University of

‘ Shefheld

FORMALISING COMBINATORIAL MATHEMATICS:
A MODULAR APPROACH

CHELSEAEDMONDS | c.l.edmonds@sheffield.ac.uk

Research Associate | University of Sheffield

UnB Summer Workshop in Mathematics
8t of February 2024

PhD Work supported by supervisor: Prof. Lawrence Paulson

PhD Researchfunded by a joint Cambridge Australia Scholarship and Cambridge Department of Computer Science Studentship

Presentation supported by the EPSRC through the COVERT Project Grant

= Anintroductionto Isabelle/HOL & Locales

= The Motivating Problem

= A Basic Hierarchy - Combinatorial Design Theory

= Locale Reasoning Patterns

PRESENTATION = |Locale Interactions
OUTLINE = Rewriting

= Mutual & Reverse Sublocales
= Proofs with Locales
= Using locale structures in proofs

= Using locales to structure proofs

= Advantagesvs Limitations

FORMALISING MATHEMATICS

WHAT IS FORMALISED MATHEMATICS?

= Formal Proofs that are machine checked by an underlying core axiomatic foundation.

= There are many different “proof assistants” that do this kind of work: Isabelle/HOL, HOL Light, Lean, Coq etc.

theorem
proof

from <prime p-> have p: "1 < p" by (simp add: prime_deft)

assume

then obtain m n :: nat where

n:

and

“coprime n " by (rule Rats_abs nat div_natE)

assumes "prime p" shows "sqrt p ¢ Q"

*sqrt p € Q"

"n # 0" and sqrt_rat: “"|sqrt pj =m / n"

have eq: "m? = p * n2"

proof -

from
then
by

qed

n and sqrt_rat have "m = |sqrt p} * n" by simp
show "'m2 = p * n2"
(metis abs_of _nat of nat_cq iff of nat mult power2 cq squarc rcal sqrt_abs2 rca

have "p cvd m A p dvd r"

proof
from
with
then
with
with
by
qed

ec have "p dvd m?" ..

<prime p- show "p dvd n" by (rule prime_dvd_power_nat)
obtain k where "m = p * k" ..

ec have "p * n2 = p2 * k2" by (auto simp add: power2_eg_square ac_simps)

<prime p> show "p dvd n"

(metis dvd_triv_1le®t nat_mult_dvd_cancell power2_ec_sguare prime_dvd power_nat

sledgehammer proofs

then have "p dvd gcd m n" by simp
with <coprime m n> have "p = 1" by simp

with p
qed

show False by simp

let IRRATIONAL_SQRT_NONSQUARE = prove

(" !'n. rational(sqrt(&n)) ==> ?m. n = m EXP 2°,

REWRITE_TAC[rational] THEN REPEAT STRIP_TAC THEN

FIRST_ASSUM(MP_TAC o AP_TERM “\x:real. x pow 2°) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS] THEN

ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN

REPEAT (FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [integer])) THEN

ASM_REWRITE_TAC[REAL_ABS_DIV] THEN DISCH_THEN(MP_TAC o MATCH_MP(REAL_FIELD
‘p=(n/ m) pow 2 ==> ~(m = &) ==> m pow 2 * p = n pow 2°)) THEN

ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS ZERO]; ALL_TAC] THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ] THEN

ASM_MESON_TAC[EXP_MULT_EXISTS; REAL_ABS_ZERO; REAL_OF_NUM_EQ]);;

let IRRATIONAL_SQRT_PRIME = prove
("!p. prime p ==> ~rational(sqrt(&p))’,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN(CHOOSE_THEN SUBST1_TAC o MATCH_MP IRRATIONAL_SQRT_NONSQUARE) THEN
REWRITE_TAC[PRIME_EXP; ARITH_EQ]);;

Isabelle vs HOL Light: Proof of Irrationality

WHY FORMALISE?

Quasi-projectivity of moduli spaces of polarized varieties

ANNALS OF MATHEMATICSANNALS OF MATHEMATICS

Princeton University & Institute for Advanced Study

Princeton University & Institute for Advanced Study

Non-quasi-projective moduli spaces
Pages 1077-1096 from Volume 164 (2006), Issue 3 by Janos Kollar

Pages 597-639 from Volume 159 (2004), Issue 2 by Georg Schumacher, Hajime Tsuji

Abstract
Abstract L .)

‘We show that every smooth toric variety (and many other algebraic spaces as well) can be realized
By means of analytic methods the quasi-projectivity of the moduli space of algebraically polarized as a moduli space for smooth, projective, polarized varieties. Some of these are not quasi-projective.
varieties with a not necessarily reduced complex structure is proven including the case of This contradicts a recent paper (Quasi-projectivity of moduli spaces of polarized varieties, Ann. of

nonuniruled polarized varieties.

