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Concepts and Definitions



Nominal syntax

Nominal Signature Σ: set of function symbols 𝑓 , 𝑔,∧, ∃, . . .

Meta-level unknowns X: set of variables 𝑋,𝑌, 𝑃, 𝑄, . . .

Object-level variables A: set of atoms 𝑎, 𝑏, 𝑐, . . .

Nominal terms
Nominal terms are generated inductively by the grammar:

𝑡 := 𝑎 | 𝜋 · 𝑋 | [𝑎]𝑡 | 𝑓 (𝑡1 , . . . , 𝑡𝑛)

Σ, Xand Aare pairwise disjoint.
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Permutation and Substitution

Permutation 𝜋: is a bĳection on atoms, with finite domain.

A swapping (𝑎 𝑏) is a pair of atoms that maps 𝑎 to 𝑏, 𝑏 to 𝑎 and
all other atoms 𝑐 to themselves.

(𝑎 𝑏) · 𝑎 = 𝑏 (𝑎 𝑏)(𝑏 𝑐) · 𝑎 = 𝑏

(𝑎 𝑏)(𝑏 𝑐) · 𝑏 = 𝑐 (𝑎 𝑏)(𝑏 𝑐) · 𝑐 = 𝑎

Substitution 𝜃: is a mapping from a finite set of variables to
terms.

𝜃 = [𝑋 ↦→ 𝑃, 𝑌 ↦→ ∀[𝑎]𝑄]

(𝑋 ∧ 𝑌)𝜃 = 𝑃 ∧ ∀[𝑎]𝑄
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Constraints

Freshness constraints (denoted by #): Intuitively, 𝑎#𝑡 means that
𝑎 does not occur free in 𝑡 (read “𝑎 fresh in 𝑡”).

𝑎#𝑏 𝑎 ̸ #𝑎 𝑎#[𝑎]𝑎

𝛼-equivalence constraints (denoted by ≈𝛼): Intuitively, 𝑠 ≈𝛼 𝑡

means that 𝑠 and 𝑡 are 𝛼-equivalent, that is, they are the same
term written with a different choice of bound names.

𝜆𝑥.𝑥 ≈𝛼 𝜆𝑦.𝑦 𝑢𝜆𝑥.𝑥 ̸≈𝛼𝑣𝜆𝑦.𝑦 𝜆𝑧.𝑧𝑦 ≈𝛼 𝜆𝑥.𝑥𝑦
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Nominal Commutative Unification
A problem 𝑃𝑟 is defined as a set of constraints of the form 𝑎#𝑋
and 𝑠 ≈𝛼,C 𝑡.

Definition
A C-solution for a triple P = (Δ, 𝛿, 𝑃𝑟) is a pair (Δ′, 𝜃) where
the following conditions are satisfied:

1. Δ′ ⊢ Δ𝜃;
2. Δ′ ⊢ 𝑎#𝑡𝜃, if 𝑎#𝑡 ∈ 𝑃𝑟;
3. Δ′ ⊢ 𝑠𝜃 ≈𝛼,C 𝑡𝜃, if 𝑠 ≈𝛼,C 𝑡 ∈ 𝑃𝑟;
4. there is a substitution 𝜃′ such that Δ′ ⊢ 𝛿𝜃′ ≈𝛼,C 𝜃.

If there is no (Δ′, 𝜃) then we say that the problem P is
unsolvable. Also UC(P) denotes the set of all C-solutions of the
triple P.
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Nominal Commutative Unification

Definition
A nominal C-unification problem (in context) is a pair of the form
(∇ ⊢ 𝑙) ?

C≈? (Δ ⊢ 𝑠).

The pair (Δ′, 𝜃) is a C-solution of (∇ ⊢ 𝑙) ?
C≈? (Δ ⊢ 𝑠) iff (Δ′, 𝜃) is

a C-solution of the triple P = ({∇,Δ}, Id, {𝑙 ≈𝛼,C 𝑠}).

⊚ UC(∇ ⊢ 𝑙 ,Δ ⊢ 𝑠) denotes the set of all C-solutions of
(∇ ⊢ 𝑙) ?

C≈? (Δ ⊢ 𝑠).

