Logic and Computation Sessions

XVI Summer Workshop in Mathematics, Universidade de Brasília

Quantitative Weak Linearisation

Daniel Ventura EFFA/INF, Universidade Federal de Goiás (joint work with Sandra Alves) February 2024

Quantitative Weak Linearisation

Linearisation: What do we mean by linearisation:

"Linearisation as the process of transforming/relating/simulating non-linear functions in/to/using equivalent linear functions"

Weak: We consider a restricted class of linear terms:

"A λ -term t is weak-linear if every β -redex in any reduction sequence starting from t are non duplicating".

Quantitative: Non-idempotent intersection types, introduced independently by Gardner and Kfoury. Its relation with linear logic was highlighted in De Carvalho's thesis.

The λ -calculus

Proposed by Church in 1932¹.

Terms
$$t := x \mid t \mid \lambda x.t$$

Computations (reductions) executed by a unique rule:

$$(\lambda x.t) s \longrightarrow t\{x \backslash s\}$$
 (β)

Some renaming may be needed:

$$\lambda x.t \longrightarrow \lambda y.t\{x \backslash y\}$$
 (\alpha)

¹A. Church: A set of postulates for the foundation of logic. *Annals of Math* 33(2):346–366, 1932.

Intersection Types Systems (ITS)

Terms in an ITS can have more than one type:

$$x: \alpha \to \beta \cap \alpha$$

where \cap is commutative, associative and idempotent:

$$\tau \cap \tau = \tau$$

$$\frac{x : \{\alpha \to \beta\} \vdash x : \alpha \to \beta \quad x : \{\alpha\} \vdash x : \alpha}{x : \{\alpha \to \beta, \alpha\} \vdash xx : \beta} \\
\vdash \lambda x.xx : \{\alpha \to \beta, \alpha\} \to \beta$$

4

Intersection Types Systems (ITS)

Terms in an ITS can have more than one type:

$$x: \alpha \to \beta \cap \alpha$$

where \cap is commutative, associative and idempotent:

$$\tau\cap\tau=\tau$$

$$\frac{\overline{x : \{\alpha \to \beta\} \vdash x : \alpha \to \beta} \quad \overline{x : \{\alpha\} \vdash x : \alpha}}{\underbrace{x : \{\alpha \to \beta, \alpha\} \vdash xx : \beta}}{\vdash \lambda x. xx : \{\alpha \to \beta, \alpha\} \to \beta}$$

4

ITS for Strong Normalising Terms

$$(\textbf{types}) \quad \sigma,\tau \quad ::= \quad \alpha \mid \mathcal{R} \rightarrow \sigma \quad (\textbf{int-types}) \quad \mathcal{R} \quad ::= \quad \{\sigma_k\}_{k \in K}$$

$$\frac{\Gamma \vdash t : \tau}{\Gamma |\!\!| x \vdash \lambda x. t : \Gamma(x) \to \tau} \qquad \overline{x : \{\tau\} \vdash x : \tau}$$

$$\frac{\Gamma \vdash t : \mathcal{R} \to \tau \qquad \Delta \vdash u : \mathcal{R}}{\Gamma + \Delta \vdash t u : \tau} \qquad \frac{\Delta \vdash t : \sigma}{\Delta \vdash t : \{\}}$$

$$\frac{(\Delta_k \vdash t : \sigma_k)_{k \in \mathcal{K}} \qquad |\mathcal{K}| > 0}{+_{k \in \mathcal{K}} \Delta_k \vdash t : \{\sigma_k\}_{k \in \mathcal{K}}}$$

Quantitative information is obtained with a non-idempotent \cap :

$$\tau\cap\tau\neq\tau$$

ldempotent	Non-idempotent	

For $(\lambda x. \lambda y. xyy)uv$ there is a single derivation for v in the idempotent system, but two copies in its reduct uvv

Reduction decreases the size of derivations in the non-idempotent system

Quantitative information is obtained with a non-idempotent \cap :

$$\tau\cap\tau\neq\tau$$

Idempotent	Non-idempotent	
$\{x:\sigma\to\sigma\to\tau,y:\sigma\}\vdash xyy:\tau$	$\{x: \sigma \to \sigma \to \tau, y: \sigma \cap \sigma\} \vdash xyy: \tau$	

For $(\lambda x.\lambda y.xyy)uv$ there is a single derivation for v in the idempotent system, but two copies in its reduct uvv

Reduction decreases the size of derivations in the non-idempotent system

Quantitative information is obtained with a non-idempotent \cap :

$$\tau \cap \tau \neq \tau$$

Idempotent	Non-idempotent	
$\{x:\sigma\to\sigma\to\tau,y:\sigma\}\vdash xyy:\tau$	$\{x: \sigma \to \sigma \to \tau, y: \sigma \cap \sigma\} \vdash xyy: \tau$	

For $(\lambda x.\lambda y.xyy)uv$ there is a single derivation for v in the idempotent system, but two copies in its reduct uvv

Reduction decreases the size of derivations in the non-idempotent system

NITS for Strong Normalising Terms

$$(\textbf{types}) \quad \sigma,\tau \quad ::= \quad \alpha \mid \mathcal{A} \rightarrow \sigma \quad (\textbf{multi-types}) \quad \mathcal{A} \quad ::= \quad [\sigma_k]_{k \in \mathcal{K}}$$

$$\frac{\Gamma \vdash t : \tau}{\Gamma \backslash\!\!\backslash x \vdash \lambda x. t : \Gamma(x) \to \tau} \qquad \frac{}{x : [\tau] \vdash x : \tau}$$

$$\frac{\Gamma \vdash t : A \to \tau \qquad \Delta \vdash u : A}{\Gamma + \Delta \vdash t u : \tau} \qquad \frac{\Delta \vdash t : \sigma}{\Delta \vdash t : []}$$

$$\frac{(\Delta_k \vdash t : \sigma_k)_{k \in K} \qquad |K| > 0}{+_{k \in K} \Delta_k \vdash t : [\sigma_k]_{k \in K}}$$

- Antonio Bucciarelli, Delia Kesner, Daniel Ventura:
 Non-idempotent intersection types for the Lambda-Calculus.
 Log. J. IGPL 25(4): 431-464 (2017)
- Delia Kesner, Daniel Ventura: Quantitative Types for the Linear Substitution Calculus. IFIP TCS 2014: 296-310
- Delia Kesner, Daniel Ventura: A resource aware semantics for a focused intuitionistic calculus. Math. Struct. Comput. Sci. 29(1): 93-126 (2019)
- Delia Kesner, Loïc Peyrot, Daniel Ventura: Node Replication: Theory And Practice. Log. Methods Comput. Sci. 20(1) (2024)

Tight Types and Exact Measures

Minimal typings = all and only information

Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ -calculus to extract exact measures for several strategies

• call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

$$(\lambda x.x)(\lambda x.x)$$

We say that $(\lambda x.x)$ is consuming and $(\lambda x.x)$ is persistent.

