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Unification Problems

Unification problem: finite set of equations between terms

{x + b = a+ y , y = b}

Solution to a unification problem: a substitution of variables
making each equation true

{x 7→ a, y 7→ b}

Applications: in logic programming, theorem proving, deductive
verification to perform a deduction/computation

➼ Unification is used when applying resolution between clauses
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Syntactic Unification and
Equational Unification

Syntactic unification: s = t is true iff s and t are identical

Equational unification: s = t is true iff s and t are equal
modulo an equational theory, e.g.,

Associativity-Commutativity:
AC (+) = {X + Y = Y + X , X + (Y + Z ) = (X + Y ) + Z}

Abelian Groups:
AG (+) = AC (+) ∪ {X + 0 = X , X + (−X ) = 0}

Exclusive Or:
XOR(⊕) = AC (⊕) ∪ {X ⊕ 0 = X , X ⊕ X = 0}

Equational unification is undecidable in general, but decidable
for some particular equational theories such as the ones above
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Equational Matching
Equational unification: solving equations s =?

E t modulo an
equational theory E where s and t are arbitrary terms

Equational matching: solving equations s =?
E t modulo an

equational theory E where s or t is ground

Applications: (equational) rewriting, rule-based programming,
simplification in theorem proving,

Equational matching/unification is undecidable in general, but
decidable for particular equational theories E possibly including

• Associativity: A(∗) = {X ∗ (Y ∗ Z ) = (X ∗ Y ) ∗ Z}
• Commutativity: C (∗) = {X ∗ Y = Y ∗ X}
• Associativity-Commutativity: AC (∗) = A(∗) ∪ C (∗)

Example: x ∗ y = b ∗ b ∗ d ⊢AC(∗)−Match x = b ∗ b, y = d
⊢AC(∗)−Match x = b, y = b ∗ d

. . .
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Rule-based Unification

Goal: Design a unification procedure as inference system
transforming equational problems

Γ = {s1 = t1, . . . , sn = tn}

until reaching solved forms, and satisfying the following
properties:

sound If Γ ⊢ Γ′, then any unifier of Γ′ is a unifier of Γ

complete If Γ ⊢ Γ′, then any unifier of Γ is a unifier of Γ′

terminating if Γ ⊢ Γ′, then c(Γ) > c(Γ′), where c is a measure
associated to equational problems, and > is an
ordering with no infinite decreasing chain
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Rule-based Unification:
Solved Forms

An equational problem is irreducible with respect to a
rule-based unification procedure if and only if it is a solved
form.

Two kinds of solved forms:

Tree solved form Γ = {x1 = t1, . . . , xn = tn}
where for i = 1, . . . , n, xi is a variable occurring
once in Γ

Dag solved form {x1 = t1, . . . , xn = tn}
where for i , j = 1, . . . , n,
i ̸= j implies xi and xj are distinct variables,
and i ≤ j implies xi does not occur in tj

NB: a solved form yields a most general unifier.
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Syntactic vs. Equational
Unification

The following decomposition rule is sound and complete for
syntactic unification:
Dec {f (s1, . . . , sn) = f (t1, . . . , tn)} ∪ Γ

⊢ {s1 = t1, . . . , sn = tn} ∪ Γ

Dec remains sound for equational unification, but additional
transformation rules are needed to retrieve completeness.

For example, when f is a commutative binary symbol:
Mut {f (s1, s2) = f (t1, t2)} ∪ Γ

⊢ {s1 = t2, . . . , s2 = t1} ∪ Γ

{Dec,Mut} leads to a sound, complete and terminating
commutative unification procedure.

Question: can we generalize this idea of mutation rule to other
equational theories?
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Syntactic Theories

Definition [Kirchner and Klay, 1990, Nipkow, 1990]: An
equational presentation E is said be to resolvent, if for any
E -equality s =E t there exists an equational proof s ←→∗

E t
such that ←→∗

E includes at most one equational step ←→E

applied at the root position.
A theory is syntactic if it has a resolvent presentation.

Examples: A, C , AC are syntactic.

Motivation: If a theory is syntactic, then it admits a set of
mutation rules transforming any unification problem in a sound
and complete way.
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Unification and Matching
in Syntactic Theories

Fact. Any finite theory E with finitary E -unification is
syntactic [Kirchner and Klay, 1990], where E is said to be finite
if every equivalence class of =E has finitely many terms.

