Closed Rewriting

Checking overlaps of Nominal Rewriting rules

Daniella Santaguida Magalhães de Souza

Advisor: Daniele Nantes Sobrinho

Date: 2024/02/08

Overview

- 1. Concepts and Definitions
- 2. Main Problem
- 3. References
- 4. Appendix

Concepts and Definitions

Nominal syntax

Nominal Signature Σ : set of *function symbols* f, g, \wedge , \exists , . . .

Meta-level unknowns \mathfrak{X} : set of *variables* X, Y, P, Q, \dots

Object-level variables \mathcal{A} : set of atoms a, b, c, ...

Nominal syntax

Nominal Signature Σ : set of *function symbols* f, g, \wedge , \exists , . . .

Meta-level unknowns \mathfrak{X} : set of *variables* X, Y, P, Q, \dots

Object-level variables \mathcal{A} : set of atoms a, b, c, ...

Nominal terms

Nominal terms are generated inductively by the grammar:

$$t := a \mid \pi \cdot X \mid [a]t \mid f(t_1, \dots, t_n)$$

 Σ , \mathfrak{X} and \mathfrak{A} are pairwise disjoint.

Permutation and Substitution

Permutation π : is a bijection on atoms, with finite domain.

A swapping $(a \ b)$ is a pair of atoms that maps a to b, b to a and all other atoms c to themselves.

$$(a b) \cdot a = b \qquad (a b)(b c) \cdot a = b$$
$$(a b)(b c) \cdot b = c \qquad (a b)(b c) \cdot c = a$$

Substitution θ : is a mapping from a finite set of variables to terms.

$$\theta = [X \mapsto P, Y \mapsto \forall [a]Q]$$
$$(X \land Y)\theta = P \land \forall [a]Q$$

Constraints

Freshness constraints (denoted by #): Intuitively, a#t means that a does not occur free in t (read "a fresh in t").

$$a\#b$$
 $a\#a$ $a\#[a]a$

 α -equivalence constraints (denoted by \approx_{α}): Intuitively, $s \approx_{\alpha} t$ means that s and t are α -equivalent, that is, they are the same term written with a different choice of bound names.

$$\lambda x.x \approx_{\alpha} \lambda y.y$$
 $u\lambda x.x \not\approx_{\alpha} v\lambda y.y$ $\lambda z.zy \approx_{\alpha} \lambda x.xy$

Nominal Commutative Unification

A problem Pr is defined as a set of constraints of the form a#X and $s \approx_{\alpha,C} t$.

Definition

A C-solution for a triple $\mathcal{P} = (\Delta, \delta, Pr)$ is a pair (Δ', θ) where the following conditions are satisfied:

- **1.** $\Delta' \vdash \Delta\theta$;
- **2**. $\Delta' \vdash a \# t \theta$, if $a \# t \in Pr$;
- 3. $\Delta' \vdash s\theta \approx_{\alpha,C} t\theta$, if $s \approx_{\alpha,C} t \in Pr$;
- **4**. there is a substitution θ' such that Δ' ⊢ $\delta\theta' \approx_{\alpha, C} \theta$.

If there is no (Δ', θ) then we say that the problem \mathcal{P} is *unsolvable*. Also $\mathcal{U}_{\mathsf{C}}(\mathcal{P})$ denotes the set of all C-solutions of the triple \mathcal{P} .

Nominal Commutative Unification

Definition

A nominal C-unification problem (in context) is a pair of the form $(\nabla \vdash l) \stackrel{\mathsf{C}}{\underset{\sim}{\sim}} (\Delta \vdash s)$.

The pair (Δ', θ) is a C-solution of $(\nabla \vdash l) \stackrel{\mathsf{C}}{\underset{?}{\approx}} (\Delta \vdash s)$ iff (Δ', θ) is a C-solution of the triple $\mathscr{P} = (\{\nabla, \Delta\}, \mathsf{Id}, \{l \approx_{\alpha,\mathsf{C}} s\}).$

⊚ $\mathcal{U}_{\mathsf{C}}(\nabla \vdash l, \Delta \vdash s)$ denotes the set of all C-solutions of $(\nabla \vdash l) \stackrel{\mathsf{C}}{\underset{?}{\approx}} (\Delta \vdash s)$.

