

Anti-Unification on Absorption Theories

Andrés Felipe González Barragan† (UnB) Joint work with Mauricio Ayala-Rincón (UnB), Temur Kutsia (RISC - U. Linz) David Cerna (CAS ICS)

> † Author supported by a Brazilian CAPES Scholarship XVI Summer Workshop In Mathematics Brasilia, January 7th, 2024

Outline

- 1. Motivation
- 2. Absorption Theory
- 3. Algorithm for Absorption Theory
- 4. Conclusions and Future Work
- 5. References

Unification Vs Anti-unification

Unification

Goal: find a substitution that identifies two expressions.

where $t\sigma \approx r' \approx s\sigma$.

Anti-unification

Goal: find the commonalities between two expressions.

where $r\sigma \approx s$ and $r\rho \approx t$.

Example 1.

Consider the binary symbol $\cdot(x,y)$ as the product over natural numbers, 0,1,2 as constants, and the terms $\cdot(\cdot(1,x),2)$ and $\cdot(\cdot(1,1),y)$.

Unification Vs Anti-unification

Unification

The unification is given by the substitution $\sigma = \{x \mapsto 1, y \mapsto 2\}$, because

$$\cdot (\cdot (1,x),2)\sigma = \cdot (\cdot (1,1),2) = \cdot (\cdot (1,1),y)\sigma$$

Anti-Unification

A generalization is the term $\cdot (\cdot (1,x),y)$ with the substitutions $\sigma = \{y \mapsto 2\}$ and $\rho = \{x \mapsto 1\}$, because

$$\cdot (\cdot (1, x), y)\sigma = \cdot (\cdot (1, x), 2)$$

$$\cdot (\cdot (1,x),y)\rho = \cdot (\cdot (1,1),y)$$

Unification Vs Anti-unification

One interesting application is preventing bugs and misconfigurations in software (Mehta et al. (MEHTA et al., 2020)):

- given a version of an application code configuration,
- verify an updated version.

For example, the next fragment of code generates the next environment of icons of an application on Swift:

```
ScrollView {
   LazyVGrid(columns: columns) {
        ForEach(symbolNames, id: \.self) {
         symbolItem in
            Button {
                event.symbol = symbolItem
                                                  ô
            } label: {
                Image(systemName: symbolItem)
                    .imageScale(.large)
                                                  血
                     (selectedColor)
                    .padding(5)
    .drawingGroup()
```

Then, if we update the general code in different parts, getting:

Original Version

Update Version

```
ScrollView {
  LazyVGrid(columns: columns) {
   ForEach(SymbolNames, id: \subsection.self) {
      SymbolItem in
      Button {
         event..symbol = symbolItem
      } (...)
```

```
ScrollView {
   LazyVGrid(columns: columns) {
    ForEach(SymbolNames, id: \\.\.\.\.\.\) {
        SymbolItem in
        Button {
            event[.symbol = symbolItem ] {
            (...)
```

The updated version has an error, and using anti-unification we can detect that the next fragment of code that is a generalization of the two codes:

```
ScrollView {
  LazyVGrid(columns: columns) {
   ForEach(SymbolNames, id: x) {
      SymbolItem in
      Button {
        event.symbol = symbolItem
      } (...)
```

With substitutions $\sigma = \{x \mapsto \backslash \mathtt{.self}\}\$ and $\rho = \{x \mapsto \backslash \mathtt{.1}\}.$

Applications of anti-unification include:

- searching parallel recursion schemes to transform sequential algorithms into parallel algorithms (Barwell et al. (BARWELL; BROWN; HAMMOND, 2018));
- preventing bugs and misconfigurations in software (Mehta et al. (MEHTA et al., 2020));
- finding duplicate code and similarities;
- detecting code clones (i.e., plagiarism).

- The alphabet consists of a countable set of variables \mathcal{V} and set \mathcal{F} of function and with a special constant symbol \star (The wild card).
- Terms over this alphabet, $\mathcal{T}(\mathcal{F}, \mathcal{V})(\mathcal{T})$ and $\mathcal{T}(\mathcal{F} \cup \{\star\}, \mathcal{V})(\mathcal{T}_{\star})$, defined as usually:

$$t := x \mid f(t_1, \dots, t_n)$$

- A finite set E that consists of equations $s \approx t$.
- A preorder \leq_E , which states that $s \leq_E t$ if there exists a substitution σ such that $s\sigma \approx_E t$.