➼ A sound and complete unification procedure for syntactic
theories, but not necessarily terminating

➼ A sound, complete and terminating matching procedure for
finite syntactic theories (A, C , AC , ...)

➼ A sound, complete and terminating unification procedure
for particular subclasses of syntactic theories:

• shallow theories [Comon et al., 1994],

• theories closed by paramodulation [Lynch and Morawska, 2002],

• theories with the Finite Variant Property [Eeralla et al., 2019].
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Union of Theories

A problem is usually expressed modulo a union of theories, e.g.,
E = E1 ∪ E2 where Ei = A(∗i ), C (∗i ), AC (∗i ), . . .

Combination methods: solve the problem in a modular way by
reusing the solvers known for individual theories E1 and E2
Existing combination methods for unions of disjoint theories:

• unification in arbitrary
theories [Schmidt-Schauß, 1989, Baader and Schulz, 1996]

• matching in regular theories [Nipkow, 1991]

• matching in “regulo-linear” theories [Ringeissen, 1996]

Unions of theories sharing only constructors initiated
in [Domenjoud et al., 1994, Baader and Tinelli, 2002]
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Solving in a Union of Theories

1 Separate the input problem into pure sub-problems (via
variable abstraction)

2 Solve the pure sub-problems by applying the respective
solvers

3 Merge the solutions by taking care of the following
problematic cases:
• conflict of theories: a variable can be instantiated in

several theories
x = t1 , x = t2

• compound cycle: a cycle between several theories

x = t1[y ] , y = t2[x ]

where t1 and t2 are (non-variable) pure terms in distinct
theories.
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Disjoint Union of Theories

• [Yelick, 1987]
The problematic cases are trivially solved (no solution) in
any union of regular and collapse-free disjoint theories
• A theory E is regular if for any l = r ∈ E , l and r have the

same set of variables.
• A theory E is collapse-free if there is no axiom l = x ∈ E ,

where x is a variable.

• [Schmidt-Schauß, 1989, Baader and Schulz, 1996]
Use unification with constant restriction to solve the
problematic cases in any union of disjoint theories
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Non-disjoint Union of Theories

In this talk: study non-disjoint unions E = E1 ∪ E2
• What happens when the individual theories E1 and E2 are

two “conservative extensions” of a shared subtheory E

• What happens when the solvers known for E1 and E2 are
built as “extensions” of a solver for E?

• What happens when E1 and E2 are syntactic theories?

Assumption:
For i = 1, 2, Ei = Fi ∪ E where Fi is E -constructed, and the
function symbols shared by F1 and F2 occur necessarily in E .
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E -Constructed Theories: Examples

Let E = AC (∗)

Exponentiation: EX = {e(e(X ,Y ),Z ) = e(X ,Y ∗ Z )}

Homomorphism: H = {e(X ∗ Y ,Z ) = e(X ,Z ) ∗ e(Y ,Z )}

Homomorphic Exponentiation: EXH = EX ∪ H

F = EX ,H,EXH, . . .

Union of Theories E1 ∪ E2 where Ei = Fi ∪ E and Fi is obtained
from F by renaming any function symbol f by fi if f does not
occur in E .
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E -Constructed
Term Rewrite Systems

Consider the left-to-right orientation of the Exponentiation:

Let AC = AC (∗), R =
{

e(e(X ,Y ),Z )→ e(X ,Y ∗ Z )
}
.

(R,AC ) is an AC -constructed Term Rewrite System:

• (R,AC ) is AC -convergent: existence and unicity of normal
forms modulo AC ,

• all the symbols in AC are constructors for R: for any rule
l → r ∈ R, l is not rooted by the AC -symbol ∗.
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Union of
E -Constructed Rewrite Systems

Questions addressed in this talk:

• What happens when the individual theories are
E -constructed TRSs (sharing only symbols in E )?
And syntactic?

• What happens when the unification procedures known for
E -constructed TRSs are built in a hierarchical way as
extensions of a E -unification procedure?
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Use of E -Unification in
E -Constructed Rewrite Systems

Property. If (R,E ) is E -constructed, then E -unification is
sound and complete to solve R ∪ E -unification problems built
over symbols of E .