C-solutions are found using a sound and complete (not finitary) rule-based algorithm for C-unification [AdCSFN17].

Nominal Commutative Matching

Definition

A *nominal* C-matching problem is a pair of terms-in-context $(\nabla \vdash l) \stackrel{\mathsf{C}}{\underset{\sim}{\approx}} (\Delta \vdash s)$ where $V(\nabla \vdash l) \cap V(\Delta \vdash s) = \emptyset$.

A C-solution to this problem is a substitution θ such that

- 1. $\Delta \vdash \nabla \theta$;
- **2.** $\Delta \vdash l\theta \approx_{\alpha,C} s$ and
- 3. $dom(\theta) \subseteq V(\nabla \vdash l)$.

Nominal rewriting modulo C:

The *one-step rewrite modulo* C *relation* $\Delta \vdash s \rightarrow_{\mathsf{R},\mathsf{C}} t$ is the least relation such that for any $R = (\nabla \vdash l \rightarrow r) \in \mathsf{R}$, position C, term s', permutation π , and substitution θ ,

$$s \equiv C[s'] \qquad \Delta \vdash (\nabla \theta, s' \approx_{\alpha, C} \pi \cdot (l\theta), C[\pi \cdot (r\theta)] \approx_{\alpha, C} t)$$
$$\Delta \vdash s \rightarrow_{\mathsf{R,C}} t$$

Example (Nominal rules for prenex normal form):

Consider $\Sigma = \{ \forall, \exists, \neg, \land, \lor \}$ the signature for first-order logic.

Let $C = \{ \vdash P \lor Q \approx Q \lor P, \vdash P \land Q \approx Q \land P \}$ be a set of identities.

Let C be the theory over Σ consisting of the following rules:

$$R_{1}: a\#P \vdash P \land \forall [a]Q \rightarrow \forall [a](P \land Q)$$

$$R_{2}: a\#P \vdash P \lor \forall [a]Q \rightarrow \forall [a](P \lor Q)$$

$$R_{3}: a\#P \vdash P \land \exists [a]Q \rightarrow \exists [a](P \land Q)$$

$$R_{4}: a\#P \vdash P \lor \exists [a]Q \rightarrow \exists [a](P \lor Q)$$

$$R_{5}: \vdash \neg (\exists [a]Q) \rightarrow \forall [a]\neg Q$$

$$R_{6}: \vdash \neg (\forall [a]Q) \rightarrow \exists [a]\neg Q$$

$$R_{7}: \vdash \exists [a](\forall [b]Q) \rightarrow \forall [b](\exists [a]Q)$$

$$a\#P' \vdash S' \lor (P' \lor \exists [a]Q')$$

- ⊚ If $\Delta \vdash s \to_{\mathsf{R,C}}^* t$ and $\Delta \vdash s \to_{\mathsf{R,C}}^* t'$, then we say a nominal rewrite system R is C-confluent when there exists a term u such that $\Delta \vdash t \to_{\mathsf{R,C}}^* u$ and $\Delta \vdash t' \to_{\mathsf{R,C}}^* u$.
- R is said to be C-terminating if there is no infinite rewrite modulo C sequence.
- R is C-convergent if it is C-confluent and C-terminating.

Critical Pairs

(Overlaps and critical pairs)

We say $R_1 = \nabla_1 \vdash l_1 \rightarrow r_1$ overlaps with $R_2 = \nabla_2 \vdash l_2 \rightarrow r_2$, and we call then the pair of terms-in-context $\Gamma \vdash \langle r_1 \theta, C\theta[r_2 \theta] \rangle$ a critical pair,

whenever $l_1 \equiv C[l'_1]$ such that $\{\nabla_1, \nabla_2, l'_1 \approx_? l_2\}$ has a principal solution (Γ, θ) , so that $\Gamma \vdash l'_1 \theta \approx_{\alpha} l_2 \theta$ and $\Gamma \vdash \nabla_i \theta$ for i = 1, 2.