Tight Types and Exact Measures

Minimal typings = all and only information

Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ -calculus to extract exact measures for several strategies

• call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

$$(\lambda x.x)(\lambda x.x)$$

We say that $(\lambda x.x)$ is consuming and $(\lambda x.x)$ is persistent.

Tight Types and Exact Measures

Minimal typings = all and only information

Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ -calculus to extract exact measures for several strategies

• call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

$$(\lambda x.x)(\lambda x.x)$$

We say that $(\lambda x.x)$ is consuming and $(\lambda x.x)$ is persistent.

The sets of types (\mathcal{T}) and multi-types are given by the following grammars:

- Use different typing rules for persistent and consuming terms
- A derivation $\Gamma \vdash M : \tau$ is tight if both Γ and τ are tight

Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

$$\mathcal{M} ::= \mathcal{N} \mid \lambda x. \mathcal{M} \qquad \qquad \mathcal{N} ::= x \mid \mathcal{N} \mathcal{M}$$

The sets of types (T) and multi-types are given by the following grammars:

$$\begin{array}{llll} \mbox{(tight-types)} & \mbox{t} & ::= & \bullet_{\mathcal{M}} \mid \bullet_{\mathcal{N}} \\ \mbox{(types)} & \sigma, \tau & ::= & \mbox{t} \mid \mathcal{A} \rightarrow \sigma \\ \mbox{(multi-types)} & \mathcal{A} & ::= & [\sigma_k]_{k \in \mathcal{K}} \end{array}$$

- Use different typing rules for persistent and consuming terms
- A derivation $\Gamma \vdash M : \tau$ is tight if both Γ and τ are tight

Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

$$\mathcal{M} ::= \mathcal{N} \mid \lambda x. \mathcal{M} \qquad \qquad \mathcal{N} ::= x \mid \mathcal{N} \mathcal{M}$$

The sets of types (\mathcal{T}) and multi-types are given by the following grammars:

$$\begin{array}{llll} \mbox{(tight-types)} & \mbox{t} & ::= & \bullet_{\mathcal{M}} \mid \bullet_{\mathcal{N}} \\ \mbox{(types)} & \sigma, \tau & ::= & \mbox{t} \mid \mathcal{A} \!\rightarrow\! \sigma \\ \mbox{(multi-types)} & \mathcal{A} & ::= & [\sigma_k]_{k \in \mathcal{K}} \end{array}$$

- Use different typing rules for persistent and consuming terms
- A derivation $\Gamma \vdash M : \tau$ is tight if both Γ and τ are tight

Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

$$\mathcal{M} ::= \mathcal{N} \mid \lambda x. \mathcal{M} \qquad \qquad \mathcal{N} ::= x \mid \mathcal{N} \mathcal{M}$$

$$\overline{x:[\tau] \vdash x:\tau}$$

$$\frac{\Gamma \vdash t : \tau}{\Gamma \backslash\!\!\backslash x \vdash \lambda x.t : \Gamma(x) \to \tau}$$

$$\frac{\Gamma \vdash t : t \quad tight(\Gamma(x))}{\Gamma \backslash\!\!\backslash x \vdash \lambda x.t : \bullet_{\mathcal{M}}}$$

$$\frac{\Gamma \vdash t : \mathcal{A} \rightarrow \tau \qquad \Delta \vdash u : \mathcal{A}}{\Gamma + \Delta \vdash t \, u : \tau}$$

$$\frac{\Gamma \vdash t : \bullet_{\mathcal{N}} \qquad \Delta \vdash u : \mathtt{t}}{\Gamma + \Delta \vdash t \, u : \bullet_{\mathcal{N}}}$$

$$\frac{(\Delta_k \vdash t : \sigma_k)_{k \in K} \quad |K| > 0}{+_{k \in K} \Delta_k \vdash t : [\sigma_k]_{k \in K}}$$

$$\frac{\Delta \vdash t : \sigma}{\Delta \vdash t : []}$$

Example

Consider
$$t \equiv (\lambda x.xIx)\Delta$$
, with $I \equiv \lambda z.z$ and $\Delta \equiv \lambda y.yy$. Let $\mathcal{B} = [[[\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}] \to [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}], [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}]$ and $\mathcal{A} = [\bullet_{\mathcal{M}}, \underbrace{\mathcal{B} \to [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}}]$. Let Φ be:

$$\frac{x : [\bullet_{\mathcal{N}}] \vdash x : \bullet_{\mathcal{N}} \quad x : [\bullet_{\mathcal{N}}] \vdash x : \bullet_{\mathcal{N}}}{x : [\bullet_{\mathcal{N}}] \vdash x : \bullet_{\mathcal{N}}} \qquad \frac{x : [\tau_{1}] \vdash x : \tau_{1}}{x : [\tau_{2}] \vdash x : [\tau_{2}]} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : [\tau_{2}]} = \frac{x : [\bullet_{\mathcal{N}}] \vdash x : [\tau_{2}]}{x : [\bullet_{\mathcal{N}}] \to \bullet_{\mathcal{M}}} = \frac{x : [\bullet_{\mathcal{N}}] \to \bullet_{\mathcal{M}}}{\vdash \Delta : \tau_{3}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : [\tau_{2}]} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : [\tau_{2}]} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : [\tau_{2}]} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{2}} = \frac{x : [\tau_{2}] \vdash x : \tau_{2}}{x : [\tau_{2}] \vdash x : \tau_{$$

Example (cont.)

Let then Φ_{I} be:

$$\frac{x: [[\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}] \vdash x: [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}}{\vdash I: \tau_{1}} \quad \frac{y: [\bullet_{\mathcal{M}}] \vdash y: \bullet_{\mathcal{M}}}{\vdash I: \tau_{2}}$$

We have the following tight derivation for *t*:

$$\frac{x : [\tau_{3}] \vdash x : \tau_{3} \quad \Phi_{I}}{x : [\tau_{3}] \vdash xI : [\bullet_{\mathcal{M}}] \rightarrow \bullet_{\mathcal{M}}} \quad \frac{x : [\bullet_{\mathcal{M}}] \vdash x : \bullet_{\mathcal{M}}}{x : [\bullet_{\mathcal{M}}] \vdash x : [\bullet_{\mathcal{M}}]} \\
\underline{\frac{x : \mathcal{A} \vdash xIx : \bullet_{\mathcal{M}}}{\vdash (\lambda x.xIx) : \mathcal{A} \rightarrow \bullet_{\mathcal{M}}}} \quad \Phi}$$

$$\vdash^{(4,2)} (\lambda x.x Ix) \Delta : \bullet_{\mathcal{M}}$$

Example (cont.)