➼ A crucial property to build an R ∪ E -unification procedure in
a hierarchical way as a combined procedure including

• an E -unification algorithm to solve all the equations that
are pure in E ,

• an additional inference system to solve all the other
equations, typically via a set of mutation rules.
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Hierarchical Unification Procedure

Let Σ0 be the signature of E , and Σ the signature of R ∪ E .

A hierarchical unification procedure HE (U) is given by:

• some combination rules, to get a separate form Γ ∪ Γ0
where Γ0 is a set of Σ0-equations and Γ is a set of
Σ\Σ0-rooted flat equations.

• an E -unification algorithm (encapsulated into a Solve
rule), to solve Γ0
• an additional inference system U, to simplify Γ

➼ U may be a set of mutation rules, if R ∪ E is syntactic

In

Combination rules
��

ΓU 99 ∪

if solved
��

Γ0 Solvehh

Out
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Unification: Combination Rules

Coalesce {x = y} ∪ Γ ⊢ {x = y} ∪ (Γ{x 7→ y})
where x and y are distinct variables occurring both in Γ.

Split {f (v⃗) = t} ∪ Γ ⊢ {x = f (v⃗), x = t} ∪ Γ
where f ∈ Σ\Σ0, t is a non-variable term and x is a fresh
variable.

Flatten {v = f (. . . , u, . . . )} ∪ Γ
⊢ {v = f (. . . , x , . . . ), x = u} ∪ Γ

where f ∈ Σ\Σ0, v is a variable, u is a non-variable term, and
x is a fresh variable.

VA {s = t[u]} ∪ Γ ⊢ {s = t[x ], x = u} ∪ Γ
where t is Σ0-rooted, u is an alien subterm of t, and x is a fresh
variable.
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Solving Rule

Solve Γ ∪ Γ0 ⊢
∨

σ0∈CSUE (Γ0)
Γ ∪ σ̂0

where

• Γ is a set of Σ\Σ0-equations,

• Γ0 is a set of Σ0-equations,

• Γ0 is E -unifiable and not in tree solved form,

• CSUE (Γ0) is a complete set of E -unifiers of Γ0
computed by an E -unification algorithm,

• σ̂0 is the tree solved form associated to a unifier σ0.

NB: Solve is implemented by calling an E -unification algorithm
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Distributive Exponentiation

Let AC = AC (⊛)

Consider two rewrite systems:

1

RE =

{
exp(exp(X ,Y ),Z )→ exp(X ,Y⊛Z )
exp(X ∗ Y ,Z )→ exp(X ,Z ) ∗ exp(Y ,Z )

}
2

RF = {enc(enc(X ,Y ),Z )→ enc(X ,Y⊛Z )}.

(RE ,AC ) and (RF ,AC ) are AC -constructed.
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Unification in
Distributive Exponentiation

Revisiting [Erbatur et al., 2011],

1 EAC = RE ∪ AC admits a hierarchical unification algorithm
of the form HAC (UE).

2 FAC = RF ∪ AC admits a hierarchical unification
algorithm of the form HAC (UF ).

For instance, UE includes the following rule:
{L = exp(v ,w), L = exp(x , y)} ∪ Γ
⊢ {L = exp(x , y), y = z⊛w , v = exp(x , z)} ∪ Γ.
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Combined Hierarchical Unification

Let F1 and F2 be two E -constructed theories sharing only
symbols in E such that

for i = 1, 2, Fi ∪ E admits a sound and complete unification
procedure of the form HE (Ui ).

Under which conditions do we that HE (U1 ∪U2) is a sound and
complete unification procedure for F1 ∪ F2 ∪ E?

➼ Consider layer-preserving theories

How to get a terminating HE (U1 ∪ U2) procedure when
HE (U1) and HE (U2) are both terminating?

➼ Consider a common decreasing measure
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Layer-preserving Theories

Any term viewed as a “mounting” of two kinds of layers:

1 Σ0-layer, built over Σ0-symbols (the symbols in E ),

2 Σ\Σ0-layer, built over Σ\Σ0-symbols.