The type of an anti-unification modulo ${\cal E}$ problem is classified as below.

- Nullary(0): if there are terms s and t such that $mcsg_E(s,t)$ does not exist. Also, called *type zero*.
- Unitary(1): if for all s and t, $mcsg_E(s,t)$ has just one generalization.
- ullet Finitary (ω) : if for all s and t, $\mathrm{mcsg}_E(s,t)$ has more than one generalization.
- Infinitary(∞): there are terms s and t such that $\mathtt{mcsg}_E(s,t)$ is infinite.

Type of some Theories

Theory	Type	Authors and References
Syntactic (∅)	1	G. Plotkin and J. Reynolds
		(PLOTKIN, 1970; REYNOLDS, 1970)
Associativity (A)	ω	M. Alpuente et al. (ALPUENTE et al., 2014)
Commutativity (C)	ω	M. Alpuente et al. (ALPUENTE et al., 2014)
Unital (U)	ω	D. Cerna (CERNA; KUTSIA, 2020a)
$Idempotency_{\geq 1} \; (I)$	∞	D. Cerna and T. Kutsia
		(CERNA; KUTSIA, 2020a)
$Unital_{\geq 2} \; (U_2)$	0	D. Cerna and T. Kutsia
		(CERNA; KUTSIA, 2020b)

- An anti-unification equation (AUE) between s and t in a normal form is denoted by $s \triangleq_x t$, where x is called as label.
- A valid set of AUEs is a set of AUEs where all the labels are different.
- An AUE $s \triangleq_x t$ is *solved* if head(s) and head(t) are not related absorption symbols, where $s, t \in \mathcal{T}$.
- An AUE $s \triangleq_x t$ is wild if one of the terms is the wild card and the other belongs to \mathcal{T}_{\star} .

Absorption Theory

Absorption is an important algebraic attribute in some magmas: for some function symbol f there is a constant ε_f such that

$$f(x, \varepsilon_f) \approx \varepsilon_f$$
, or/and $f(\varepsilon_f, x) \approx \varepsilon_f$

Equational theories with these equations are called absorption theories (Abs).

Example 2

Let's find one generalization of the AUE $\varepsilon_f \triangleq f(f(a,b),c)$.

The idea of the algorithm is to expand the ε_f to get the generalization:

$$\varepsilon_{f} \triangleq_{x} f(f(a,b),c) & x \\
f(\varepsilon_{f},c) \triangleq_{x} f(f(a,b),c) & x \\
\varepsilon_{f} \triangleq_{y} f(a,b), c \triangleq_{z} c & f(y,z) \\
f(\varepsilon_{f},b) \triangleq_{y} f(a,b) & f(y,c) \\
\varepsilon_{f} \triangleq_{u} a, b \triangleq_{v} b & f(f(u,v),c) \\
\varepsilon_{f} \triangleq_{u} a & f(f(u,b),c)$$

Notice that the terms

$$f(f(a,u),c), f(f(a,b),u), f(f(u,b),c)$$

are generalizations of the initial terms.

Algorithm for absorption theory

The algorithm AUnif is an exhaustive application of inference rules of configurations of the form

Inference Rules

Then we define the next rules

(Dec): Decompose

$$\langle \{f(s_1, \dots, s_n) \triangleq_x f(t_1, \dots, t_n)\} \sqcup A; S; \theta \rangle$$

$$\stackrel{Dec}{\Longrightarrow} \langle \{s_1 \triangleq_{y_1} t_1, \dots, s_n \triangleq_{y_n} t_n\} \cup A; S; \theta \{x \mapsto f(y_1, \dots, y_n)\} \rangle$$

For f any function symbol, n > 0, and y_1, \ldots, y_n are fresh variables.

Inference Rules

(Solve): Solve

$$\langle \{s \triangleq_x t\} \sqcup A; S; T; \theta \rangle \stackrel{Sol}{\Longrightarrow} \langle A; \{s \triangleq_x t\} \cup S; T; \theta \rangle$$

Where $head(s) \neq head(t)$ are not related absorption symbols.

