Anti-unification:
Introduction, Applications, and Recent Results

David M. Cerna
Czech Academy of Sciences,
Institute of Computer Science

February 8t" 2024

P Czech Academy
of Sciences

slide 1/41



DreamCoder: library learning modulo theory

Wake|,

Recogniton
Model Q1
s
Task » %§
Er RTINS -3
o

“3 A48

Objective: For each task x Wuv under current library L

Pr

Neurally guided search
ropose programs p in

decreasing order under Q(-|)

til timeout

Best program /) for task x
(map /i (fold f; nil X))

Choose p, that maximizes
P plz, L] x P [x]p] P o] L

Sleep: Abstraction

Objective: Grow library L to compress
programs found during waking

program for task 1 program for task 2
(cons (+ 1 1)) G (car 2) 1)
PN

1 car z

Refactoring
Propose new library routines from
subtrees of refactorings of programs

New library L
w/ routine
Expand L w) ACED
the routine that
maximizes:

PILI Mex

Repeat
until no

increase

Train
until
converged

[Sleep: Dreaming

Objective: Train recognition model Q(plz)
to predict best programs , for typical
tasks x and current library L

Fantasies Replays
1. draw 1. recall
programs (& g taskss
phom {3 3 solved in
library L N = waking
2. settasks 2 set program
to output of P to retrieved
executing p solution p.

DreamCoder:

Bootstrapping Inductive Program Synthesis with
Wake-Sleep Library Learning, 2021, Ellis et al., PLDI

slide 2/41




Babble: library learning modulo theory

sanbie s
Oreamcoder Ovarecoder
Babbiesyn Babblesyn
w0 Tosat fosat
g o g
£ £ w0
107
u 10
b B
107 10
P I R R PR To 12 1% 1s 15 20 72 24 26
Compression Ratio Compression hato
(a) List domain (b) Physics domain
0 sabtle sabble
o o
100 o /
e
u 10 102
¢ g
100
10
o y ") 5 v ¥ " ¥ W T
Compression Rato Compresion Rato
(©) Text domain (d) Logo domain

Babble: Learning Better Abstractions with E-Graphs and Anti-
Unification, Cao et al., POPL

slide 3/41




What is it?

» Unification: is a process by which two symbolic expressions
may be identified through variable replacement.

» Anti-unification: A process that derives from a set of symbolic
expressions a new symbolic expression possessing certain
commonalities shared between its members.

f f f
VAN VN VAN
a g a g a g
N A N = N
& > h c h X h
N | |
‘¢ 3 a a a

» Independently introduced by Plotkin and Reynolds in 1970.

> “A note on inductive generalization” by G. D. Plotkin
» “Transformational systems and the algebraic structure of
atomic formulas” by J.C. Reynolds

slide 4/41



Anti-Unification: Basics

> Let ¥ be signature, V a countable set of variables, and
T(X,V) a term algebra.
» (Unification) For s, t € T(X,V):
Does there exists a substitution ¢ s.t. so = to?
» (Anti-Unification) For s, t € T(X,V):
Does there exists g € T(X, V) and substitutions o, and o s.t.
gos = s and go, = t?

> The term g is referred to as a generalization of s and t.

v

While a substitution o such that so = to may not exists,
x € V always generalizes s and t (typically...):

os={x—s}, or={x—t}
> Let's look at an example.

slide 5/41



Anti-Unification: Basics

>

| 2

{x <+ a, y<+ g(a,a)} is a unifier.
But, {y < g(x,a)} is more general.

f(g(b,a)) = f(g(a, a))

f(y) is a generalization, {y < g(b,a)} and {y < g(a,a)}.
But, f(g(y,a)) is more specific,{y < b} and {y < a}

Dual of most general unifier, least general generalization.

Let g1 and g» be generalizers of t; and t, then g is less

general then g», go < g if there exists u s.t. gop = g1.

g1 is least general if for every comparable term g, g < g1.

slide 6/41



A General Framework

P ] Generic ‘ Concrete
@] T(Z,V)
B\#1 H2/B M First-order substitutions
B = (syntactic equality)
P <:s5=<tif soc =t for some o

» Goal: from O1, O, € O (symbolic expressions) derive G € O
possessing certain commonalities shared by O; and O;.

» Specification: define (a) a class of mappings M from
O — O, (b) a base relation B consistent with M, and (c) a
preference relation P consistent with B.

» Result: G is a B-generalization of O; and O, and most
P-preferred (“better” than G').

slide 7/41



A General Framework

> Aset G C O is called P-complete set of 3-generalizations of
01,0, € Oif:
» Soundness: Every G € G is a B-generalization of O; and 0.
» Completeness: For each B-generalization G’ of Oy and O,
there exists G € G such that P(G’, G) (G is more preferred).
» Furthermore, G is minimal if;
» Minimality: No distinct elements of G are P-comparable: if
G1, Gy € G and P(Gl, Gz), then G; = G,.
» Minimal Complete sets come in four Types:
» Unitary (1): G is a singleton,
» Finitary (w): G is finite and contains at least two elements,
» Infinitary (00): G is infinite,
> Nullary (0): G does not exist ( minimality and completeness
contradict each other).