Math.159 (2004) 597-639.).

! The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-
fortunately, the construction presented there cannot be completed.

2 The transfer to ZF was also claimed by Marek [1966] but the outlined method appears
to be unsatisfactory and has not been published.

3 A contradicting result was announced and later withdrawn by Truss [1970].

% The example in Problem 22 is a counterexample to another condition of Mostowski,

who conjectured its sufficiency and singled out this example as a test case.

5 The independence result contradicts the claim of Felgner [1969] that the Cofinality
Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s
corrections to [1969]).

*Footnotes on page 118 of Jech’s The Axiom of Choice
(1973)

WHY FORMALISE?

To reveal hidden
V To validate complex proofs Q assumptions, proof steps,
and mathematical insights

To create central libraries a To benefit from advances
g of verified mathematical ‘O In automation and
knowledge technology

Ultimate Goal: Augment Human Intelligence

FORMALISATION CHALLENGES

= Very quickly growing libraries

= Lots of duplication

= Theorem specific libraries

= Limited reusability of many results

= Limited ability to naturally use
mathematical techniques

= Need for generaltechniques &
modular & extensible libraries

INTRODUCTION TO ISABELLE & LOCALES

ISABELLE/HOL

= Simple type theory

= Sledgehammar - automated proof
search.

= Searchtools: Query Search, Find
Facts, SErAPIS

= The Isar structured proof language
= Interactive Development Environment

= Extensive existing libraries in Maths
& Computer Science

= Additional features: Code generation,
modularity, polymorphism,
documentation generation ...

theorem assumes "prime p" shows "sqrt p ¢ Q"

proof
from <prime p> have p: "1 < p" by (simp add: prime_deft)
assume "sqrt p € Q"
then obtain m n :: nat where

n: "n #¥ 0" and sqrt_rat: “|sqrt p} =m / n"
and “"coprime n " by (rule Rats abs nat div natE)
have eq: "m? = p * n2"
proof -
from n and sqrt_rat have "m = |sqrt p} * n" by simp

then show "m2 = p * n2"
by (mctis abs of nat of nat cgq iff of nat mult power2 cq squarc rcal sqrt_abs2 rca

qed
have "p cvd m A p dvd n"
proof
from ec have "p dvd m?" .. Sledgehammer prOOfS

with <prime p- show "p dvd m" by (rule prime_dvd_power_nat)
then obtain k where "m = p ¥ k" ..
with eq have "p * n? = p2 * k?" by (auto simp add: powerZ_eq_square ac_simps)
with <prime p> show "p dvd n"
by (metis dvd_triv_left nat_mult _dvd cancell power2 ec_square prime_dvd power_nat
qed
then have "p dvd gcd m n" by simp

with <coprime m n> have "p = 1" by simp
with p show False by simp
qed

LOCALE BASICS

= |ocalesare Isabelle’s module system. From a logical perspective, they are simply persistent
contexts.

ANxy..x,. [Ag; s ALl = C.

= A simple example (taken from the Locales tutorial):

Notation
locale partial_order =
Parameters —>[fixes 1le :: "’a = ’a = bool" (infixl "C" 50)
assumes refl [intro, simp]l: "x C x"

and anti_sym [intro]: "[x Cy; yC x| = x = y"
and trans [trans]: "[x Cy; yC z] = x C 2"

Assumptions

LOCALE BASICS - INHERITANCE & INTERPRETATIONS

= We havedirectinheritance

locale lattice = partial_order +
assumes ex_inf: "dinf. is_inf x y inf"
and ex_sup: "dsup. is_sup x y sup"
begin

= And indirect inheritance

sublocale total order C lattice

= |nterpretations (global & local)

interpretation int: partial_order "(<) :: [int, int] = bool"
rewrites "int.less x y = (x < y)"
proof -

THE MOTIVATING PROBLEM

MOTIVATING PROBLEM - LARGE HIERARCHIES

(- K-uniform hypergraphs *Complete Graphs)
@@ *Regular hypergraphs *Graph Decompositions
(Structure)

*Regular graphs
* Cyclic graphs

*Regular k-uniform
graphs
* Non-trivial hypergraphs

N Hypergraphs Y

Combinatorial Structures + Many more...

4 Geometric D

Block1 (C1,DI) (C2,D2) (C3,D3) ;
Block2 (C1,D2) (C2,D3) (C3,D1) * Block de3|gns_
Block3 (C1,D3) (C2,D1) (C3,D2) *Balanced Designs
Block4 (C1,D1) (C2,D3) (C3,D2) . .
BlockS (C1,D2) (C2,Dl) (C3,D3) * Group Divisible Designs

Block 6 (C1,D3) (C2,D2) (C3,D1) ° Incomplete deS|gnS

* Projective planes

* Steiner Systems
e Latin Squares

_

THE CHALLENGES

Problem 1.:

Many variations and
definitions
(inconsistent)

Problem 2:

Problem 3:

Complex inheritance lefere%njil%?egﬁfge"'
patierns structures?
Y,
0,1,2}, 0,3,
4}, {0, 5, 6}, (1,
3, 5), (1, 4, 6},
(2,3, 6}, 2,4, 5)

The Fano Plane

Design Rep

FIRST ATTEMPTS...