Nominal Equality

An *equational theory* $E = (\Sigma, Ax)$ is a pair of a signature Σ and a possibly infinite set of equality judgements Ax in Σ , called *axioms*.

(Nominal algebra) equality

(Nominal algebra) equality: $\Delta \vdash_{\mathsf{E}} s = t$ is the least transitive reflexive symmetric relation such that for any $(\nabla \vdash l = r) \in \mathsf{E}$, position C , permutation π , substitution θ , and fresh Γ (so if $a \# X \in \Gamma$ then a is not mentioned in Δ , s, t),

$$\frac{\Delta, \Gamma \vdash (\nabla \theta, \quad s \approx_{\alpha} C[\pi \cdot (l\theta)], \quad C[\pi \cdot (r\theta)] \approx_{\alpha} t)}{\Delta \vdash_{\mathsf{E}} s = t}$$

Mismatch - Nominal Algebra and Nominal Rewriting

In general, nominal rewriting is not complete for equational reasoning. We just saw that nominal algebra includes an extra fresh context Γ , which does not match the rewriting reasoning.

Mismatch - Nominal Algebra and Nominal Rewriting

In general, nominal rewriting is not complete for equational reasoning. We just saw that nominal algebra includes an extra fresh context Γ , which does not match the rewriting reasoning.

Spoiler alert: closed nominal rewriting is complete! [FG10]

Example: Consider $\Sigma = \{ \forall, \exists, \neg, \land, \lor \}$ the signature for first-order logic.

Let $C = \{ \vdash P \lor Q \approx Q \lor P, \vdash P \land Q \approx Q \land P \}$ be a set of identities.

Let C be the theory over Σ consisting of the following rules:

$$R_{1}: a\#P \vdash P \land \forall [a]Q \rightarrow \forall [a](P \land Q)$$

$$R_{2}: a\#P \vdash P \lor \forall [a]Q \rightarrow \forall [a](P \lor Q)$$

$$R_{3}: a\#P \vdash P \land \exists [a]Q \rightarrow \exists [a](P \land Q)$$

$$R_{4}: a\#P \vdash P \lor \exists [a]Q \rightarrow \exists [a](P \lor Q)$$

$$R_{5}: \vdash \neg(\exists [a]Q) \rightarrow \forall [a]\neg Q$$

$$R_{6}: \vdash \neg(\forall [a]Q) \rightarrow \exists [a]\neg Q$$

$$R_{7}: \vdash \exists [a](\forall [b]Q) \rightarrow \forall [b](\exists [a]Q)$$

Critical pair: R_3 versus R_7 .

$$R_3: a_3 \# P_3 \vdash P_3 \land \exists [a_3]Q_3 \rightarrow \exists [a_3](P_3 \land Q_3)$$

 $R_7: \vdash \exists [a_7](\forall [b_7]Q_7) \rightarrow \forall [b_7](\exists [a_7]Q_7)$

We solve the nominal C-unification problem (in-context):

$$(a_3\#P_3\vdash \exists [a_3]Q_3)_?\approx_? (\emptyset\vdash \exists [a_7](\forall [b_7]Q_7))$$

and get the C-solution:

$$(\Delta' = \{a_3 \# P_3, a_3 \# Q_7\}, \theta = [Q_3 \mapsto \forall [b_7](a_3 \ a_7) \cdot Q_7])$$

Let $\Delta' = \{a_3 \# P_3, a_3 \# Q_7\}$ and $\pi = (a_3 \ a_7)$. We get the following critical pair (diagram below):

$$\Delta' \vdash \langle \exists [a_3](P_3 \land \forall [b_7]\pi \cdot Q_7), P_3 \land \forall [b_7](\exists [a_3]\pi \cdot Q_7) \rangle$$

$$\Delta' = \{a_3 \# P_3, a_3 \# Q_7\}$$

In order to check if this critical pair is joinable, we continue:

$$\Delta' = \{a_3 \# P_3, a_3 \# Q_7\}$$

In order to check if this critical pair is joinable, we continue:

Problem: Note that we could only make the reduction in red if we had $b_7 # P_3 \in \Delta'$.