C-solutions are found using a sound and complete (not finitary)
rule-based algorithm for C-unification [AdCSFN17].
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Nominal Commutative Matching

Definition
A nominal C-matching problem is a pair of terms-in-context
(∇ ⊢ 𝑙) ?

C≈ (Δ ⊢ 𝑠) where 𝑉(∇ ⊢ 𝑙) ∩𝑉(Δ ⊢ 𝑠) = ∅.

A C-solution to this problem is a substitution 𝜃 such that

1. Δ ⊢ ∇𝜃;
2. Δ ⊢ 𝑙𝜃 ≈𝛼,C 𝑠 and
3. 𝑑𝑜𝑚(𝜃) ⊆ 𝑉(∇ ⊢ 𝑙).
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Nominal Rewriting modulo C

Nominal rewriting modulo C:
The one-step rewrite modulo C relation Δ ⊢ 𝑠 →R,C 𝑡 is the least
relation such that for any 𝑅 = (∇ ⊢ 𝑙 → 𝑟) ∈ R, position C, term
𝑠′, permutation 𝜋, and substitution 𝜃,

𝑠 ≡ C[𝑠′] Δ ⊢
(
∇𝜃, 𝑠′ ≈𝛼,C 𝜋 · (𝑙𝜃), C[𝜋 · (𝑟𝜃)] ≈𝛼,C 𝑡

)
Δ ⊢ 𝑠 →R,C 𝑡
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Nominal Rewriting modulo C

Example (Nominal rules for prenex normal form):

Consider Σ = {∀, ∃,¬,∧,∨} the signature for first-order logic.

Let C = { ⊢ 𝑃∨𝑄 ≈ 𝑄∨𝑃, ⊢ 𝑃∧𝑄 ≈ 𝑄∧𝑃} be a set of identities.

Let C be the theory over Σ consisting of the following rules:

𝑅1 : 𝑎#𝑃 ⊢ 𝑃 ∧ ∀[𝑎]𝑄 → ∀[𝑎](𝑃 ∧𝑄)
𝑅2 : 𝑎#𝑃 ⊢ 𝑃 ∨ ∀[𝑎]𝑄 → ∀[𝑎](𝑃 ∨𝑄)
𝑅3 : 𝑎#𝑃 ⊢ 𝑃 ∧ ∃[𝑎]𝑄 → ∃[𝑎](𝑃 ∧𝑄)
𝑅4 : 𝑎#𝑃 ⊢ 𝑃 ∨ ∃[𝑎]𝑄 → ∃[𝑎](𝑃 ∨𝑄)
𝑅5 : ⊢ ¬(∃[𝑎]𝑄) → ∀[𝑎]¬𝑄
𝑅6 : ⊢ ¬(∀[𝑎]𝑄) → ∃[𝑎]¬𝑄
𝑅7 : ⊢ ∃[𝑎](∀[𝑏]𝑄) → ∀[𝑏](∃[𝑎]𝑄)
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Nominal Rewriting modulo C

zero 𝑎#𝑃′ ⊢ 𝑆′ ∨ (𝑃′ ∨ ∃[𝑎]𝑄′)

R,C

𝑎#𝑃′ ⊢ 𝑆′ ∨ (∃[𝑎](𝑄′ ∨ 𝑃′))

𝑃′ ∨ ∃[𝑎]𝑄′

𝑅4𝑎#𝑃′

∃[𝑎](𝑃′ ∨𝑄′)
≈𝛼,C

∃[𝑎](𝑄′ ∨ 𝑃′)
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Nominal Rewriting modulo C

⊚ If Δ ⊢ 𝑠 →∗
R,C 𝑡 and Δ ⊢ 𝑠 →∗

R,C 𝑡′, then we say a nominal
rewrite system R is C-confluent when there exists a term 𝑢

such that Δ ⊢ 𝑡 →∗
R,C 𝑢 and Δ ⊢ 𝑡′ →∗

R,C 𝑢.
⊚ R is said to be C-terminating if there is no infinite rewrite

modulo C sequence.
⊚ R is C-convergent if it is C-confluent and C-terminating.
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Critical Pairs