Symbols not in E

Symbols in E

An equational theory F ∪ E is said to be layer-preserving if,
e.g., any term rooted by a Σ\Σ0-layer is necessarily equal
modulo F ∪ E to a term rooted by a Σ\Σ0-layer.
Example: distributive exponentiation theories
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Termination of
Combined Hierarchical Unification

Find a complexity measure defined as a mapping C from
separate forms to natural numbers such that HE (U) inference
system is C -decreasing,

where C -decreasingness is a modular property:

If HE (U1) and HE (U2) are C -decreasing,
then HE (U1 ∪ U2) is C -decreasing.
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Union of Distributive
Exponentiation Theories

Consider the distributive exponentiation theories EAC and FAC

and their respective hierarchical unification algorithms
HAC (UE) and HAC (UF ).

• EAC and FAC are layer-preserving AC -constructed theories.

Consequence: HAC (UE ∪ UF ) is sound and complete.

• There exists a complexity measure SVC defined according
to the number of equivalence classes of abstraction
variables shared by Γ and Γ0 such that:

HAC (UE ∪ UF ) is a SVC -decreasing
since HAC (UE) and HAC (UF ) are both SVC -decreasing.

Consequence: HAC (UE ∪ UF ) is also terminating.
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Beyond E -Constructed TRSs

An equational theory F is E -constructed if there exists a
normalizing mapping NF satisfying some properties including

s =F∪E t iff NF (s) =E NF (t)

and for any function symbol f in E ,

NF (f (t1, . . . , tn)) =E f (NF (t1), . . . ,NF (tn))

Consequence: F ∪ E -equality is decidable if NF is computable
and E -equality is decidable.

Property: the class of E -constructed theories is closed by
non-disjoint union (sharing only the symbols in E ).

Remark: the definition of an E -constructed theory does not
require that NF is computable.
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E -Constructed Theories:
More Examples

The following theories are E -constructed,
if E is the empty theory over {pk}:

K = {keyex(X , pk(X ′),Y , pk(Y ′)) = keyex(X ′, pk(X ),Y ′, pk(Y ))}

ENC =


adec(aenc(M, pk(S)),S) = M

checksign(sign(M,S),M, pk(S)) = ok
getmsg(sign(M,S)) = M
sdec(senc(M,K ),K ) = M


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From Unification to Matching

Consider any set of equations {. . . , s = t , . . . }

Unification problem: s and t are arbitrary.

Matching problem: s or t is ground.

Word problem: s and t are ground.

A key principle to solve Γ: eargerly normalize ground terms in
Γ, via an appropriate normalizing mapping,

not necessarily NF , since NF is not assumed to be computable.

In practice, use of a weaker notion of normal form for any term
t, called layer-reduced form of t, denoted by t⇓, such that
t⇓ has the the same mounting of layers as NF (t).
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Combined Word Problem

Combination Theorem. Let F1 and F2 be any E -constructed
theories sharing only symbols in E such that

for i = 1, 2, Fi ∪ E has a layer-reduced term mapping ⇓i and a
decidable equality.

Then, F1 ∪ F2 ∪ E has a (combined) layer-reduced term
mapping ⇓1,2 and a decidable equality.
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Matching in Regular Theories

Property. In regular theories, any solution of any matching
problem is necessarily ground: it is a matching problem in
solved form.

Consider a matching problem {s1[x ] = t1, s2[x ] = t2}. For
i = 1, 2, solving si [x ] = ti yields x = t ′i where t ′i is ground.
Then, we just have to check whether t ′1 = t ′2.

Consequences for combined matching in regular theories:

• conflicts solved by checking (ground) equalities,

• no compound cycle.
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Combined Matching
in Regular Theories

Combination Theorem. Let F1 and F2 be any regular
E -constructed theories sharing only symbols in E such that

for i = 1, 2, Fi ∪ E has a layer-reduced term mapping ⇓i and a
matching algorithm.

Then, F1 ∪ F2 ∪ E has a (combined) layer-reduced term
mapping ⇓1,2 and a (combined) matching algorithm.

Question(s):

• What happens when the matching algorithms for F1 ∪ E
and F2 ∪ E can be expressed in a hierarchical way?