Let then Φ_{I} be:

$$\frac{x: [[\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}] \vdash x: [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}}{\vdash I: \tau_{1}} \quad \frac{y: [\bullet_{\mathcal{M}}] \vdash y: \bullet_{\mathcal{M}}}{\vdash I: \tau_{2}}$$

We have the following tight derivation for *t*:

$$\frac{x: [\tau_{3}] \vdash x: \tau_{3} \quad \Phi_{I}}{x: [\tau_{3}] \vdash xI: [\bullet_{\mathcal{M}}] \rightarrow \bullet_{\mathcal{M}}} \quad \frac{x: [\bullet_{\mathcal{M}}] \vdash x: \bullet_{\mathcal{M}}}{x: [\bullet_{\mathcal{M}}] \vdash x: [\bullet_{\mathcal{M}}]}$$

$$\frac{x: \mathcal{A} \vdash xIx: \bullet_{\mathcal{M}}}{\vdash (\lambda x. xIx): \mathcal{A} \rightarrow \bullet_{\mathcal{M}}} \quad \Phi$$

$$\vdash (\lambda x. xIx) \Delta : \bullet_{\mathcal{M}}$$

$$\vdash^{(4,2)} (\lambda x.x Ix) \Delta : \bullet_{\mathcal{M}}$$

Example (cont.)

Let then Φ_{I} be:

$$\frac{x: [[\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}] \vdash x: [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}}{\vdash I: \tau_{1}} \quad \frac{y: [\bullet_{\mathcal{M}}] \vdash y: \bullet_{\mathcal{M}}}{\vdash I: \tau_{2}}$$

We have the following tight derivation for *t*:

$$\frac{x : [\tau_{3}] \vdash x : \tau_{3} \quad \Phi_{I}}{x : [\tau_{3}] \vdash x : [\bullet_{\mathcal{M}}] \rightarrow \bullet_{\mathcal{M}}} \quad \frac{x : [\bullet_{\mathcal{M}}] \vdash x : \bullet_{\mathcal{M}}}{x : [\bullet_{\mathcal{M}}] \vdash x : [\bullet_{\mathcal{M}}]} \\
\frac{x : A \vdash x I x : \bullet_{\mathcal{M}}}{\vdash (\lambda x . x I x) : A \rightarrow \bullet_{\mathcal{M}}} \quad \Phi}$$

$$\vdash (\lambda x . x I x) \Delta : \bullet_{\mathcal{M}}$$

$$\vdash^{(4,2)} (\lambda x.x Ix) \Delta : \bullet_{\mathcal{M}}$$

Tight Types

- Beniamino Accattoli, Stéphane Graham-Lengrand, Delia Kesner: Tight typings and split bounds, fully developed. J. Funct. Program. 30: e14 (2020)
- Delia Kesner, Pierre Vial: Consuming and Persistent Types for Classical Logic. LICS 2020: 619-632
- Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, Andrés Viso: The bang calculus revisited. Inf. Comput. 293: 105047 (2023)
- Sandra Alves, Delia Kesner, Daniel Ventura: A Quantitative Understanding of Pattern Matching. TYPES 2019: 3:1-3:36

Linearisation

"Can the standard λ -calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :

"If the formal parameter x of an abstraction $(\lambda x.t)$, is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$t, u \in \Lambda^{\wedge} ::= x \mid \lambda x.t \mid t.u_1 \wedge \cdots \wedge u_n$$

 β^{\wedge} -reduction

$$((\lambda x.t).u_1 \wedge \cdots \wedge u_n) \rightarrow t[u_1/x^{(1)}, \ldots, u_n/x^{(n)}]$$

"Can the standard λ -calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :

"If the formal parameter x of an abstraction $(\lambda x.t)$, is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$t, u \in \Lambda^{\wedge} ::= x \mid \lambda x.t \mid t.u_1 \wedge \cdots \wedge u_n$$

 β^{\wedge} -reduction

$$((\lambda x.t).u_1 \wedge \cdots \wedge u_n) \rightarrow t[u_1/x^{(1)}, \ldots, u_n/x^{(n)}]$$

"Can the standard λ -calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :

"If the formal parameter x of an abstraction $(\lambda x.t)$, is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$t, u \in \Lambda^{\wedge} ::= x \mid \lambda x.t \mid t.u_1 \wedge \cdots \wedge u_n$$

 β^{\wedge} -reduction

$$((\lambda x.t).u_1 \wedge \cdots \wedge u_n) \rightarrow t[u_1/x^{(1)}, \ldots, u_n/x^{(n)}]$$

"Can the standard λ -calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :

"If the formal parameter x of an abstraction $(\lambda x.t)$, is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$t, u \in \Lambda^{\wedge} ::= x \mid \lambda x.t \mid t.u_1 \wedge \cdots \wedge u_n$$

 β^{\wedge} -reduction:

$$((\lambda x.t).u_1 \wedge \cdots \wedge u_n) \to t[u_1/x^{(1)}, \ldots, u_n/x^{(n)}]$$

Properties and Conjecture

"Well-formed terms of the new calculus are those for which there is a contracted term in the λ -calculus."

$$\begin{array}{lll} |x| & = & x \\ |\lambda x.t| & = & \lambda x.|t| \\ & & provided\ that\ |t|\ is\ defined \\ |(t.u_1 \wedge \cdots \wedge u_n)| & = & |t||u_1| \\ & & provided\ that\ |t|,|u_1|,\ldots,|u_n|\ are\ defined \\ & and\ |u_1| \equiv \cdots \equiv |u_n| \end{array}$$

Kfoury's conjecture:

"Let t be a standard λ -term. t is β -SN iff there is a well-formed expanded λ -term u such that t $\equiv |u|$ and every β -reduction from t can be lifted to a β^{\wedge} -reduction from u".

Properties and Conjecture

"Well-formed terms of the new calculus are those for which there is a contracted term in the λ -calculus."

$$\begin{array}{lll} |x| & = & x \\ |\lambda x.t| & = & \lambda x.|t| \\ & & provided \ that \ |t| \ is \ defined \\ |(t.u_1 \wedge \cdots \wedge u_n)| & = & |t||u_1| \\ & & provided \ that \ |t|, |u_1|, \ldots, |u_n| \ are \ defined \\ & and \ |u_1| \equiv \cdots \equiv |u_n| \end{array}$$

Kfoury's conjecture:

"Let t be a standard λ -term. t is β -SN iff there is a well-formed expanded λ -term u such that $t \equiv |u|$ and every β -reduction from t can be lifted to a β^{\wedge} -reduction from u".