(Overlaps and critical pairs)
We say 𝑅1 = ∇1 ⊢ 𝑙1 → 𝑟1 overlaps with 𝑅2 = ∇2 ⊢ 𝑙2 → 𝑟2, and
we call then the pair of terms-in-context Γ ⊢ ⟨𝑟1𝜃, C𝜃[𝑟2𝜃]⟩ a
critical pair,

Γ ⊢ 𝑙1𝜃

Γ ⊢ 𝑟1𝜃 Γ ⊢ C𝜃[𝑟2𝜃]

𝑅1 𝑅2

whenever 𝑙1 ≡ C[𝑙′1] such that {∇1 ,∇2 , 𝑙
′
1 ?≈? 𝑙2} has a principal

solution (Γ, 𝜃), so that Γ ⊢ 𝑙′1𝜃 ≈𝛼 𝑙2𝜃 and Γ ⊢ ∇𝑖𝜃 for 𝑖 = 1, 2.
13



Nominal Equality

An equational theory E = (Σ,Ax) is a pair of a signature Σ and a
possibly infinite set of equality judgements Ax inΣ, called axioms.

(Nominal algebra) equality
(Nominal algebra) equality: Δ ⊢E 𝑠 = 𝑡 is the least transitive reflex-
ive symmetric relation such that for any (∇ ⊢ 𝑙 = 𝑟) ∈ E, position
C, permutation 𝜋, substitution 𝜃, and fresh Γ (so if 𝑎#𝑋 ∈ Γ then
𝑎 is not mentioned in Δ, 𝑠 , 𝑡),

Δ, Γ ⊢
(
∇𝜃, 𝑠 ≈𝛼 C[𝜋 · (𝑙𝜃)], C[𝜋 · (𝑟𝜃)] ≈𝛼 𝑡

)
Δ ⊢E 𝑠 = 𝑡
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Mismatch - Nominal Algebra and Nominal Rewriting

In general, nominal rewriting is not complete for equational rea-
soning. We just saw that nominal algebra includes an extra fresh
context Γ, which does not match the rewriting reasoning.

Spoiler alert: closed nominal rewriting is complete! [FG10]
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Main Problem

Example: Consider Σ = {∀, ∃,¬,∧,∨} the signature for first-
order logic.

Let C = { ⊢ 𝑃∨𝑄 ≈ 𝑄∨𝑃, ⊢ 𝑃∧𝑄 ≈ 𝑄∧𝑃} be a set of identities.

Let C be the theory over Σ consisting of the following rules:

𝑅1 : 𝑎#𝑃 ⊢ 𝑃 ∧ ∀[𝑎]𝑄 → ∀[𝑎](𝑃 ∧𝑄)
𝑅2 : 𝑎#𝑃 ⊢ 𝑃 ∨ ∀[𝑎]𝑄 → ∀[𝑎](𝑃 ∨𝑄)
𝑅3 : 𝑎#𝑃 ⊢ 𝑃 ∧ ∃[𝑎]𝑄 → ∃[𝑎](𝑃 ∧𝑄)
𝑅4 : 𝑎#𝑃 ⊢ 𝑃 ∨ ∃[𝑎]𝑄 → ∃[𝑎](𝑃 ∨𝑄)
𝑅5 : ⊢ ¬(∃[𝑎]𝑄) → ∀[𝑎]¬𝑄
𝑅6 : ⊢ ¬(∀[𝑎]𝑄) → ∃[𝑎]¬𝑄
𝑅7 : ⊢ ∃[𝑎](∀[𝑏]𝑄) → ∀[𝑏](∃[𝑎]𝑄)
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Main Problem

Critical pair: 𝑅3 versus 𝑅7.