• How to get a (combined) hierarchical matching algorithm
for F1 ∪ F2 ∪ E?
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Hierarchical Matching Procedure

A hierarchical F ∪ E -matching procedure HME (⇓,U) given by:

• a layer-reduced term mapping ⇓,
• some fixed combination rules, to get a separate form
Γ ∪ Γ0 such that Γ0 (resp., Γ) is a set of match-equations
where the non-ground terms are built over symbols in E
(resp., symbols not in E ),

• an E -matching algorithm Solve-M to solve Γ0: can be
applied without loss of completeness,

• an additional inference system U to simplify/mutate Γ.

In

Combination rules
��

ΓU 99 ∪

if solved
��

Γ0 Solve-Mhh

Out
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Matching: Combination Rules
Let Σ0 be the signature of E , and Σ the signature of F ∪ E .

Norm {s = t} ∪ Γ ⊢ {s = t⇓} ∪ Γ
where t is ground and t⇓ ≠ t.

Triv {s = t} ∪ Γ ⊢ Γ
where s, t are ground, s⇓ = s, t⇓ = t, and s =F∪E t.

Rep {x = t} ∪ Γ ⊢ {x = t} ∪ (Γ{x 7→ t})
where x is a variable occurring in Γ and t is a ground term.

Flatten-M {f (u⃗) = t} ∪ Γ ⊢ {f (x⃗) = t, u⃗ = x⃗} ∪ Γ
where f (u⃗) is a non-ground Σ\Σ0-rooted term, t is ground, and
x⃗ are fresh variables.

VA-M {s[u] = t} ∪ Γ ⊢ {s[x ] = t, u = x} ∪ Γ
where s is a non-ground Σ0-rooted term, u is an alien subterm
of s, t is a ground, and x is a fresh variable.
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Applying the Procedure

Let F = {h(X ∗ Y ) = h(X ) ∗ h(Y )} and E = AC (∗).

Input x ∗ h(b) = h(a ∗ b ∗ c)
⊢Norm x ∗ h(b) = h(a) ∗ h(b) ∗ h(c)
⊢VA-M x ∗ v = h(a) ∗ h(b) ∗ h(c), v = h(b)

1
⊢Solve-M x = h(a), v = h(b) ∗ h(c), v = h(b)
⊢Rep x = h(a), v = h(b), h(b) = h(b) ∗ h(c)

2
⊢Solve-M x = h(a) ∗ h(b), v = h(c), v = h(b)
⊢Rep x = h(a) ∗ h(b), v = h(b), h(b) = h(c)

3

⊢Solve-M x = h(a) ∗ h(c), v = h(b), v = h(b)
⊢Rep x = h(a) ∗ h(c), v = h(b), h(b) = h(b)
⊢Triv x = h(a) ∗ h(c), v = h(b)

4 . . .
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Hierarchical Matching Algorithms:
Examples

Let F = {h(X ∗ Y ) = h(X ) ∗ h(Y )} and E = AC (∗).

h(x) = h(a) ∗ h(b) ⊢U x = a ∗ b

The E -constructed TRS ({h(X ∗ Y )→ h(X ) ∗ h(Y )},E ) is an
innermost resolvent presentation of F ∪E , where any innermost
rewrite derivation has at most one step applied at the root.

Similar to the definition of resolvent
presentation [Kirchner and Klay, 1990, Nipkow, 1990]

Result. If a theory has a (innermost) resolvent presentation,
then it admits a set of mutation rules U leading to a sound and
complete matching algorithm HME (⇓,U).
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Combined Hierarchical Matching

Combination Theorem. Let F1 and F2 be any regular
E -constructed theories sharing only symbols in E such that

for i = 1, 2, Fi ∪ E has a matching algorithm HME (⇓i ,Ui ).

Then, F1 ∪ F2 ∪ E has a matching algorithm
HME (⇓1,2,U1 ∪ U2).
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Combined Hierachical Solving

Development of a hierarchical solving framework dedicated to
E -constructed theories.

• study of several terminating scenarios

1 unification in forward-closed E -constructed
TRSs [Erbatur et al., 2020]

2 unification in paramodulation-closed E -constructed
theories [Erbatur et al., 2021]

3 matching in regular E -constructed theories (and word
problem in arbitrary E -constructed
theories) [Erbatur et al., 2022]

• Future work:
• matching: beyond regular theories?
• unification: a uniform treatment of terminating cases?
• disunification?
• knowledge problems arising in protocol analysis
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