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

•
$$\mathcal{E}_I(x:\tau) \lhd (y, \{x: \{y:\tau\}\}), \text{ if } x \neq y$$

•
$$\mathcal{E}_I(\lambda x.t: \tau_1 \cap \cdots \cap \tau_n \to \sigma) \lhd (\lambda x_1 \dots x_n.t^*, A)$$

• if $\mathcal{E}_I(t:\sigma) \lhd (t^*, A \cup \{x: \{x_1: \tau_1, \dots, x_n: \tau_n\}\})$

- $\mathcal{E}_I(tu:\sigma) \lhd (t_0u_1 \ldots u_k, A_0 \uplus A_1 \uplus \cdots \uplus A_k)$
 - if for some k > 0 and $\tau_1, \ldots \tau_k$,
 - $\mathcal{E}_I(t:\tau_1\cap\cdots\cap\tau_k\to\sigma)\lhd(t_0,A_0)$
 - and $\mathcal{E}_I(u:\tau_i) \lhd (u_i,A_i), (1 \leq i \leq k)$

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

•
$$\mathcal{E}_I(x:\tau) \lhd (y, \{x: \{y:\tau\}\}), \text{ if } x \neq y$$

•
$$\mathcal{E}_I(\lambda x.t: \tau_1 \cap \cdots \cap \tau_n \to \sigma) \lhd (\lambda x_1 \dots x_n.t^*, A)$$

• if
$$\mathcal{E}_{I}(t:\sigma) \lhd (t^{*}, A \cup \{x: \{x_{1}: \tau_{1}, \dots, x_{n}: \tau_{n}\}\})$$

- $\mathcal{E}_I(tu:\sigma) \lhd (t_0u_1 \ldots u_k, A_0 \uplus A_1 \uplus \cdots \uplus A_k)$
 - if for some k > 0 and $\tau_1, \ldots \tau_k$,
 - $\mathcal{E}_I(t:\tau_1\cap\cdots\cap\tau_k\to\sigma)\lhd(t_0,A_0)$
 - and $\mathcal{E}_I(u:\tau_i) \lhd (u_i,A_i), (1 \leq i \leq k)$

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

•
$$\mathcal{E}_I(x:\tau) \triangleleft (y, \{x: \{y:\tau\}\}), \text{ if } x \neq y$$

•
$$\mathcal{E}_I(\lambda x.t : \tau_1 \cap \cdots \cap \tau_n \to \sigma) \lhd (\lambda x_1 \dots x_n.t^*, A)$$

• if
$$\mathcal{E}_I(t:\sigma) \lhd (t^*, A \cup \{x: \{x_1: \tau_1, \dots, x_n: \tau_n\}\})$$

- $\mathcal{E}_I(tu:\sigma) \lhd (t_0u_1 \ldots u_k, A_0 \uplus A_1 \uplus \cdots \uplus A_k)$
 - if for some k > 0 and $\tau_1, \ldots \tau_k$,
 - $\mathcal{E}_I(t:\tau_1\cap\cdots\cap\tau_k\to\sigma)\lhd(t_0,A_0)$
 - and $\mathcal{E}_I(u:\tau_i) \lhd (u_i,A_i), (1 \leq i \leq k)$

Expansion and Algebraic Properties of Intersection

Considering different properties of the intersection relation:

Λ	Source	Target	Preserves reductions
ACI	λ	Simple Types	Weak Head Reduction
ACI	λI	Relevant Types	eta-reduction
AC	λ	Affine Types	Weak Head Reduction
AC	λI	Linear Types	eta-reduction
А	λI	Ordered Types	eta-reduction

Sandra Alves, Mário Florido: *Structural Rules and Algebraic Properties of Intersection Types.* ICTAC 2022.

Weak (Linearisation)

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β -redex $(\lambda x.u)v$, then x occurs free in u at most once.

Example:

$$(\lambda x.xx)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x) (\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)$$

That is

$$(\lambda x_1 x_2.x_1 x_2)(\lambda x.x)(\lambda x.x)$$
 is weak linear, and $(\lambda x.xx)(\lambda x.x)$ is not

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β -redex $(\lambda x.u)v$, then x occurs free in u at most once.

Example:

$$(\lambda x.xx)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)$$

That is

$$(\lambda x_1 x_2.x_1 x_2)(\lambda x.x)(\lambda x.x)$$
 is weak linear, and $(\lambda x.xx)(\lambda x.x)$ is not

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β -redex $(\lambda x.u)v$, then x occurs free in u at most once.

Example:

$$(\lambda x.xx)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)(\lambda x.x) \longrightarrow_{\beta} (\lambda x.x) (\lambda x.x) \longrightarrow_{\beta} (\lambda x.x)$$

That is:

$$(\lambda x_1 x_2.x_1 x_2)(\lambda x.x)(\lambda x.x)$$
 is weak linear, and $(\lambda x.xx)(\lambda x.x)$ is not

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ -term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms...

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ -term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms...

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ -term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms...

One β -redex:

$$(\lambda \mathbf{x}.\mathbf{x}\mathbf{x})(\lambda \mathbf{y}.\mathbf{y})$$

$$\downarrow$$

$$\lambda \mathbf{x}_1 \mathbf{x}_2.\mathbf{x}_1 \mathbf{x}_2)(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y})$$

One redex created by the reduction (virtual):

$$(\lambda x.x(\lambda y.y))(\lambda z.zz) \rightarrow (\lambda z.zz)(\lambda y.y)$$

$$\downarrow$$

$$x.x(\lambda y.y)(\lambda y.y))(\lambda z_1 z_2.z_1 z_2)$$

Virtual redexes are characterised as (legal) paths in the initial term:

One β -redex:

$$(\lambda \mathbf{x}.xx)(\lambda \mathbf{y}.\mathbf{y})$$

$$\downarrow$$

$$(\lambda \mathbf{x}_1 \mathbf{x}_2.x_1x_2)(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y})$$

One redex created by the reduction (virtual):

$$(\lambda x.x(\lambda y.y))(\lambda z.zz) \rightarrow (\lambda z.zz)(\lambda y.y)$$

$$\downarrow$$

$$(\lambda x.x(\lambda y.y)(\lambda y.y))(\lambda z_1 z_2.z_1 z_2)$$

Virtual redexes are characterised as (legal) paths in the initial term:

One β -redex:

$$(\lambda \mathbf{x}.xx)(\lambda \mathbf{y}.\mathbf{y})$$

$$\downarrow$$

$$(\lambda \mathbf{x}_1 \mathbf{x}_2.x_1x_2)(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y})$$

One redex created by the reduction (virtual):

$$(\lambda x.x(\lambda y.y))(\lambda z.zz) \rightarrow (\lambda z.zz)(\lambda y.y)$$

$$\downarrow$$

$$(\lambda x.x(\lambda y.y)(\lambda y.y))(\lambda z_1 z_2.z_1 z_2)$$

Virtual redexes are characterised as (legal) paths in the initial term:

One β -redex:

$$(\lambda \mathbf{x}.xx)(\lambda \mathbf{y}.\mathbf{y})$$

$$\downarrow$$

$$(\lambda \mathbf{x}_1 \mathbf{x}_2.x_1x_2)(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y})$$