𝑅3 : 𝑎3#𝑃3 ⊢ 𝑃3 ∧ ∃[𝑎3]𝑄3 → ∃[𝑎3](𝑃3 ∧𝑄3)
𝑅7 : ⊢ ∃[𝑎7](∀[𝑏7]𝑄7) → ∀[𝑏7](∃[𝑎7]𝑄7)

We solve the nominal C-unification problem (in-context):

(𝑎3#𝑃3 ⊢ ∃[𝑎3]𝑄3) ?≈? (∅ ⊢ ∃[𝑎7](∀[𝑏7]𝑄7))

and get the C-solution:

(Δ′ = {𝑎3#𝑃3 , 𝑎3#𝑄7}, 𝜃 = [𝑄3 ↦→ ∀[𝑏7](𝑎3 𝑎7) · 𝑄7])
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Main Problem

Let Δ′ = {𝑎3#𝑃3 , 𝑎3#𝑄7} and 𝜋 = (𝑎3 𝑎7). We get the following
critical pair (diagram below):

Δ′ ⊢ ⟨∃[𝑎3](𝑃3 ∧ ∀[𝑏7]𝜋 · 𝑄7), 𝑃3 ∧ ∀[𝑏7](∃[𝑎3]𝜋 · 𝑄7)⟩

Δ′ ⊢ 𝑙3𝜃 = 𝑃3 ∧ ∃[𝑎3](∀[𝑏7]𝜋 · 𝑄7)

Δ′ ⊢ ∃[𝑎3](𝑃3 ∧ ∀[𝑏7]𝜋 · 𝑄7) Δ′ ⊢ 𝑃3 ∧ ∀[𝑏7](∃[𝑎3]𝜋 · 𝑄7)

𝑅3
𝑎3#𝑃3

𝑅7
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Main Problem
Δ′ = {𝑎3#𝑃3 , 𝑎3#𝑄7}

In order to check if this critical pair is joinable, we continue:

Δ′ ⊢ 𝑙3𝜃 = 𝑃3 ∧ ∃[𝑎3](∀[𝑏7]𝜋 · 𝑄7)

Δ′ ⊢ ∃[𝑎3](𝑃3 ∧ ∀[𝑏7]𝜋 · 𝑄7) Δ′ ⊢ 𝑃3 ∧ ∀[𝑏7](∃[𝑎3]𝜋 · 𝑄7)

𝑅3
𝑎3#𝑃3

𝑅7

Δ′ ⊢ ∃[𝑎3](∀[𝑏7](𝑃3 ∧ 𝜋 · 𝑄7)) Δ′ ⊢ ∀[𝑏7](𝑃3 ∧ ∃[𝑎3]𝜋 · 𝑄7)

𝑏7#𝑃3/𝑅1 𝑏7#𝑃3/𝑅1

Δ′ ⊢ ∀[𝑏7](∃[𝑎3](𝑃3 ∧ 𝜋 · 𝑄7))

𝑅7 𝑅3 𝑎3#𝑃3
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Main Problem

Problem: Note that we could only make the reduction in red if
we had 𝑏7#𝑃3 ∈ Δ′.

Notice that 𝑏7 is a new name that was chosen to rename the Rule
7. And we could have chosen a 𝑏7 that is fresh in 𝑃3.

It seems that we need to weaken the context with new names
fresh for the variables occurring in the rules.

Here we need closedness. [FG10]
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Closedness

Intuitively, no free atom occurs in a closed term – closed axioms
do not allow abstracted atoms to become free.

If 𝑡 is a term, we say that 𝑡 N is a freshened variant of 𝑡 when 𝑡 N

has the same structure as 𝑡, except that the atoms and unknowns
have been replaced by ‘fresh’ atoms and unknowns.

[𝑎][𝑏]𝑋 : [𝑎 N][𝑏 N]𝑋 N [𝑎 N][𝑎 N]𝑋 N [𝑎 N][𝑏 N]𝑋

Closed term (in-context)
A term-in-context ∇ ⊢ 𝑙 is closed if there exists a solution for
the matching problem

(∇ N⊢ 𝑙 N) ?≈ (∇, 𝐴(∇ N, 𝑙 N)#𝑉(∇, 𝑙) ⊢ 𝑙).
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Extending results

Closed Nominal Rewriting modulo C

The one-step closed rewrite modulo C relation Δ ⊢ 𝑠
R,C→𝑐 𝑡 is the least

relation such that for any 𝑅 = (∇ ⊢ 𝑙 → 𝑟) ∈ R and term-in-
context Δ ⊢ 𝑠, there is some 𝑅 Na freshened variant of 𝑅 (so fresh
for 𝑅,Δ, 𝑠 , 𝑡), position C, term 𝑠′, permutation𝜋, and substitution
𝜃,