Approach 1: Typeclasses?

I |class incidence system class =
fixes D :: "'a design”
assumes wellformed: "b &# blocks D =— b C points D"

I |record 'a block design = "'a design" +
size :: "npat"
I |record 'a balanced design = "'a design" +
balance :: "nat"
t :: nat
@|record bibd = "'a block design" + "'a balanced design”

Ity|class block design = incidence system class +

fixes k :: "nat"
(* X Can't add new type to class *)I

Approach 2: Records + Locales?

record 'a design =
points :: "'a set
blocks :: "'a set multiset"

locale incidence system =
fixes D :: "'a design" (structure)
assumes wf: "b # blocks D — b C points D"

Messier notation, less automation.

THE LOCALE-CENTRIC APPROACH

“The software engineering approach to formalising mathematics!”

= Use only locales to model different structures (no complextypes/records etc)

= Use local definitions inside locale contexts

= Type-synonymscan be used with care to bundle objects

= The “Little Theories” approach for locale definitions

= Avoid duplication at all costs!

= First Introduced by Ballarin in a paper on “Formalising an Abstract Algebra Textbook” (2020)

record 'a design =
points :: "'a set "
blocks :: "'a set multiset"

locale incidence system =
fixes D :: "'a design" (structure)
assumes wf: "b €# blocks D — b C points D"

locale incidence system =
fixes point set :: "'a set" ("V")
fixes block collection :: "'a set multiset"” ("B")
assumes wellformed: "b e# B =— b C V"
begin
locale design = finite incidence system +
assumes blocks nempty: "bl €# B — bl # {}"
begin

A BASIC HIERARCHY

COMBINATORIAL DESIGN THEORY

INTRO TO COMBINATORIAL DESIGNS

= A designis a finite set of points V and a collection of subsets of V, called blocks B.
= Applications range from experimental and algorithm design, to security and communications.
= What makes a design interesting? Properties:

= The set of block sizes K

® The set of replication numbers R

= The set of t-indices A,

® The set of intersection numbers M
" |Language varies: designs, hypergraphs, matrices, geometries, graph decompositions, codes...

Combinatorial Designs/Hypergraphs had not previously been formalised

THE BASIC DEFINITIONS

locale incidence system =
fixes point set :: "'a set" ("V")
fixes block collection :: "'a set multiset" ("B5")
assumes wellformed: "b c¢# B =— b C V"

begin

/\

locale finite_inc:idence_system = inCidence_SyStem + locale Simple_incidence_system = incidence_system +

assumes finite sets: "finite V" assumes simple [simp]: "bl €# B — multiplicity bl = 1"
begin

locale design = finite_i‘ﬁcidence_system + \
assumes blocks nempty: "bl €# B — bl # {}" __, |locale simple_design = design + simple_incidence_system
begin

THE HIERARCHY

fin(V)

incidence_system — finite_incidence_system

» proper_design

maultiplicity(bl) = 1 deszgn

simple_design twise_balance mcompl ete_design <k— block_design constant_rep_design
- < p
-..4__‘\-‘“ \i<kl “""_’-
\“ = -.A . A _ 1 . » .- -
sterner_system < tdesign LT
o tzzl e
™ A b= 7 -
symmetric_bibd < bibd

locale t design = incomplete design + t wise balance + locale bibd = t design V B k 2 A
assumes block size t: "t < k" for point _set ("V") and block collection ("B")
' and u block size ("k") and index ("A")

EXTENDING THE HIERARCHY

Other Design Classes: Group Divisible Designs (GDDs), Pairwise Balanced Designs (PBDs), design isomorphisms
Connections with Graph Theory (Noschinski, 2015)

incidence_system — finite_incidence_system ——— design
. . . \
—> direct inheritance l
---> sublocale relation

proper_design simple_design
group_design — uni_group_design twise_balance K _block_design <------------ block_design constdnt_w:?ep_design resolvable_designs

GDD pairwise_balance

K A GDD--------- _A_ _ incomplete_design t_cove?“irég_desz t_packing_desig
K GDD------------ vk GDD ‘ tdesigni—:% steiner_system resolv_block_designs
—— , \
RGDD k_PBD incomplete_PBD " bibd — » resolvable_bibd