One redex created by the reduction (virtual):

$$\begin{array}{ccc} (\lambda x.x(\lambda \mathbf{y}.\mathbf{y}))(\lambda \mathbf{z}.zz) & \to & (\lambda \mathbf{z}.zz)(\lambda \mathbf{y}.\mathbf{y}) \\ \downarrow \\ (\lambda x.x(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y}))(\lambda \mathbf{z}_1 \mathbf{z}_2.z_1 z_2) \end{array}$$

Virtual redexes are characterised as (legal) paths in the initial term:

One β -redex:

$$(\lambda \mathbf{x}.xx)(\lambda \mathbf{y}.\mathbf{y})$$

$$\downarrow$$

$$(\lambda \mathbf{x}_1 \mathbf{x}_2.x_1x_2)(\lambda \mathbf{y}.\mathbf{y})(\lambda \mathbf{y}.\mathbf{y})$$

One redex created by the reduction (virtual):

$$(\lambda x.x(\lambda y.y))(\lambda z.zz) \rightarrow (\lambda z.zz)(\lambda y.y)$$

$$\downarrow$$

$$(\lambda x.x(\lambda y.y)(\lambda y.y))(\lambda z_1 z_2.z_1 z_2)$$

Virtual redexes are characterised as (legal) paths in the initial term:

$\mathcal{L}(t)$

$\mathcal{L}(t)$

$$\mathcal{T}(t) = egin{cases} t & ext{if all_linear}(\mathcal{LP}) \ \mathcal{T}(\mathcal{L}(t)) & ext{otherwise} \end{cases}$$

all_linear(\mathcal{LP}) returns true if all the legal paths in \mathcal{LP} end in a linear abstraction, and false otherwise.

Let
$$D = \lambda y_1 y_2 . y_1 y_2$$
, then:

$$T(\lambda x. x(\lambda y. yy)v)(\lambda fz. f(fz))$$

$$= (\lambda x. xDDDvvvv)(\lambda f_1 f_2 f_3 z_1 z_2 z_3 z_4 . f_1(f_2 z_1 z_2)(f_3 z_3 z_4))$$
and
$$(\lambda x. x(\lambda y. yy)v)(\lambda fz. f(fz)) \rightarrow_{\beta^*} (vv)(vv)$$

$$(\lambda x. xDDDvvvv)(\lambda f_1 f_2 f_3 z_1 z_2 z_3 z_4 . f_1(f_2 z_1 z_2)(f_3 z_3 z_4)) \rightarrow_{\beta^*} (vv)(vv)$$

$$\mathcal{T}(t) = egin{cases} t & ext{if all_linear}(\mathcal{LP}) \ \mathcal{T}(\mathcal{L}(t)) & ext{otherwise} \end{cases}$$

all_linear(\mathcal{LP}) returns true if all the legal paths in \mathcal{LP} end in a linear abstraction, and false otherwise.

Let
$$D = \lambda y_1 y_2. y_1 y_2$$
, then:

$$\mathcal{T}(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz))$$

$$= (\lambda x. xDDDvvvv)(\lambda f_1 f_2 f_3 z_1 z_2 z_3 z_4. f_1(f_2 z_1 z_2)(f_3 z_3 z_4))$$

and

$$(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz)) \rightarrow_{\beta^*} (vv)(vv)$$

$$\mathcal{T}(t) = egin{cases} t & ext{if all_linear}(\mathcal{LP}) \ \mathcal{T}(\mathcal{L}(t)) & ext{otherwise} \end{cases}$$

all_linear(\mathcal{LP}) returns true if all the legal paths in \mathcal{LP} end in a linear abstraction, and false otherwise.

Let
$$D = \lambda y_1 y_2. y_1 y_2$$
, then:

$$\mathcal{T}(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz))$$

$$= (\lambda x.xDDDvvvv)(\lambda f_1f_2f_3z_1z_2z_3z_4.f_1(f_2z_1z_2)(f_3z_3z_4))$$

and

$$(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz)) \rightarrow_{\beta^*} (vv)(vv)$$
$$(\lambda x.xDDDvvvv)(\lambda f_1f_2f_3z_1z_2z_3z_4.f_1(f_2z_1z_2)(f_3z_3z_4)) \rightarrow_{\beta^*} (vv)(vv)$$

$$\mathcal{T}(t) = egin{cases} t & ext{if all_linear}(\mathcal{LP}) \ \mathcal{T}(\mathcal{L}(t)) & ext{otherwise} \end{cases}$$

all_linear(\mathcal{LP}) returns true if all the legal paths in \mathcal{LP} end in a linear abstraction, and false otherwise.

Let
$$D = \lambda y_1 y_2 . y_1 y_2$$
, then:

$$\mathcal{T}(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz))$$

$$= (\lambda x.xDDDvvvv)(\lambda f_1 f_2 f_3 z_1 z_2 z_3 z_4.f_1(f_2 z_1 z_2)(f_3 z_3 z_4))$$

and

$$(\lambda x.x(\lambda y.yy)v)(\lambda fz.f(fz)) \rightarrow_{\beta^*} (vv)(vv)$$
$$(\lambda x.xDDDvvvv)(\lambda f_1f_2f_3z_1z_2z_3z_4.f_1(f_2z_1z_2)(f_3z_3z_4)) \rightarrow_{\beta^*} (vv)(vv)$$

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

Our conjecture:

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 x_4 . x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots$$

Our conjecture

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 x_4 . x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots$$

Our conjecture

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 x_4 . x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots$$

Our conjecture:

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 x_4 . x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots$$

Our conjecture:

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\mathcal{T}(\Omega) = \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 . x_1 x_2 x_2) D\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3 . x_1 x_2 x_3 x_3) DD\Delta)$$

$$= \mathcal{T}(\lambda x_1 x_2 x_3 x_4 . x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots$$

Our conjecture:

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\begin{split} \mathcal{T}(\Omega) &= \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2.x_1 x_2 x_2) D\Delta) \\ &= \mathcal{T}(\lambda x_1 x_2 x_3.x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3.x_1 x_2 x_3 x_3) DD\Delta) \\ &= \mathcal{T}(\lambda x_1 x_2 x_3 x_4.x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots \end{split}$$

Our conjecture:

- $\mathcal T$ preserves β -normal forms
- ullet If ${\mathcal T}$ terminates then ${\mathcal T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let
$$\Delta = \lambda x.xx$$
, $D = \lambda x_1x_2.x_1x_2$, and $\Omega = \Delta \Delta$. We have:

$$\begin{split} \mathcal{T}(\Omega) &= \mathcal{T}(D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2.x_1 x_2 x_2) D\Delta) \\ &= \mathcal{T}(\lambda x_1 x_2 x_3.x_1 x_2 x_3) D\Delta\Delta) = \mathcal{T}(\lambda x_1 x_2 x_3.x_1 x_2 x_3 x_3) DD\Delta) \\ &= \mathcal{T}(\lambda x_1 x_2 x_3 x_4.x_1 x_2 x_3 x_4) DD\Delta\Delta) = \cdots \end{split}$$

Our conjecture:

Virtual redexes involve abstractions that are consumed by reduction

Consider the term $t \equiv (\lambda x.xx)(\lambda x.x) \rightarrow (\lambda x.x)(\lambda x.x)$

The set of legal paths of t contains two paths of type $0 - \lambda$:

- one ends in $(\lambda x.xx)$, corresponding to the redex $(\lambda x.xx)(\lambda x.x)$
- one ends in $(\lambda x.x)$, corresponding to the redex $(\lambda x.x)(\lambda x.x)$

But only one copy of $(\lambda x.x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $(\lambda x_1 x_1.x_1 x_2)(\lambda x.x)(\lambda x.x)$ And only one copy of $(\lambda x.x)$ is now the end of a $\mathbb{Q} - \lambda$ path.