Notice that b_7 is a new name that was chosen to rename the Rule 7. And we could have chosen a b_7 that is fresh in P_3 .

It seems that we need to weaken the context with new names fresh for the variables occurring in the rules.

Here we need closedness. [FG10]

Closedness

Intuitively, no free atom occurs in a closed term – closed axioms do not allow abstracted atoms to become free.

If t is a term, we say that t^n is a freshened variant of t when t^n has the same structure as t, except that the atoms and unknowns have been replaced by 'fresh' atoms and unknowns.

$$[a][b]X: [a^{\text{\tiny M}}][b^{\text{\tiny M}}]X^{\text{\tiny M}} [a^{\text{\tiny M}}][a^{\text{\tiny M}}]X^{\text{\tiny M}} [a^{\text{\tiny M}}][b^{\text{\tiny M}}]X$$

Closedness

Intuitively, no free atom occurs in a closed term – closed axioms do not allow abstracted atoms to become free.

If t is a term, we say that t^n is a freshened variant of t when t^n has the same structure as t, except that the atoms and unknowns have been replaced by 'fresh' atoms and unknowns.

$$[a][b]X: [a^{"}][b^{"}]X^{"} [a^{"}][a^{"}]X^{"} [a^{"}][b^{"}]X$$

Closed term (in-context)

A term-in-context $\nabla \vdash l$ is closed if there exists a solution for the matching problem

$$(\nabla^{\scriptscriptstyle \mathsf{I}} \vdash l^{\scriptscriptstyle \mathsf{I}}) \; {}_? \! \approx (\nabla, A(\nabla^{\scriptscriptstyle \mathsf{I}}, l^{\scriptscriptstyle \mathsf{I}}) \# V(\nabla, l) \vdash l).$$

Extending results

Closed Nominal Rewriting modulo C

The *one-step closed rewrite modulo* C *relation* $\Delta \vdash s \xrightarrow{\mathsf{R},\mathsf{C}}_{c} t$ is the least relation such that for any $R = (\nabla \vdash l \rightarrow r) \in \mathsf{R}$ and term-incontext $\Delta \vdash s$, there is some R^{M} a freshened variant of R (so fresh for R, Δ , s, t), position C, term s', permutation π , and substitution θ ,

$$\frac{s \equiv C[s'] \qquad \Delta, A(R^{\text{\tiny N}}) \# V(\Delta, s, t) \vdash (\nabla^{\text{\tiny N}}\theta, s' \approx_{\alpha, C} l^{\text{\tiny N}}\theta, C[r^{\text{\tiny N}}\theta] \approx_{\alpha, C} t)}{\Delta \vdash s \rightarrow_{R, C}^{c} t}$$

Problem fixed

Problem fixed

Problem fixed

Conclusion and Future Work

- Closedness is essential to guarantee the confluence of this particular NRS – it simplifies the computation of critical pairs.
- A nominal critical pair modulo C is a new concept that is under investigation:
 - we still need to prove a version of the nominal Critical Pair Lemma modulo C.
- We want to apply the current extensions in the development of closed nominal narrowing modulo C:
 - we have to prove a version of the nominal Lifting Theorem modulo C.

References

References

Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, and Daniele Nantes-Sobrinho.

On solving nominal fixpoint equations.

In Clare Dixon and Marcelo Finger, editors, Frontiers of Combining Systems - 11th International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017, Proceedings, volume 10483 of Lecture Notes in Computer Science, pages 209–226. Springer, 2017.

Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal narrowing.

In Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

Maribel Fernández and Murdoch James Gabbay.

Closed nominal rewriting and efficiently computable nominal algebra equality.

In Karl Crary and Marino Miculan, editors, *Proceedings 5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice*, LFMTP 2010, Edinburgh, UK, 14th July 2010, volume 34 of EPTCS, pages 37–51, 2010.