\j 1 ‘;'
symmetric_bibd
LI

ANOTHER HIERARCHY - GRAPH THEORY

locale graph system =

fixes vertices :: "'a set" ("V")
fixes edges :: "'a edge set" ("E")
assumes wellformed: "e € E =— e C V"

locale ulgraph = graph system +
assumes edge size: "e € E = -~/ ----
card e > 0 A card e < 2"

locale bipartite graph = graph system + e P\\\\\\\\\\\\\\\\
fixes X Y :: "' 4

locale sgraph = graph system +
4
assumes two edges: "e € E = card e = 2"

a set" .
assumes partition: "partition on V {X, Y}" » Indirect Inheritance via
assumes ne: "X # Y sublocales
assumes edge betw: "e € E = e € all bi edges X Y"

sublocale bipartite graph C sgraph
using card edges two by (unfold locales)

Further extensions done for finite and non-empty properties, as well as connectivity, subgraphs, triangle-
free graphs etc. See Archive of Formal Proofs.

WHY GRAPHS AGAIN?
type_synonym uvert = nat record ('v,'w) graph = record ('a,'b) pre_digraph =
type_synonym uedge = "nat set" nodes :: "'v set" verts :: "'a set"
type_synonym ugraph = "uvert set x uedge set" edges :: "('v x 'w x 'v) set" arcs :: "'b set”

tail :: "'b = 'a"

head :: "'b = 'a"
Basic Undirected Graphs Graphs “For Purpose General Digraphs
(Noschinski) (Nordhoff & Lammich) (Noschinski)

= Existing libraries had notable limitations or were built for purpose

= Notably there was no general library for undirected graphs (and digraphs introduce unnecessary
complication to formal reasoning)

AND ANOTHER HIERARCHY....? - HYPERGRAPHS

= Realistically, this is just designs... with another language - so we use direct inheritance!

locale hypersystem =

fixes vertices :: "'a set" ("V")

fixes edges :: "'a hyp edge multiset" ("E")

assumes wellformed: "e e¢# E — e C V"
begin

locale fin hypersystem = hypersystem + finite incidence system V E

locale hypergraph = hypersystem + inf design V E

locale fin hypergraph = hypergraph + fin hypersystem «

locale kuniform hypergraph = hypergraph + [10;?19 dgegular_hypergraph = hypergraph +
ixes

fixes k :: nat))
assumes uniform: "A e . e c¢# E = card e = k" assumes "A x. x € V = degree x = d

LOCALE REASONING PATTERNS

MODELLING INTERACTIONS

BASIC PROOF TACTICS

"= There are two main tactics (currently) for locales: unfold_locales & intro_locales

. ; . roper_design
" This is a proof of an inheritance property: BIBD has a rep number \\
k
omplete_design T block_design constant_rep_design
t< kl -
locale constant rep design = proper _design + ™ tdesign
fixes design rep number :: int ("r") tZQl
assumes rep number [simp]: "X € V — B rep x = r" ___ka/f”

sublocale bibd C constant rep design V B "(A * (v - 1) div (k - 1))"
apply unfold locales

proof (prove)
goal (1 subgoal):
1. Ax. x €¢ V= Brepx=A%* (v -1) div (k - 1)

Helper lemma: sublocale bibd C constant rep design V B "(A * (v - 1) div (k - 1))"
—_— L using r _constant 2 by (unfold locales) simp all

BASIC PROOF TACTICS

"= There are two main tactics (currently) for locales: unfold_locales & intro_locales

= This is a proof using locale constructions

definition complement blocks :: "'a set multiset" ("(BC)")where <«—— Transformation definition
“complement blocks = {# blc¢ . bl e# B #}"

Local interpretation
lemma complement bibd:
assumes "k < v - 2"
shows "bibd V (complement blocks) (v - k) (b + A - 2*r)"
proof - Individual proof
interpret des: incomplete design V "(complement blocks)" "(v - k)" goals from
using assms complement incomplete by blast unfold locales
show ?thesis proof (unfold locales, simp all) -
show "2 < des.v" using assms block size t by linarith
show "Aps. ps € V = card ps = 2 —
points index (complement blocks) ps = b + A - 2 * (A * (des.v
using complement bibd index by simp
show "2 < des.v - k" using assms block size t by linarith
ged
ged

1) div (k - 1))"