𝑠 ≡ C[𝑠′] Δ, 𝐴(𝑅 N)#𝑉(Δ, 𝑠 , 𝑡) ⊢ (∇ N𝜃, 𝑠′ ≈𝛼,C 𝑙 N𝜃, C[𝑟 N𝜃] ≈𝛼,C 𝑡)
Δ ⊢ 𝑠 →𝑐

𝑅,C 𝑡
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Problem fixed

Δ′ ⊢ 𝑙3𝜃 = 𝑃3 ∧ ∃[𝑎3](∀[𝑏7]𝜋 · 𝑄7)

Δ′ ⊢ ∃[𝑎3](𝑃3 ∧ ∀[𝑏7]𝜋 · 𝑄7) Δ′ ⊢ 𝑃3 ∧ ∀[𝑏7](∃[𝑎3]𝜋 · 𝑄7)

𝑅3
𝑎3#𝑃3

𝑅7

𝑐 𝑐

Δ′ ⊢ ∃[𝑎3](∀[𝑎 N

1](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7)) Δ′ ⊢ ∀[𝑎 N

1](𝑃3 ∧ ∃[𝑎3](𝑎 N

1 𝑏7)𝜋 · 𝑄7)

𝑎 N

1#𝑃3 𝑅1 𝑎 N

1#𝑃3𝑅1

𝑐 𝑐

Δ′ ⊢ ∀[𝑎 N

1](∃[𝑎3](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7))

𝑅7 𝑅3 𝑎3#𝑃3

𝑐 𝑐
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1](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7)) Δ′ ⊢ ∀[𝑎 N

1](𝑃3 ∧ ∃[𝑎3](𝑎 N

1 𝑏7)𝜋 · 𝑄7)

𝑎 N

1#𝑃3 𝑅1 𝑎 N

1#𝑃3𝑅1

𝑐 𝑐

Δ′ ⊢ ∀[𝑎 N

1](∃[𝑎3](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7))

𝑅7 𝑅3 𝑎3#𝑃3

𝑐 𝑐
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Problem fixed

Δ′ ⊢ 𝑙3𝜃 = 𝑃3 ∧ ∃[𝑎3](∀[𝑏7]𝜋 · 𝑄7)

Δ′ ⊢ ∃[𝑎3](𝑃3 ∧ ∀[𝑏7]𝜋 · 𝑄7) Δ′ ⊢ 𝑃3 ∧ ∀[𝑏7](∃[𝑎3]𝜋 · 𝑄7)

𝑅3
𝑎3#𝑃3

𝑅7

𝑐 𝑐

Δ′ ⊢ ∃[𝑎3](∀[𝑎 N

1](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7)) Δ′ ⊢ ∀[𝑎 N

1](𝑃3 ∧ ∃[𝑎3](𝑎 N

1 𝑏7)𝜋 · 𝑄7)

𝑎 N

1#𝑃3 𝑅1 𝑎 N

1#𝑃3𝑅1

𝑐 𝑐

Δ′ ⊢ ∀[𝑎 N

1](∃[𝑎3](𝑃3 ∧ (𝑎 N

1 𝑏7)𝜋 · 𝑄7))

𝑅7 𝑅3 𝑎3#𝑃3

𝑐 𝑐
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Conclusion and Future Work

⊚ Closedness is essential to guarantee the confluence of this
particular NRS – it simplifies the computation of critical
pairs.

⊚ A nominal critical pair modulo C is a new concept that is
under investigation:

◦ we still need to prove a version of the nominal Critical Pair
Lemma modulo C.