Virtual redexes involve abstractions that are consumed by reduction

Consider the term $t \equiv (\lambda x.xx)(\lambda x.x) \rightarrow (\lambda x.x)(\lambda x.x)$

The set of legal paths of t contains two paths of type $0 - \lambda$:

- one ends in $(\lambda x.xx)$, corresponding to the redex $(\lambda x.xx)(\lambda x.x)$
- one ends in $(\lambda x.x)$, corresponding to the redex $(\lambda x.x)(\lambda x.x)$

But only one copy of $(\lambda x.x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $(\lambda x_1 x_1.x_1 x_2)(\lambda x.x)(\lambda x.x)$ And only one copy of $(\lambda x.x)$ is now the end of a $@-\lambda$ path.

Virtual redexes involve abstractions that are consumed by reduction

Consider the term $t \equiv (\lambda x.xx)(\lambda x.x) \rightarrow (\lambda x.x)(\lambda x.x)$

The set of legal paths of t contains two paths of type $0 - \lambda$:

- one ends in $(\lambda x.xx)$, corresponding to the redex $(\lambda x.xx)(\lambda x.x)$
- one ends in $(\lambda x.x)$, corresponding to the redex $(\lambda x.x)(\lambda x.x)$

But only one copy of $(\lambda x.x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $(\lambda x_1 x_1.x_1x_2)(\lambda x.x)(\lambda x.x)$ And only one copy of $(\lambda x.x)$ is now the end of a $@-\lambda$ path.

Virtual redexes involve abstractions that are consumed by reduction

Consider the term $t \equiv (\lambda x.xx)(\lambda x.x) \rightarrow (\lambda x.x)(\lambda x.x)$

The set of legal paths of t contains two paths of type $0 - \lambda$:

- one ends in $(\lambda x.xx)$, corresponding to the redex $(\lambda x.xx)(\lambda x.x)$
- one ends in $(\lambda x.x)$, corresponding to the redex $(\lambda x.x)(\lambda x.x)$

But only one copy of $(\lambda x.x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $(\lambda x_1 x_1.x_1 x_2)(\lambda x.x)(\lambda x.x)$ And only one copy of $(\lambda x.x)$ is now the end of a $@-\lambda$ path.

Quantitative Weak Linearisation

Expansion of Consuming Terms

$$\mathsf{E}(x:\sigma) \ \, \triangleleft \ \, \big(y,\{x:[y:\sigma]\}\big), \ \, y \ \, \mathsf{fresh}$$

$$\mathsf{E}(\lambda x.t:[\tau_i]_{i=1...n} \to \sigma) \ \, \triangleleft \ \, \big(\lambda x_1 \ldots x_n.t^*,A\big),$$
 if for $n>0$ and fresh x_1,\ldots,x_n
$$\mathsf{E}(t:\sigma) \triangleleft \big(t^*,A;\{x:[x_1:\tau_1,\ldots,x_n:\tau_n]\}\big)$$

$$\mathsf{E}(tu:\sigma) \ \, \triangleleft \ \, \big(t_0u_1\ldots u_m,+_{j=0...m}A_j\big),$$

if for some m > 0 and τ_1, \ldots, τ_m

 $\mathsf{E}(t:[\tau_j]_{j=1...m}\to\sigma)\triangleleft(t_0,A_0)$ and $(\mathsf{E}(u:\tau_j)\triangleleft(u_j,A_j))_{i=1,m}$

Expansion of Persistent Terms

$$\begin{split} \mathsf{E}(x:\mathsf{t}) & \vartriangleleft \left(x,\{x:[x:\mathsf{t}]\}\right) \\ & \mathsf{E}(\lambda x.t: \bullet_{\mathcal{M}}) & \vartriangleleft \left(\lambda x.t^*,A\right), \\ & \text{ if for some tight type t and $n \geq 0$} \\ & \mathsf{E}(t:\mathsf{t}) \vartriangleleft (t^*,A;\{x:[x:\mathsf{t}_1,\ldots,x:\mathsf{t}_n]\}) \\ & \mathsf{E}(tu: \bullet_{\mathcal{N}}) & \vartriangleleft \left(t^*u^*,A_1+A_2\right), \\ & \text{ if for some tight type t} \\ & \mathsf{E}(t: \bullet_{\mathcal{N}}) \vartriangleleft (t^*,A_1) \text{ and } \mathsf{E}(u:\mathsf{t}) \vartriangleleft (u^*,A_2) \end{split}$$

Expansion of Persistent Terms

$$\begin{split} \mathsf{E}(x:\mathsf{t}) & \vartriangleleft \quad (x,\{x:[x:\mathsf{t}]\}) \\ \\ \mathsf{E}(\lambda x.t:\bullet_{\mathcal{M}}) & \vartriangleleft \quad (\lambda x.t^*,A), \\ & \text{if for some tight type } \mathsf{t} \text{ and } n \geq 0 \\ & \mathsf{E}(t:\mathsf{t}) \vartriangleleft (t^*,A;\{x:[x:\mathsf{t}_1,\ldots,x:\mathsf{t}_n]\}) \\ \\ \mathsf{E}(tu:\bullet_{\mathcal{N}}) & \vartriangleleft \quad (t^*u^*,A_1+A_2), \\ & \text{if for some tight type } \mathsf{t} \\ & \mathsf{E}(t:\bullet_{\mathcal{N}}) \vartriangleleft (t^*,A_1) \text{ and } \mathsf{E}(u:\mathsf{t}) \vartriangleleft (u^*,A_2) \end{split}$$