LOCALE INTERACTIONS - COMBINING LOCALES

locale incidence system isomorphism = source: incidence system)V B + target: incidence system V' B'

for "V" and "B" and "V'" and "B'" +!?T?§?'bij_map ("m"
assumes bij: "bij betw « V V'"
assumes block img: "image mset ((°) w) B = B'"

begin
lemma design_iso points _indices_imp:
assumes "X € source.point indices t" Source and target
shows "x € target.point indices t" «— referencesto
proof - distinguish objects
obtain ps where t: "card ps = t" and ss: "ps C V" and x: "B index ps = x" using assms) & J
by (auto simp add: source.point indices def) in proofs
then have x val: "x = B' index (x ~ ps)" using design iso points index eq by auto
have x _img: " (m ~ ps) C V'"
using ss bij iso points map by fastforce
then have "card (7 = ps) = t" using t ss iso points ss card by auto
;hen show ?thesis using target.point indices elem in x img x val by blast Can also work
ge .
outside of locale
context

definition isomorphic designs (infixl "=p" 50) where

"D =p D' «— (34 m . design isomorphism (fst D) (snd D) (fst D') (snd D') x)"

SUBLOCALE CHAINS

" Introduced by Ballarin as the “functor pattern”.

locale GDD = group design +

fixes index :: int ("A") . :
assumes index ge 1: "A > 1" group_design — uni_group_desi
assumes index together: "G € G —
assumes index_distinct: "Gl € G = 1 X
GDD pairwise_balar.
locale K A GDD = K block design + GDD ----- + locale k A GDD = block design + GDD K A_GDD --------- yk_A_GDD
K GDD ------------ rk_GDD
locale KGDD =K AGD VBKG1 . » locale kK GDD = kK A GDD V Bk G 1 -

—> direct inheritance
---> sublocale relation

EQUIVALENT STRUCTURES? - REVERSE SUBLOCALES
® Reverse sublocales: sublocale in opposite direction of direct inheritance.

sublocale fin hypergraph C finite incidence system V E
rewrites "point replication number E v = degree v" and "points index E vs = degree set vs"
by unfold locales (simp all add: wellformed finite point replication number def degree def

degree set def points index def)

locale fin hypersystem = hypersystem + finite incidence system V E
oy
locale hypergraph = hypersystem + inf design V E I
I Block1 (C1,DI) (C2,D2) (C3,D3)

Block2 (C1,D2) (C2,D3) (C3,DI)

. . Block3 (C1,D3) (C2,D1) (C3,D2)
sublocale inf design C hypergraph V B Block4 (CLDI) (C2.D3) (C3D2)

by unfold locales (simp add: wellformed) Block5 (C1,D2) (C2,D1) (C3,D3)
— Block6é (C1,D3) (C2,D2) (C3,Dl)

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

E=1{{1, 2}, {1, 3},
{2, 3}, {3, 4}}

locale graph rel =
fixes vertices :: "'a set" ("V")
fixes adj rel :: "'a rel"

assumes wf: "A u v. (u, v) € adj rel
’ — ueVAveV"

locale ulgraph rel = graph rel +
assumes sym adj: "“sym adj rel"

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

text < Temporary interpretation - mutual sublocale setup >
interpretation ulgraph V edge set by (rule is ulgraph)

interpretation ulgraph rel V adj relation by (rule is ulgraph rel)

+ lemmas on equivalences of definitions....

sublocale ulgraph rel C ulgraph "V" "edge set"
rewrites "ulgraph.adj relation edge set = adj rel"
using local.is ulgraph rel edges is by simp all

sublocale ulgraph C ulgraph rel "V" "adj relation”
rewrites "ulgraph rel.edge set adj relation = E"
using is ulgraph rel edges rel is by simp all

LOCALES IN PROOFS

Locales work for modelling
complex hierarchies....

But are they easy to use to

formalise mathematical results?

BASICS - PROOFS OF PROPERTIES

" |ocalesare designedto be a module system - so working inside the contextis EASY.

lemma necess cond 1 rhs:
assumes "x € V"

shows "size ({# p # (mset set (V - {x}) x# {# bl e# B . x € bl #}). fst p € snd p#}) =

Lemma necess cond 1 lhs:
assumes "x € V"
shows "size ({# p c# (mset set (V - {x}) x# {# bl €# B . x € bl #}). fst p € snd p#})
= (B rep x) * (k - 1)"
(is "size ({# p c# (?M x# ?B). fst p € snd p#}) = (B rep x) * (k - 1) ")

Llemma necessary condition one:
shows "r * (k - 1) = A * (v - 1)"

using niﬁfjj/jff%f§>£2§ff§§§;i:iind 1 lhs design points nempty rep number by auto

Local definitions Locale parameters

USING SYMMETRIC INSTANCES

lemma bipartite sym: "bipartite graph V E Y X"
using partition ne edge betw all bi edges sym
by (unfold locales) (auto simp add: insert commute)