THE END

Appendix

Simplification rules for C-unification

We follow the approach by Ayala et. al. [AdCSFN17].

```
 \begin{array}{lll} (\# ab) & (\Delta,\theta,Pr \uplus \{a\#b\}) & \Longrightarrow (\Delta,\theta,Pr) \\ (\# app) & (\Delta,\theta,Pr \uplus \{a\#f\{t_1,\cdots,t_n\}\}) & \Longrightarrow (\Delta,\theta,Pr \cup \{a\#t_1,\cdots,a\#t_n\}) \\ (\# a[a]) & (\Delta,\theta,Pr \uplus \{a\#[a]t\}) & \Longrightarrow (\Delta,\theta,Pr) \\ (\# a[b]) & (\Delta,\theta,Pr \uplus \{a\#[b]t\}) & \Longrightarrow (\Delta,\theta,Pr \cup \{a\#t\}) \\ (\# var) & (\Delta,\theta,Pr \uplus \{a\#\pi \cdot X\}) & \Longrightarrow (\{(\pi^{-1} \cdot a)\#X\} \cup \Delta,\theta,Pr) \\ \end{array}
```

```
 \begin{array}{llll} (\approx_{\alpha,\mathsf{C}}\operatorname{refl}) & (\Delta,\theta,Pr \uplus \{s \approx_{\alpha,\mathsf{C}}s\}) & \Longrightarrow & (\Delta,\theta,Pr) \\ (\approx_{\alpha,\mathsf{C}}\operatorname{app}) & (\Delta,\theta,Pr \uplus \{f(\overline{s})_n \approx_{\alpha,\mathsf{C}}f(\overline{t})_n\}) & \Longrightarrow & (\Delta,\theta,Pr \cup \bigcup \{s \approx_{\alpha,\mathsf{C}}t_i\}) \\ (\approx_{\alpha,\mathsf{C}}C) & (\Delta,\theta,Pr \uplus \{f^\mathsf{C}s \approx_{\alpha,\mathsf{C}}f^\mathsf{C}t\}) & \Longrightarrow & (\Delta,\theta,Pr \cup \{s \approx_{\alpha,\mathsf{C}}v\}), \text{where } s = (s_0,s_1) \\ & & & & \text{and } t = (t_0,t_1),v = (t_i,t_{(i+1)mod2}),i = 0,1 \\ (\approx_{\alpha,\mathsf{C}}\left[\mathsf{aa}\right]) & (\Delta,\theta,Pr \uplus \{[a]s \approx_{\alpha,\mathsf{C}}\left[a]t\}) & \Longrightarrow & (\Delta,\theta,Pr \cup \{s \approx_{\alpha,\mathsf{C}}t\}) \\ (\approx_{\alpha,\mathsf{C}}\left[\mathsf{ab}\right]) & (\Delta,\theta,Pr \uplus \{[a]s \approx_{\alpha,\mathsf{C}}\left[b]t\}) & \Longrightarrow & (\Delta,\theta,Pr \cup \{s \approx_{\alpha,\mathsf{C}}(ab)\cdot t,a\#t\}) \\ (\approx_{\alpha,\mathsf{C}}\left[\mathsf{inst}\right) & (\Delta,\theta,Pr \uplus \{\pi \cdot X \approx_{\alpha,\mathsf{C}}t\}) & \Longrightarrow & (\Delta,\theta',Pr[X \mapsto \pi^{-1} \cdot t] \cup \bigcup_{\substack{Y \in dom(\theta'),\\ a\#Y \in \Delta}} \{a\#Y\theta'\}), \\ & & & & \text{let } \theta' := \theta[X \mapsto \pi^{-1} \cdot t], \\ & & & \text{if } X \not\in Var(t) \\ (\approx_{\alpha,\mathsf{C}}\left[\mathsf{inst}\right) & (\Delta,\theta,Pr \uplus \{\pi \cdot X \approx_{\alpha,\mathsf{C}}\pi' \cdot X\}) & \Longrightarrow & (\Delta,\theta,Pr \cup \{\pi \oplus (\pi')^{-1} \cdot X \approx_{\alpha,\mathsf{C}}X\}) \\ & & & \text{if } \pi' \not= \mathsf{Ia} \\ \end{array}
```