(Mer): Merge

$$\langle \emptyset; \{s \triangleq_x t\} \cup \{s \triangleq_y t\} \cup S; \theta \rangle \stackrel{Mer}{\Longrightarrow} \langle \emptyset; \{s \triangleq_y t\} \cup S; \theta \{x \mapsto y\} \rangle$$

Inference Rules

(ExpLA1): Expansion for Absorption, Left 1

$$\langle \{ \varepsilon_f \triangleq_x f(t_1, t_2) \} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{ExpLA1}{\Longrightarrow} \langle \{ \varepsilon_f \triangleq_{y_1} t_1 \} \cup A; S; \{ \star \triangleq_{y_2} t_2 \} \cup T; \theta \{ x \mapsto f(y_1, y_2) \} \rangle$$

(ExpLA2): Expansion for Absorption, Left 2

$$\langle \{ \varepsilon_f \triangleq_x f(t_1, t_2) \} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{ExpLA2}{\Longrightarrow} \langle \{ \varepsilon_f \triangleq_{y_2} t_2 \} \cup A; S; \{ \star \triangleq_{y_1} t_1 \} \cup T; \theta \{ x \mapsto f(y_1, y_2) \} \rangle$$

Problems do not always have a finite number of generalizations. The next example has an infinite set of them!

Example 3

Apply AUnif to the anti-unification problem $g(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$.

A final configuration given by AUnif is

$$\langle \emptyset; \{ \varepsilon_f \triangleq_{u_2} a, a \triangleq_{w_2} \varepsilon_f \}; \{ \star \triangleq_{u_1} h(\varepsilon_f) \}; \{ x \mapsto g(f(u_1, u_2), w_2) \} \rangle$$

Then $g(f(u_1,u_2),w_2)$ is a generalization with the substitutions σ and ρ .

$$g(f(u_1,u_2),w_2)$$

$$\sigma = \{u_1 \mapsto \star, u_2 \mapsto \varepsilon_f, w_2 \mapsto a\}$$

$$\rho = \{u_1 \mapsto h(\varepsilon_f), u_2 \mapsto a, w_2 \mapsto \varepsilon_f\}$$

$$g(f(\star,\varepsilon_f),a)$$

$$\approx_{\mathtt{Abs}}$$

$$g(\varepsilon_f,a)$$

Notice that any similar term with $h(\varepsilon_f)$ replaced instead u_1 is a generalization too.

Abstraction Set

Termination

AUnif cannot result in an infinite derivation. Also, for a configuration C, the set of final configurations AUnif(C) is computable in a finite number of steps.

Abstraction Set

Let t be a term in Abs-normal form, and σ be a substitution with images in Abs-normal form. The abstraction of t with respect to σ is the set:

$$\uparrow(t,\sigma) := \{r \mid r\sigma \approx_{\text{\tiny Abs}} t, \ r \text{ is an Abs-normal form, and } \textit{Var}(r) \subseteq \textit{Dom}(\sigma)\}$$

Example 4

Find the abstraction set of $h(\varepsilon_f)$ with respect to $\rho = \{u_2 \mapsto a, w_2 \mapsto \varepsilon_f\}$:

$$\uparrow (h(\varepsilon_f), \rho) = \{h(\varepsilon_f), h(w_2), h(f(w_2, _)), h(f(_, w_2)), h(f(u_2, w_2)), \dots\}$$

Where _ could be replaced by a term whose variables are included in $Dom(\rho)$. For example, $h(f(w_2,a))$ and $h(f(w_2,h(g(u_2,w_2))))$ belong to the abstraction set.

Continue with Example 3:

$$g(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$$

The abstraction set give us the "good" terms that can be replaced in the generalization $g(f(u_1,u_2),w_2)$. Hence, other generalizations are

$$g(f(h(\varepsilon_f), u_2), w_2)$$

 $g(f(h(w_2), u_2), w_2)$
 $g(f(h(f(w_2, a)), u_2), w_2)$
:

Soundness and Completeness

Soundness

Let $\langle A_0; S_0; T_0; \theta_0 \rangle \Longrightarrow^* \langle \emptyset; S_n; T_n; \theta_n \rangle$ be a derivation to a final configuration. Then for all $s \triangleq_x t \in A_0 \cup S_0 \cup T_0$, $x\theta_n \in \mathcal{G}_{\mathsf{Abs}}(s,t)$.