Interpret for symmetric

lemma edge size degree sumY: "card E = (D_y € Y . degree y)" property Can be at a local

proof -
have "(>y € Y . degree y) = (D>_y € Y . card(neighbors ss y X))" and theorylevel.
using degree neighbors ssY by (simp)
also have "... = card (all edges between X Y)"

using card all edges betw neighbor

by (metis card all edges between commute partitions finite(1l) partitions finite(2))
finally show ?thesis

by (simp add: card edges between set) [

ged

lemma edge size degree sumX: "card E = ().y € X . degree vy)
proof -
interpret sym: fin bipartite graph V E Y X
using fin bipartite sym by simp
show ?thesis using sym.edge size degree sumY by simp
ged

MULTIPLE INSTANCES OF STRUCTURE

lemma wilsons construction proper:
assumes "card I = w"
assumes "w > 0"
assumes "A n. n €¢ K' = n > 2"
assumes "A B . B e# B =— KGDD (B x I) (fB) K' {{x} x I |x.xe€B}"
shows "proper design (V x I) (>.B €# B. (f B))" (is "proper design ?Y ?B")
proof (unfold locales, simp_all)l Interpret instances from
show "Ab. Ixc#B. b c# f x = b C V x I" :
oroof - assumption.
fix b
assume "Jdxe#B. b e# f x"
then obtain B where "B ¢# B" and " (f B)" by auto
then interpret kgdd: K GDD * x I)" "(f B)" K" "{{x} x I |[x . x € B }" using assms by auto
show "b € V x I" using kgdd.wellformed
using <B €# B> <b €# f B> wellformed by fastforce
ged
show "finite (V x I)" using finite sets assms bot nat 0.not eq extremum card.infinite by blast
show "Abl. Ixe#B. bl ¢# f x — bl # {}"

This is inside a GDD locale itself!

NOTATION TRICKS - REASONING OUTSIDE OF CONTEXT

type synonym 'a hyp edge = "'a set"

type synonym 'a hyp graph = "('a set) x ('a hyp edge multiset)"

T Bundles hypergraph

abbreviation hyp edges :: "'a hyp graph = 'a hyp edge multiset" where elements.
"hyp edges H = snd H"
abbreviation hyp verts :: "'a hyp graph = 'a set" where “————— Abbreviations for easy

"hyp verts H = fst H"
- aCcCess.
locale fin hypergraph =

fixes vertices :: "'a set" ("V")

fixes edges :: "'a hyp edge multiset" ("E")

assumes wellformed: "e e# E — e C V"

assumes finite: "finite V"

definition hypergraph decomposition :: "'a hyp graph multiset = bool" where
"hypergraph decomposition S = (V h €# S . is subhypergraph h) A partition on mset E {#hyp edges h . h &# S#}"

definition is subhypergraph :: "'a hyp graph = bool" where o
"is subhypergraph H = sub_hypergraph (hyp verts H) (hyp edges H) V gr *——— Within context of
fin_hypergraph

APPLYING NOTATION TRICKS - WORKING OUTSIDE A CONTEXT

definition not col n uni hyps:: "nat = 'a hyp graph set"
where "not col n uni hyps n = { h . fin kuniform hypergraph nt (hyp verts h) (hyp edges h) n

A — (hypergraph.has property B (hyp verts h) (hyp edges h)) }"
\ Locale & local definition

used in theory definition
lemma obtains min edge colouring:

fixes z :: "'a itself"
assumes "min edges colouring n z < x" Locale “abstracted” away
obtains h :: a hyp graph" where "h &€ not col n uni hyps n"

and "enat (size (hyp edges h)) < x"
proof -

have "(INF h € ((not col n uni hyps n) :: 'a hyp graph set)
enat (size (hyp edges h))) < x"
using min edges colouring def[of "n" z] assms by auto
thus ?thesis using
enat 1t INF[of "X h. enat (size (hyp edges h))" "not col n uni hyps n" "x"]
using [ihat by blast
ged

PROBABILISTIC PROOFS: COMBINING LOCALES ACROSS DISCIPLINES

locale dependency graph = sgraph "V :: 'a set set" E + prob space "M :: 'a measure" for VE M +
assumes vin events: "V C events"
assumes mis: "\ A. A € V — mutual indep set A (V - ({A} U neighborhood A))"

= | ocalescan be combined no mattertheir “mathematical” context

= This combines probability with graph theory

PROBABILISTIC PROOFS: “TRANSFERRING” INFORMATION ACROSS LOCALES

® Success story: Undirected Graph Library was easily integrated with formalisation also involving
locales from abstract algebra and probability theory

= This formalised the Balog-Szemerédi-Gower’stheorem - a substantial and relatively recent result
in Additive combinatorics (joint work with A. Koutsoukou-Argyraki, M. Baksys).

interpret P1l: prob space "uniform count measure X"
interpret P2: prob space "uniform count measure X2"

interpret P3: prob _space "uniform count measure Y"

interpret H: fin bipartite graph "(?X1 U Y)" "{e € E. e C (?X1 U Y)}" "2X1" "Y"
let ?E loops = "mk edge ~ {(x, x") | x x'. x € X2 A x' € X2 A