Nominal rewriting

The *one-step rewrite relation* $\Delta \vdash s \xrightarrow{\mathsf{R}}_{[\mathsf{C},R,\theta,\pi]} t$ is the least relation such that for any $R = (\nabla \vdash l \to r) \in \mathsf{R}$, position C, term s', permutation π , and substitution θ ,

$$\frac{s \equiv \mathsf{C}[s'] \qquad \Delta \vdash \left(\nabla \theta, s' \approx_{\alpha} \pi \cdot (l\theta), \mathsf{C}[\pi \cdot (r\theta)] \approx_{\alpha} t\right)}{\Delta \vdash s \xrightarrow{\mathsf{R}}_{[\mathsf{C},R,\theta,\pi]} t}$$

⊚ To find θ and π above, we need to solve the nominal matching problem $(\Delta \vdash s') \approx_? (\nabla \vdash l)$.

⊚ A NRS is said to be *confluent* when for all Δ , s, t and t' such that $\Delta \vdash s \rightarrow^* t$ and $\Delta \vdash s \rightarrow^* t'$, there exists u such that $\Delta \vdash t \rightarrow^* u$ and $\Delta \vdash t' \rightarrow^* u$.

Notice we need the same Δ here. We will find some complications later.

Since atoms are not affected by substitution actions but can be swapped, we need to consider a technicality called *equivariance*.

⊚ The *equivariant closure* of a set *Rw* of rewrite rules is the closure of *Rw* by the meta-action of permutations, that is, it is the set of all permutative variants of rules in *Rw*. We denote *eq-closure*(*Rw*) for the equivariant closure of *Rw*.

Consider the NRS with the single rule $R \equiv a\#X \vdash f(X,b) \rightarrow a$. In order to find the *eq-closure*(Rw), we need to analyze all the permutative variants of $R \in Rw$, they are $R^{(a\ b)}$, $R^{(a\ c)}$, $R^{(b\ c)}$ and $R^{(a\ c)(b\ d)}$, where c, d are arbitrary new atoms.

$$R_1 = R^{(a\ b)} = b \# X \vdash f(X, a) \to b$$

$$R_2 = R^{(a\ c)} = c \# X \vdash f(X, b) \to c$$

$$R_3 = R^{(b\ c)} = a \# X \vdash f(X, c) \to a$$

$$R_4 = R^{(a\ c)(b\ d)} = c \# X \vdash f(X, d) \to c$$

Therefore, eq-closure(Rw) = {R, R₁, R₂, R₃, R₄}.

Critical Pairs

(Permutative overlaps and critical pairs)

Let $R_1 = \nabla_1 + l_1 \rightarrow r_1$ and $R_2 = \nabla_2 + l_2 \rightarrow r_2$ be copies of two rewrite rules in *eq-closure*(Rw) such that there is an overlap.

If R_2 is a copy of R_1^{π} , we say that the overlap is *permutative*.

A permutative overlap at the root position is called *root-permutative*.

We call an overlap that is not trivial and not root-permutative *proper*.

The same terminology is used to classify critical pairs.

Critical Pairs

(Peak and local confluence)

Let R be an equivariant rewrite system, and let Δ , s, t_1 and t_2 such that $\Delta \vdash s \rightarrow t_1$ and $\Delta \vdash s \rightarrow t_2$. This pair will be denoted as $\Delta \vdash s \rightarrow t_1$, t_2 and called a *peak*.

If there is such a peak, then we call a NRS *locally confluent* when there exists a term u such that $\Delta \vdash t_1 \rightarrow^* u$ and $\Delta \vdash t_2 \rightarrow^* u$. We say such a peak is *joinable*.

Notice we need the same Δ here again.

In this way, we can only say that a critical pair is joinable if its terms are under the same context.