⊚ We want to apply the current extensions in the
development of closed nominal narrowing modulo C:

◦ we have to prove a version of the nominal Lifting Theorem
modulo C.
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Appendix



Simplification rules for C-unification
We follow the approach by Ayala et. al. [AdCSFN17].
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Nominal Rewriting

Nominal rewriting

The one-step rewrite relation Δ ⊢ 𝑠
R→[C,𝑅,𝜃,𝜋] 𝑡 is the least relation

such that for any 𝑅 = (∇ ⊢ 𝑙 → 𝑟) ∈ R, position C, term 𝑠′,
permutation 𝜋, and substitution 𝜃,

𝑠 ≡ C[𝑠′] Δ ⊢
(
∇𝜃, 𝑠′ ≈𝛼 𝜋 · (𝑙𝜃), C[𝜋 · (𝑟𝜃)] ≈𝛼 𝑡

)
Δ ⊢ 𝑠

R→[C,𝑅,𝜃,𝜋] 𝑡

⊚ To find 𝜃 and 𝜋 above, we need to solve the nominal
matching problem (Δ ⊢ 𝑠′) ≈? (∇ ⊢ 𝑙).
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Nominal Rewriting

⊚ A NRS is said to be confluent when for all Δ, 𝑠, 𝑡 and 𝑡′ such
that Δ ⊢ 𝑠 →∗ 𝑡 and Δ ⊢ 𝑠 →∗ 𝑡′, there exists 𝑢 such that
Δ ⊢ 𝑡 →∗ 𝑢 and Δ ⊢ 𝑡′ →∗ 𝑢.

Notice we need the same Δ here. We will find some complica-
tions later.
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Nominal Rewriting

Since atoms are not affected by substitution actions but can be
swapped, we need to consider a technicality called equivariance.

⊚ The equivariant closure of a set Rw of rewrite rules is the
closure of Rw by the meta-action of permutations, that is,
it is the set of all permutative variants of rules in Rw. We
denote eq-closure(Rw) for the equivariant closure of Rw.
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Nominal Rewriting

Consider the NRS with the single rule 𝑅 ≡ 𝑎#𝑋 ⊢ 𝑓 (𝑋, 𝑏) → 𝑎.
In order to find the eq-closure(Rw), we need to analyze all the
permutative variants of 𝑅 ∈ Rw, they are 𝑅(𝑎 𝑏), 𝑅(𝑎 𝑐), 𝑅(𝑏 𝑐) and
𝑅(𝑎 𝑐)(𝑏 𝑑), where 𝑐, 𝑑 are arbitrary new atoms.

𝑅1 = 𝑅(𝑎 𝑏) = 𝑏#𝑋 ⊢ 𝑓 (𝑋, 𝑎) → 𝑏

𝑅2 = 𝑅(𝑎 𝑐) = 𝑐#𝑋 ⊢ 𝑓 (𝑋, 𝑏) → 𝑐

𝑅3 = 𝑅(𝑏 𝑐) = 𝑎#𝑋 ⊢ 𝑓 (𝑋, 𝑐) → 𝑎

𝑅4 = 𝑅(𝑎 𝑐)(𝑏 𝑑) = 𝑐#𝑋 ⊢ 𝑓 (𝑋, 𝑑) → 𝑐

Therefore, eq-closure(Rw) = {𝑅, 𝑅1 , 𝑅2 , 𝑅3 , 𝑅4}.
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Critical Pairs

(Permutative overlaps and critical pairs)
Let 𝑅1 = ∇1 ⊢ 𝑙1 → 𝑟1 and 𝑅2 = ∇2 ⊢ 𝑙2 → 𝑟2 be copies of two
rewrite rules in eq-closure(𝑅𝑤) such that there is an overlap.

If 𝑅2 is a copy of 𝑅𝜋
1 , we say that the overlap is permutative.

A permutative overlap at the root position is called
root-permutative.

We call an overlap that is not trivial and not root-permutative
proper.

The same terminology is used to classify critical pairs.
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Critical Pairs

(Peak and local confluence)
Let R be an equivariant rewrite system, and let Δ, 𝑠, 𝑡1 and 𝑡2

such that Δ ⊢ 𝑠 → 𝑡1 and Δ ⊢ 𝑠 → 𝑡2. This pair will be denoted
as Δ ⊢ 𝑠 → 𝑡1 , 𝑡2 and called a peak.

If there is such a peak, then we call a NRS locally confluent
when there exists a term 𝑢 such that Δ ⊢ 𝑡1 →∗ 𝑢 and
Δ ⊢ 𝑡2 →∗ 𝑢. We say such a peak is joinable.