(H.codegree normalized x x' Y) > 726 ©~ 3 / 128}"
interpret I': ulgraph "X2" "?E loops"

have neighborhood unchanged: "V x € 7?X1. neighbors ss x Y = H.neighbors ss x Y"
using neighbors ss def H.neighbors ss def vert adj def H.vert adj def by auto
then have degree unchanged: "V x € ?X1. degree x = H.degree x"
using H.degree neighbors ssX degree neighbors ssX by auto

PROBABILISTIC PROOFS: A LOCALE FRAMEWORK

To “introduce randomness” we must define a probability space (Q, F, P) formally

. S,
Define the __,[define C where "C = (all n vertex colourings fun 2)" Local definitions?

measure let ?M = "uniform count measure C"
[interpret P: prob space 7M

Define the —, using assms(1l) by (intro prob space uniform count measure)(simp all add: C def vertex

prob space have sp: "space M = C"
by (simp add: space uniform count measure)
Useful __,| have sts: "P.events = Pow C" by (simp add: sets uniform count measure)
lemmas have finE: "finite (set mset E)" by simp
have finC: "finite C" using vertex colourings fun fin C def by simp
_have Ccard: "card C = 2 powi (card V)" using count vertex colourings fun C def by auto

Can we generalise?

PROBABILISTIC PROOFS: A LOCALE FRAMEWORK

locale vertex fn space uniform =
fixes F :: "'a set = 'b set"
assumes ne: "F V # {}"
assumes fin: "finite (F V)"
begin

definitio

definition "MU = uniform count measure QU"

fin hypersystem vne +

Sublocale
. . prob_space
relatlonshlp\ .
Parameter v
: vertex_fn_space Q=QU
rewrites \ ’ T
Q=Y ,/" ‘H‘"‘w,x
vertex_fn_space_uniform
o QU =V =5 P
X’ -7 QU — V hs

vertex_space vertex_space_uniform vertex_prop_space

~

QU = VS

~

vertex_ss_space_uniform

0=VS!

v

vertex_ss_space vertex_colour_space

locale vertex colour _space = fin _hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_1lt order: "n < horder"
assumes n_not zero: "n # 0"

sublocale vertex colour space C vertex prop space V E "{0.
rewrites "QU = Cin®

.<n}"

PROBABILISTIC PROOFS: A VERTEX COLOURING SPACE EXAMPLE

locale vertex colour space = fin hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_lt order: "n < order"
assumes n not zero: "n #* 0"

sublocale vertex colour space C vertex prop space V E "{0..<n}"
rewrites "QU = C""
proof -
have "{0..<n} # {}" using n_not zero by simp
then interpret vertex prop space V E "{0..<n}"
by (unfold locales) (simp all)
show "vertex prop space V E {0..<n}" by (unfold locales)
show "QU = C"

using) def all n vertex colourings alt by auto
ged

Context contains general lemmas on vertex colourings for any future applications of
the probabilistic method to colourings!

PROBABILISTIC PROOFS: FRAMEWORK IN ACTION

context fin kuniform hypergraph nt
begin
proposition erdos_propertyB:

assumes "size E < (2°(k - 1))"

assumes "k > 0"

shows "has property B"
o " N . o1 proof -
Proposition 1.3.1 [Erdés (1963a)] Every n-uniform hypergraph with less than 2 (* (1) Set up the probability space: "Colour V randomly with two colours" *)
edges has property B. Therefore m(n) > 2" 1. interpret P: vertex colour_space V E 2

by unfold locales (auto simp add: order ge two)

(* (2) define the event to avoid - monochromatic edges *)
Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~ edges. *dEflne A where "A =(A e. {f € C* . monl?_edge f *e})"
Color V randomly by two colors. For each edge e € E, let A, be the event that ¢ is (* (3) Calculation 1: Clearly PriAe] = 27(1- n). *)

X ien have pe: "A e. e € set mset E — P.pfjob {f € C2 . mono edge f e} = 2 powi (1 - int k)"
monochromatic. Clearly Pr [A.] = 2'7". Therefore using P.prob_monochromatic_edge uniform assms(1) by fastforce

(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 %)
have "(>_ e € set mset E. P.prob (A e)) < 1"

Pri\/ A.| <) PriA]<1 proof - _ _ o
cCE ey have "int kK - 1 = int (k - 1)" using assms by linarith
then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
. . . . then have " e € (set_mset E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
and there is a two-coloring without monochromatic edges.] (2 (set) . e . !] . !)