Main Problem

```
Let \Delta = \{a_3 \# P_3\}.
                  (\Delta, \emptyset, \{l_3|_2 \approx_2 l_7\}) =
                  = (\Delta, \emptyset, \{\exists [a_3]Q_3 \rightleftharpoons \exists [a_7](\forall [b_7]Q_7)\})
                  \Rightarrow_{(\approx_a \text{ capp})} (\Delta, \emptyset, \{[a_3]Q_3, \approx_? [a_7](\forall [b_7]Q_7)\})
                  \Rightarrow_{(\approx_{\alpha} \in [ab])} (\Delta, \emptyset, \{Q_3 ?\approx_? (a_3 a_7) \cdot \forall [b_7]Q_7, a_3 \# \forall [b_7]Q_7\})
                  \Rightarrow_{(\text{#ann})}^{2} (\Delta, \emptyset, \{Q_3 ? \approx ? \forall [b_7](a_3 a_7) \cdot Q_7, a_3 \# Q_7\})
                  \Rightarrow_{(\approx_a \text{ cinst})} (\Delta, \theta = [Q_3 \mapsto \forall [b_7](a_3 \ a_7) \cdot Q_7],
                                      \{\forall [b_7](a_3 \ a_7) \cdot Q_7 \approx \forall [b_7](a_3 \ a_7) \cdot Q_7, a_3 \# Q_7\}
                  \Rightarrow_{(\approx_{\alpha} \text{crefl})} (\Delta, \theta, \{a_3 \# Q_7\})
                  \Rightarrow_{(\#\text{var})} (\Delta \cup \{a_3 \# Q_7\}, \theta, \emptyset)
```

Nominal rewriting not complete for equational reasoning

Suppose R is a presentation of E. It is **not** necessarily the case that

$$\Delta \vdash_{\mathsf{E}} s = t \quad \text{implies} \quad \Delta \vdash_{\mathsf{R}} s \leftrightarrow t.$$

Take E =
$$\{a \# X \vdash X = f(X)\}\$$
and R = $\{a \# X \vdash X \to f(X)\}.$

Then we have $\vdash_{\mathsf{E}} X = f(X)$ by definition, using $\Gamma = a \# X$, but $\nvdash_{\mathsf{R}} X \leftrightarrow f(X)$.

Nominal Narrowing [AFN16]

Nominal Narrowing

The *one-step narrowing relation* $(\Delta \vdash s) \leadsto_{[C,R,\theta,\pi]} (\Delta' \vdash t)$ is the least relation such that for any $R = (\nabla \vdash l \rightarrow r) \in \mathsf{R}$, position C, term s', permutation π , and substitution θ ,

$$\frac{s \equiv C[s'] \qquad \Delta' \vdash (\nabla \theta, \ \Delta \theta, \ s'\theta \approx_{\alpha} \pi \cdot (l\theta), \ (C[\pi \cdot r])\theta \approx_{\alpha} t)}{(\Delta \vdash s) \leadsto_{[C,R,\theta,\pi]} (\Delta' \vdash t)}$$

⊚ To find θ and π above, we need to solve the nominal unification problem $(\Delta \vdash s')$?≈? $(\nabla \vdash l)$.

Definition closedness

Closed rewriting

The *one-step closed rewrite relation* $\Delta \vdash s \xrightarrow{\mathsf{R}}_c t$ is the least relation such that for any $R = (\nabla \vdash l \to r) \in \mathsf{R}$ and term-in-context $\Delta \vdash s$, there is some R^{M} a freshened variant of R (so fresh for R, Δ , s, t), position C, term s', permutation π , and substitution θ ,

$$s \equiv \mathbb{C}[s'] \qquad \Delta, A(R^{\scriptscriptstyle \text{\tiny N}}) \# V(\Delta, s, t) \vdash (\nabla^{\scriptscriptstyle \text{\tiny N}} \theta, \ s' \approx_{\alpha} l^{\scriptscriptstyle \text{\tiny N}} \theta, \ C[r^{\scriptscriptstyle \text{\tiny N}} \theta] \approx_{\alpha} t)$$
$$\Delta \vdash s \rightarrow_R^c t$$