Expansion of Persistent Terms

$$\begin{split} \mathsf{E}(x:\mathsf{t}) & \vartriangleleft \quad (x,\{x:[x:\mathsf{t}]\}) \\ \\ \mathsf{E}(\lambda x.t:\bullet_{\mathcal{M}}) & \vartriangleleft \quad (\lambda x.t^*,A), \\ & \text{if for some tight type } \mathsf{t} \text{ and } n \geq 0 \\ & \mathsf{E}(t:\mathsf{t}) \vartriangleleft (t^*,A;\{x:[x:\mathsf{t}_1,\ldots,x:\mathsf{t}_n]\}) \\ \\ \mathsf{E}(tu:\bullet_{\mathcal{N}}) & \vartriangleleft \quad (t^*u^*,A_1+A_2), \\ & \text{if for some tight type } \mathsf{t} \\ & \mathsf{E}(t:\bullet_{\mathcal{N}}) \vartriangleleft (t^*,A_1) \text{ and } \mathsf{E}(u:\mathsf{t}) \vartriangleleft (u^*,A_2) \end{split}$$

Example

```
Recall t \equiv (\lambda x.xIx)\Delta, with I \equiv \lambda z.z and \Delta \equiv \lambda y.yy, and
\mathcal{B} = [[[\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}] \!\to\! [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}, [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}] \text{ and }
\mathcal{A} = [\bullet_{\mathcal{M}}, \underbrace{\mathcal{B} \!\to\! [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}}].
                              \mathsf{E}(\mathsf{x}\mathsf{x}: [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}) \lhd (\mathsf{x}_1\mathsf{x}_2, \{\mathsf{x}: [\mathsf{x}_1: \tau_1, \mathsf{x}_2: \tau_2]\})
                       \mathsf{E}(\lambda x.xx:\bullet_{\mathcal{M}}) \lhd (\lambda x.xx,\varnothing)
                               E(xx : \bullet_{\mathcal{N}}) \triangleleft (xx, \{x : [x : \bullet_{\mathcal{N}}, x : \bullet_{\mathcal{N}}]\})
                                     E(x:\bullet_{\mathcal{M}}) \triangleleft (x, \{x:[x:\bullet_{\mathcal{M}}]\})
                                     E(x:\bullet_{\mathcal{M}}) \triangleleft (x, \{x:[x:\bullet_{\mathcal{M}}]\})
```

Example

```
Recall t \equiv (\lambda x.xIx)\Delta, with I \equiv \lambda z.z and \Delta \equiv \lambda y.yy, and
\mathcal{B} = [[\![\bullet_{\mathcal{M}}]\!\rightarrow\!\bullet_{\mathcal{M}}]\!\rightarrow\![\bullet_{\mathcal{M}}]\!\rightarrow\!\bullet_{\mathcal{M}}, [\bullet_{\mathcal{M}}]\!\rightarrow\!\bullet_{\mathcal{M}}] \text{ and }
\mathcal{A} = [\bullet_{\mathcal{M}}, \underbrace{\mathcal{B} \!\to\! [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}}].
                      \mathsf{E}(\lambda x.xx:\tau_3) \lhd (\lambda x_1x_2.x_1x_2,\varnothing)
                             \mathsf{E}(\mathsf{x}\mathsf{x}: [\bullet_{\mathcal{M}}] \to \bullet_{\mathcal{M}}) \lhd (\mathsf{x}_1 \mathsf{x}_2, \{\mathsf{x}: [\mathsf{x}_1: \tau_1, \mathsf{x}_2: \tau_2]\})
                                   E(x : \tau_1) \triangleleft (x_1, \{x : [x_1 : \tau_1]\})
                                   E(x : \tau_2) \triangleleft (x_2, \{x : [x_2 : \tau_2]\})
                      E(\lambda x.xx: \bullet_M) \triangleleft (\lambda x.xx, \varnothing)
                            E(xx : \bullet_{\mathcal{N}}) \triangleleft (xx, \{x : [x : \bullet_{\mathcal{N}}, x : \bullet_{\mathcal{N}}]\})
                                   E(x:\bullet_{\mathcal{M}}) \triangleleft (x, \{x:[x:\bullet_{\mathcal{M}}]\})
                                   E(x:\bullet_{\mathcal{M}}) \triangleleft (x, \{x:[x:\bullet_{\mathcal{M}}]\})
```

Example

```
Recall t \equiv (\lambda x.xIx)\Delta, with I \equiv \lambda z.z and \Delta \equiv \lambda y.yy, and
\mathcal{B} = [[[\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}] \!\to\! [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}, [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}] \text{ and }
\mathcal{A} = [\bullet_{\mathcal{M}}, \underbrace{\mathcal{B} \!\to\! [\bullet_{\mathcal{M}}] \!\to\! \bullet_{\mathcal{M}}}].
                    E(\lambda x.xx:\tau_3) \triangleleft (\lambda x_1x_2.x_1x_2,\varnothing)
                           E(xx: [\bullet_M] \rightarrow \bullet_M) \triangleleft (x_1x_2, \{x: [x_1: \tau_1, x_2: \tau_2]\})
                                E(x:\tau_1) \triangleleft (x_1, \{x:[x_1:\tau_1]\})
                                E(x : \tau_2) \triangleleft (x_2, \{x : [x_2 : \tau_2]\})
                    \mathsf{E}(\lambda x.xx:\bullet_{\mathcal{M}}) \lhd (\lambda x.xx,\varnothing)
                           E(xx : \bullet_{\mathcal{N}}) \lhd (xx, \{x : [x : \bullet_{\mathcal{N}}, x : \bullet_{\mathcal{N}}]\})
                                \mathsf{E}(\mathsf{x}:\bullet_{\mathsf{M}}) \lhd (\mathsf{x}, \{\mathsf{x}: [\mathsf{x}:\bullet_{\mathsf{M}}]\})
                                E(x: \bullet_{\Lambda f}) \triangleleft (x, \{x: [x: \bullet_{\Lambda f}]\})
```

```
\mathsf{E}((\lambda x.x\mathsf{I}x)\Delta:\bullet_{\mathcal{M}}) \lhd ((\lambda x_3x_4.x_3\mathsf{II}x_4)(\lambda x_1x_2.x_1x_2)(\lambda x.xx),\varnothing)
     E(\lambda x.xIx: A \rightarrow \bullet_M) \triangleleft (\lambda x_3x_4.x_3IIx_4, \varnothing)
           \mathsf{E}(x\mathsf{I}x:\bullet_{\mathcal{M}}) \lhd (x_3\mathsf{I}\mathsf{I}x_4, \{x:[x_3:\tau_3,x_4:\bullet_{\mathcal{M}}]\})
                 E(xI: [\bullet_M] \rightarrow \bullet_M) \triangleleft (x_3II, \{x: [x_3: \tau_3]\})
                       E(x : \tau_3) \triangleleft (x_3, \{x : [x_3 : \tau_3]\})
                       \mathsf{E}(\mathsf{I}:\tau_1) \lhd (\lambda x_5.x_5,\varnothing)
                             E(x : [\bullet_M] \rightarrow \bullet_M) \triangleleft (x_5, \{x : [x_5 : [\bullet_M] \rightarrow \bullet_M]\})
                       \mathsf{E}(\mathsf{I}:\tau_2) \lhd (\lambda \mathsf{x}_6.\mathsf{x}_6,\varnothing)
                             \mathsf{E}(\mathsf{x}:\bullet_{\mathcal{M}}) \lhd (\mathsf{x}_6, \{\mathsf{x}: [\mathsf{x}_6:\bullet_{\mathcal{M}}]\})
                 E(x: \bullet_M) \triangleleft (x_4, \{x: [x_4: \bullet_M]\})
     \mathsf{E}(\lambda x.xx:\tau_3) \lhd (\lambda x_1x_2.x_1x_2,\varnothing)
      \mathsf{E}(\lambda x.xx:\bullet_{\mathcal{M}}) \lhd (\lambda x.xx,\varnothing)
```