unfolding A def using pe by simp
moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force
ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
ged
moreover have "A ° (set _mset E) C P.events" unfolding A _def P.sets eq by blast
(* (4) obtain a colouring avoiding bad events *)
ultimately obtain f where "f ¢ C?" and "f ¢ |J(A ~(set mset E))"
using P.Union_bound obtain_ fun[of "set mset E" A] finite set mset P.space_eq by auto
thus ?thesis using event is proper colouring A def is n colourable def by auto
ged

PROBABILISTIC PROOFS: FRAMEWORK IN ACTION

context fin kuniform hypergraph nt
begin
proposition erdos_propertyB:

assumes "size E < (2°(k - 1))"

assumes "k > 0"

shows "has property B"
proof -

* (1) Set up the probability space: "Colour V randomly with two colours" *)

interpret P: vertex_colour_space V E 2

by unfold locales (auto simp add: order ge two)

* (2) define the event to avoid - monochromatic edges *)
Proof. Let H ; define A where "A =(\ e. {f € C2 . mono_edge f e})"
* (3) Calculation 1: Clearly Pr[Ae] = 27(1- n). *)

have pe: "A e. e € set mset E — P.pfjob {f € C2 . mono edge f e} = 2 powi (1 - int k)"
monochromatic. Elcarly! lee = - Inererore { using P.prob_monochromatic_edge uniform assms(1) by fastforce
S * (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 %*)

" have "(> e € set mset E. P.prob (A e)) < 1"
Pr V Al < Z Pr{d.] <1 proof -

have "int k - 1 = int (k - 1)" using assms by linarith
ek cel then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
then have "(E:e € (set_mset E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
unfolding A def using pe by simp
moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force
ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
ged
'moreover have "A (set_mset E) C P.events" unfolding A def P.sets_eq by blast
(* (4) obtain a colouring avoiding bad events *)
ultimately obtain f where "f ¢ (C?" and "f ¢ |J(A ~(set mset E))"
using P.Union_bound obtain_ fun[of "set mset E" A] finite set mset P.space_eq by auto
thus ?thesis using event is proper colouring A def is n colourable def by auto
ged

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 2" ~1
edges has property B. Therefore m(n) > 2" 1.

and there is a two-coloring without monochromatic edges.] 1

LOCALES: ADVANTAGES VS LIMITATIONS

OVERVIEW: ADVANTAGES & LIMITATIONS

Advantages

= Facilitates a “little theories” approach
= Removesduplication

" |ncreases flexibility and extensibility.
= Easy hierarchy manipulation

= Significant notational benefits.

= Proofs became much neater.

® Transfer of properties

= More modular proofs & proof techniques

Limitations

= [ack of Automation

= |ncreasingly complex locale hierarchy,
where sublocale relationships must be
maintained.

® Using locale specifications outside of a
locale context lacks support (Notational etc)

= Can’t naturally define definitions involving
multiple instances of structures

KEY SUCCESSES SO FAR

\/ This work in combinatorial structure hierarchies

Extensions on this work to create a modular proof framework for the probabilistic method.

The original fundamental work by Ballarin on Algebra (https://dl.acm.org/doi/abs/10.1007/s10817-
019-09537-9

Work on formalising Schemes in Simple Type Theory by Bordg, Paulson, & Li
(https://arxiv.org/abs/2104.093606)

Work on formalising omega categories (Bordg & Mateo)
https://dl.acm.org/doi/abs/10.1145/3573105.3575679

KK XK

RESULTS PROVED USING LOCALE-CENTRIC STRUCTURE

= Design Properties
= Necessary conditions/basic constructions (BIBD’s, symmetric, derived, residual)
= Symmetric Intersection Theorem
= Wilson’s construction
= Bose’s inequality
" Fisher’s Inequality (& many variations)
= Szemerédi’'s Regularity Lemma/Roth’s Theorem (alteration from published version)
= Balog-Szemerédi-Gowerstheorem
= |ovaszlLocal Lemma

= Bounds on vertex colouring properties of hypergraphs.

(and more...)

= Locales have a lot of potential to be the new “go-to” in
Isabelle for large hierarchies relying flexibility, modularity, and
transference of data

= Not limited to mathematical hierarchies!

= Next steps

CONCLUDING " |ncrease automation

THOUGHTS = More natural ways to work with locales outside contexts.
= More specific tactics, tools, and tutorials.
CONTACT ME! = Relevant Papers:
UL A e S A b LS = A Modular First Formalisation of Combinatorial Design Theory

(with L. Paulson)

= A Formalisation of the Balog-Szemerédi-Gowers Theoremin
Isabelle/HOL (with A. Koutsoukou-Argyraki, M. Baksys, E.)

= Formal Probabilistic Methods for Combinatorial Structures using
the Lovasz Local Lemma (with L. Paulson)

= To come: paperon overallapproach!

