists a derivation of the form
⟨{x : s ≜ t} | ∅ | id⟩ ∗

=⇒AUnifA ⟨{y : u ≜ v} | S | σ⟩ with (s|p, t|p′) = (u, v).

Relates the arguments of the flattened terms with the configurations of
AUnifA.
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Associative Anti-Unification

Lemma (4.3)

Let AA⟨s, t⟩ be an AUPA and (p, p′) an associative pair of positions of s and t,
such that

s|p = h(s1, . . . , sk , u1, . . . , un, sk+1 . . . , sq),

t|p′ = h(t1, . . . , sk ′ , v1, . . . , vm, tk ′+1, . . . , sq′).

If (u, v) = (h(un), h(vm)) is an associative pair of subterms, then there exists
derivations such that

1. ⟨{x : s ≜ t} | ∅ | id⟩ ∗
=⇒AUnifA ⟨P ∪ {y : h(u1, . . . , ui ) ≜ v1} | S | σ⟩ with

1 ≤ i ≤ n − 1, and
2. ⟨{x : s ≜ t} | ∅ | id⟩ ∗

=⇒AUnifA ⟨P ∪ {y : u1 ≜ h(v1, . . . , vj)} | S | σ⟩ with
1 < j ≤ m − 1.
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Associative Anti-Unification

Relates the associative pairs of subterms with the configurations of the
derivations of AUnifA(s, t).
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Associative Anti-Unification

Lemma (4.4)

Let AA⟨s, t⟩ be an AUPA. If there exists a sequence of the form

⟨{x : s ≜ t} | ∅ | id⟩ ∗
=⇒AUnifA ⟨P ∪ {y : u ≜ v} | S | σ⟩

then (u, v) is an associative pair of subterms of s and t.
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Conclusion

Conclusion

We have verified that:

problem algorithm terminating confluent sound complete
AUP AUnif∅ ✓ ✓ ✓ ✓
AUPA AUnifA ✓ × ✓ ✓

AUP always have a unique solution (except for variable renaming)
AUPA always have a finite and minimal set of solutions (but AUnifA do not
gives minimal solutions),
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Conclusion

Future work

To obtain measure that gives a maximal bound of the number of normal
forms obtained by =⇒AUnifC and =⇒AUnifA .
To extend the study of AUPA for high order context of Nominal Framework,
extending the work by Baumgartner et. al. in [BKLV15].
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