Properties of E

Let $E(t_1 : t) \triangleleft (u_1, A_1)$ be a tight expansion and $t_1 \rightarrow_{nmx} t_2$:

- 1. There is a term u_2 such that $E(t_2 : t) \triangleleft (u_2, A_2)$ is tight, $u_1 \rightarrow_{\mathsf{nmx}}^* u_2$ and $A_2 \subseteq A_1$.
- 2. If $\neg abs(u_1)$ then for any $u' \neq u_2$ s.t. $u_1 \rightarrow_{\mathsf{nmx}}^* u_2 = u_1 \rightarrow_{\mathsf{nmx}}^* u' \rightarrow_{\mathsf{nmx}}^* u_2$, $\neg abs(u')$.

where \rightarrow_{nmx} is a non-deterministic maximal strategy.

Thus E commutes with \rightarrow_{nmx} .

Properties of E

Let $E(t_1 : t) \triangleleft (u_1, A_1)$ be a tight expansion and $t_1 \rightarrow_{nmx} t_2$:

- 1. There is a term u_2 such that $E(t_2 : t) \triangleleft (u_2, A_2)$ is tight, $u_1 \rightarrow_{\mathsf{nmx}}^* u_2$ and $A_2 \subseteq A_1$.
- 2. If $\neg abs(u_1)$ then for any $u' \neq u_2$ s.t. $u_1 \rightarrow_{\mathsf{nmx}}^* u_2 = u_1 \rightarrow_{\mathsf{nmx}}^* u' \rightarrow_{\mathsf{nmx}}^* u_2$, $\neg abs(u')$.

where \rightarrow_{nmx} is a non-deterministic maximal strategy.

Thus E commutes with \rightarrow_{nmx} .

A Typing Characterisation of Weak Terms: System \mathcal{WL}

$$\frac{\Delta \vdash_{\mathsf{wl}} t : \sigma}{\Delta \vdash_{\mathsf{wl}} t : \tau} \qquad \frac{\Delta \vdash_{\mathsf{wl}} t : \sigma}{\Delta \vdash_{\mathsf{wl}} t : [\sigma]} \qquad \frac{\Delta \vdash_{\mathsf{wl}} t : \sigma}{\Delta \vdash_{\mathsf{wl}} t : [1]}$$

$$\frac{\Gamma \vdash_{\mathsf{wl}} t : \tau \qquad |\Gamma(x)| \le 1}{\Gamma |\!\!| x \vdash_{\mathsf{wl}} \lambda x . t : \Gamma(x) \to \tau} \qquad \frac{\Gamma \vdash_{\mathsf{wl}} t : t \qquad \mathsf{tight}(\Gamma(x))}{\Gamma |\!\!| x \vdash_{\mathsf{wl}} \lambda x . t : \bullet_{\mathcal{M}}}$$

$$\frac{\Gamma \vdash_{\mathsf{wl}} t : \mathcal{A} \to \tau \qquad \Delta \vdash_{\mathsf{wl}} u : \mathcal{A}}{\Gamma + \Delta \vdash_{\mathsf{wl}} t u : \tau} \qquad \frac{\Gamma \vdash_{\mathsf{wl}} t : \bullet_{\mathcal{N}} \qquad \Delta \vdash_{\mathsf{wl}} u : t}{\Gamma + \Delta \vdash_{\mathsf{wl}} t u : \bullet_{\mathcal{N}}}$$

Properties of System \mathcal{WL}

A term is weak-linear iff it is tight-typable in system \mathcal{WL} .

If $E(t : \sigma) \triangleleft (t_1, A)$, then t_1 is typable in WL. Moreover, if the expansion is tight, so is the derivation.

If $E(t : \sigma) \triangleleft (t', A)$ is tight, then t' is weak-linear.

 \mathcal{WL} gives a typing characterization to weak-linear λ -terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Properties of System \mathcal{WL}

A term is weak-linear iff it is tight-typable in system \mathcal{WL} .

If $E(t : \sigma) \triangleleft (t_1, A)$, then t_1 is typable in WL. Moreover, if the expansion is tight, so is the derivation.

If $E(t : \sigma) \triangleleft (t', A)$ is tight, then t' is weak-linear.

 \mathcal{WL} gives a typing characterization to weak-linear λ -terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Properties of System \mathcal{WL}

A term is weak-linear iff it is tight-typable in system \mathcal{WL} .

If $E(t : \sigma) \triangleleft (t_1, A)$, then t_1 is typable in WL. Moreover, if the expansion is tight, so is the derivation.

If $E(t : \sigma) \triangleleft (t', A)$ is tight, then t' is weak-linear.

 \mathcal{WL} gives a typing characterization to weak-linear λ -terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: $\mathcal{M}\mathcal{X}$ and \mathcal{WL} .

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used.
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore...

...it is possible to obtain measures of the expanded term from \mathcal{MX} .

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: \mathcal{MX} and \mathcal{WL} .

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used.
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore...

...it is possible to obtain measures of the expanded term from \mathcal{MX} .

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: \mathcal{MX} and \mathcal{WL} .

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used.
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore...

...it is possible to obtain measures of the expanded term from \mathcal{MX} .

Conclusions and Future Work

Conclusions:

- We use a quantitative system that explores the difference between persisting and consuming terms.
- We have presented an expansion relation between strongly normalising λ -terms and weak linear λ -terms preserving β -normal-forms.
- Quantitative types give an exact typing characterisation of the class of weak linear λ -terms.

Future work

- Explore other evalutation strategies.
- What is the exact relation between the approach by Kfoury and our approach.

Conclusions and Future Work

Conclusions:

- We use a quantitative system that explores the difference between persisting and consuming terms.
- We have presented an expansion relation between strongly normalising λ -terms and weak linear λ -terms preserving β -normal-forms.
- Quantitative types give an exact typing characterisation of the class of weak linear λ -terms.

Future work:

- Explore other evalutation strategies.
- What is the exact relation between the approach by Kfoury and our approach.

Thank you!