Notice we need the same Δ here again.

In this way, we can only say that a critical pair is joinable if its
terms are under the same context.
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Main Problem

Let Δ = {𝑎3#𝑃3}.

(Δ, ∅, {𝑙3 |2 ?≈? 𝑙7}) =
= (Δ, ∅, {∃[𝑎3]𝑄3 ?≈? ∃[𝑎7](∀[𝑏7]𝑄7)})
⇒(≈𝛼,Capp) (Δ, ∅, {[𝑎3]𝑄3 ?≈? [𝑎7](∀[𝑏7]𝑄7)})
⇒(≈𝛼,C[𝑎𝑏]) (Δ, ∅, {𝑄3 ?≈? (𝑎3 𝑎7) · ∀[𝑏7]𝑄7 , 𝑎3#∀[𝑏7]𝑄7})
⇒2

(#app) (Δ, ∅, {𝑄3 ?≈? ∀[𝑏7](𝑎3 𝑎7) · 𝑄7 , 𝑎3#𝑄7})
⇒(≈𝛼,Cinst) (Δ, 𝜃 = [𝑄3 ↦→ ∀[𝑏7](𝑎3 𝑎7) · 𝑄7],

{∀[𝑏7](𝑎3 𝑎7) · 𝑄7 ?≈? ∀[𝑏7](𝑎3 𝑎7) · 𝑄7 , 𝑎3#𝑄7})
⇒(≈𝛼,Crefl) (Δ, 𝜃, {𝑎3#𝑄7})
⇒(#var) (Δ ∪ {𝑎3#𝑄7}, 𝜃, ∅)
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Nominal rewriting not complete for equational reasoning

Suppose R is a presentation of E. It is not necessarily the case
that

Δ ⊢E 𝑠 = 𝑡 implies Δ ⊢R 𝑠 ↔ 𝑡.

Take E = {𝑎#𝑋 ⊢ 𝑋 = 𝑓 (𝑋)} and R = {𝑎#𝑋 ⊢ 𝑋 → 𝑓 (𝑋)}.

Then we have ⊢E 𝑋 = 𝑓 (𝑋) by definition, using Γ = 𝑎#𝑋, but
⊬R 𝑋 ↔ 𝑓 (𝑋).
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Nominal Narrowing [AFN16]

Nominal Narrowing
The one-step narrowing relation (Δ ⊢ 𝑠)⇝[C,𝑅,𝜃,𝜋] (Δ′ ⊢ 𝑡) is the
least relation such that for any 𝑅 = (∇ ⊢ 𝑙 → 𝑟) ∈ R, position C,
term 𝑠′, permutation 𝜋, and substitution 𝜃,

𝑠 ≡ C[𝑠′] Δ′ ⊢
(
∇𝜃, Δ𝜃, 𝑠′𝜃 ≈𝛼 𝜋 · (𝑙𝜃), (C[𝜋 · 𝑟])𝜃 ≈𝛼 𝑡

)
(Δ ⊢ 𝑠)⇝[C,𝑅,𝜃,𝜋] (Δ′ ⊢ 𝑡)

⊚ To find 𝜃 and 𝜋 above, we need to solve the nominal
unification problem (Δ ⊢ 𝑠′) ?≈? (∇ ⊢ 𝑙).
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Definition closedness

Closed rewriting

The one-step closed rewrite relation Δ ⊢ 𝑠
R→𝑐 𝑡 is the least relation

such that for any 𝑅 = (∇ ⊢ 𝑙 → 𝑟) ∈ R and term-in-context Δ ⊢ 𝑠,
there is some 𝑅 Na freshened variant of 𝑅 (so fresh for 𝑅,Δ, 𝑠 , 𝑡),
position C, term 𝑠′, permutation 𝜋, and substitution 𝜃,

𝑠 ≡ C[𝑠′] Δ, 𝐴(𝑅 N)#𝑉(Δ, 𝑠 , 𝑡) ⊢ (∇ N𝜃, 𝑠′≈𝛼 𝑙
N𝜃, 𝐶[𝑟 N𝜃] ≈𝛼 𝑡)

Δ ⊢ 𝑠 →𝑐
𝑅
𝑡
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