Completeness

Let $r \in \mathcal{G}_{\mathsf{Abs}}(t_1, t_2)$. Then for all configurations $\langle A; S; T; \theta \rangle$ such that $t_1 \triangleq_x t_2 \in A$ there exist a final configuration $\langle \emptyset; S'; T'; \theta' \rangle \in \mathtt{AUnif}(\langle A; S; T; \theta \rangle)$ and $\tau \in \Psi(T', S')$ such that $T \preceq_{\mathsf{Abs}} x \theta' \tau$.

The proof of these theorems can be found in (AYALA-RINCÓN et al., 2023).

Type of the Problem

Let s and t be terms and $\mathrm{AUnif}(\langle \{s \triangleq_x t\}; \emptyset; \emptyset; \iota \rangle)$ merged. The set of least general generalizations of s and t as

$$\mathcal{C}_{\mathtt{AUnif}}(s,t) = \{x\theta\tau \mid \langle \emptyset; S; T; \theta \rangle \in \mathtt{AUnif}(\langle \{s \triangleq_x t\}; \emptyset; \emptyset; \iota \rangle) \wedge \tau \in \Psi(T,S) \}.$$

Lemma 1

For all terms s,t, and $g_0,g_1\in\mathcal{C}_{\mathtt{AUnif}}(s,t)$, if $g_0\neq g_1$ then neither $g_0\preceq_{\mathtt{Abs}} g_1$ nor $g_1\preceq_{\mathtt{Abs}} g_0$ holds.

Type of The Problem

Theorem

Anti-unification modulo Abs theories is of type infinitary.

From Lemma 1 and Completeness Theorem the set $\mathcal{C}_{\mathtt{AUnif}}(s,t)$ is the $\mathtt{mcsg}(s,t)$, and from Example 3:

$$C_{\mathtt{AUnif}}(g(\varepsilon_f, a); g(f(h(\varepsilon_f)), a), \varepsilon_f)$$

Has infinite 1ggs. Hence, the problem is of type infinitary.

Conclusions and Future Work

Conclusions

- We Introduce a rule-based algorithm that computes generalizations for problems modulo absorption theories and this algorithm is sound and complete.
- Additionally, the algorithm computes least general generalizations (1ggs), which means that computes a minimal complete set of generalizations. We proved that the problem is of type infinitary.

Conclusions and Future Work

Future Work

- Analyze combinations between absorption theories with Commutative and Associative Theories and build an algorithm that computes the generalizations for this kind of problem.
- Study another Subterm collapse theories, similar to the absorption theories as Absorption theories which can be collapsed for ground terms or terms with variables $(f(x,T) \approx T \approx f(T,x), \ f(x,t) \approx t \approx f(t,x))$ and unary function symbols that collapse with a ground term $(f(T) \approx T)$.

References I

algorithm. **Information and Computation**, v. 235, p. 98–136, 2014.

AYALA-RINCÓN, M. et al. Equational anti-unification over absorption theories. **CoRR**, abs/2310.11136, 2023. Disponível em: https://doi.org/10.48550/arXiv.2310.11136.

BARWELL, A. D.; BROWN, C.; HAMMOND, K. Finding parallel functional pearls: Automatic parallel recursion scheme detection in haskell functions via anti-unification. **Future Gener. Comput. Syst.**, v. 79, p. 669–686, 2018.

CERNA, D. M.; KUTSIA, T. Idempotent anti-unification. **ACM Trans. Comput. Log.**, v. 21, n. 2, p. 10:1–10:32, 2020.

CERNA, D. M.; KUTSIA, T. Unital anti-unification: type algorithms. **5th** International Conference on Formal Structures for Computation and Deduction, FSCD, v. 167, n. 6, p. 26:1–26:20, 2020.

References II

MEHTA, S. et al. Rex: Preventing bugs and misconfiguration in large services using correlated change analysis. In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI). [s.n.], 2020. p. 435–448. ISBN 978-1-939133-13-7. Disponível em: https://www.usenix.org/conference/nsdi20/presentation/mehta>.

PLOTKIN, G. D. A note on inductive generalization. **Machine Intelligence 5**, v. 5, p. 153–163, 1970.

REYNOLDS, J. C. Transformational system and the algebric structure of atomic formulas. **Machine Intelligence 5**, v. 5, p. 135–151, 1970.