P> Types are extendable to generalization problems.

slide 8/41



Complete sets of solutions

» Here are some examples for each category of complete sets:
> UNITARY:

» First-Order terms
» High-Order patterns (and friends)

> FINITARY:

» FO terms, associative and/or commutative symbols
» Unranked Terms and Hedges
» FO terms, one symbol has a unit element

> INFINITARY:

» FO terms, idempotent symbols

» FO terms, absorbing Yesterday's talk (A. F. G. Barragén)
> NULLARY:

> Semirings
FO terms, more than one symbol has a unit element
Simply typed lambda calculus
Cartesian Combinators

vvyy

slide 9/41



Rule-Based Algorithm

» x:t=sis an anti-unification problem (AUP).
» A configuration is a triple A; S; G where

> Ais a set of AUPs (Active)
> S is a set of AUPs (Solved)
> G is a set of AUPs (Generalization)

» The initial state for an AUP x: t £ sis {x: t = s}; 0; x.

» Inference rules transform configurations into configurations.

v

A configurations is final when no rules may be applied.

slide 10/41



Rule-Based AU: Examples

Dec: Decomposition

{x:f(tm) 2 fG)IHA; S; G =

{Ym i tm = sm}UA'S; G{x+— f(ym)},

where y1,...,ym are fresh variables

Sol: Solve Rule

(x: t£slWA S; G=A; {x:t=5}US; G,
head(t) # head(s) and y is a fresh variable.

Mer: Merge Rule

Alx:t1 2ty s12lWS; G=
A {x:t1 =t}US; G{y— x},

t1 = 51 and tr = s5.

(1> []>

slide 11/41



Rule-Based AU: Examples

{x:f(g(a,c), h(b,a, b)) = f(a,h(a,a,a))};0;x

= Dec
{x1:g(a,c) & a,xp: h(b,a,b) = h(a,a,a)}; d; f(x1, x)
==Sol
{xo: h(b,a,b) = h(a,a,a)}; {x1: g(a,c) = a}; f(x1,x)
=Dec

{x3:b Laxs:b2 al; {x1:g(a,c) £ a}; f(x1, h(xs, a, xs))

0:{x1:g(ac) S axs:b=axs:b=a}lif(x,h(xs,a x5))
= mer
0;{x1:g(a,c) 2 a,x3: b= a}; f(x1, h(x3, 3, x3))

slide 12/41



Applications of Anti-unification

» Many applications are covered in the following Survey:
Anti-unification and Generalization: A Survey, D.M. Cerna
and T. Kutsia, IJCAI 2023 doi.org/10.24963 /ijcai.2023/736

» Anti-unification is often used to build templates.
If objects match the template then they ought to behave
similarly in a given situation.
» Investigations have used anti-unification and similar
techniques for inductive synthesis.

slide 13/41


https://doi.org/10.24963/ijcai.2023/736

Apps: Inductive Synthesis

» Second-order anti-unification for program Replay.
| The Replay of Program Derivations, R\W. Hasker, 1995, Thesis |

» O-subsumption for building bottom clauses.

’ Inverse entailment and Progol, S. Muggleton, 1995, NGCO ‘

» Lggs used for recursive functional program synthesis.

IGOR Il — an Analytical Inductive Functional Programming System,
M. Hofmann, 2010, PEPM

» Anti-unification for templating the recursion step.

Inductive Synthesis of Functional Programs: An Explanation Based
Generalization Approach, E. Kitzelmann U. Schmid, 2006, JMLR

» Flash-fill in Microsoft Excel.

Programming by Example using Least General Generalizations, By
M. Raza, S. Gulwani, N. Milic-Frayling, 2014, AAAI

slide 14/41



Applications:Bugs and Optimizations

» Extracting fixes from repository history.

Learning Quick Fixes from Code Repositories by R. Sousa , et al.,
2021, SBES

» Templating bugs with corresponding fixes.

Getafix: Learning to Fix Bugs Automatically By J. Bader, et al.,
2019, OOPSLA

> Templating configuration files to catagorize errors.

Rex: Preventing Bugs and Misconfiguration in Large Services Using
Correlated Change Analysis By Sonu Mehta, et al., 2020, NSDI

» Optimization of recursion schemes for efficient parallelizability.

Finding parallel functional pearls: Automatic parallel recursion
scheme detection in Haskell functions via anti-unification By A.
D. Barwell, C. Brown, K. Hammond, 2017, FGCS

slide 15/41



Applications: Theorem Proving

» Extraction of substitutions from substitution trees.

Higher-order term indexing using substitution trees By B. Pientka,
2009, ACM TOCL

» Grammar compression and inductive theorem proving.

Algorithmic Compression of Finite Tree Languages by Rigid Acyclic
Grammars, By S. Eberhard, G. Ebner, S. Hetzl, 2017, ACM TOCL

» Generating SyGuS problems.

Reinforcement Learning and Data-Generation for Syntax-Guided
Synthesis, By J. Parsert and E. Polgreen, 2024, AAAI

slide 16/41



Anti-unification over Lambda Terms

> Let B be a set of base types and Types is the set of types
inductively constructed from 6 and —.

> The set A is constructed using the following grammar:
ti=x|c|xt|tt

> A lambda term is a pattern if free variables only apply to
distinct bound variables.

> Mx.f(X(x),c) is a pattern, but Ax.f(X(X(x)),c) and
Ax.f(X(x,x), c) are not.

» Anti-unification of an AUP X(X) : t £ s often requires

» t and s are of the same type ,
» t and s are in 7-long -normal form,
» and X does not occur in t and s.

slide 17/41



Anti-unification over Lambda Terms

» Calculus of Constructions, pattern fragment.

Unification and anti-unification in the calculus of construction By
F. Pfenning, 1991, LICS

» Anti-unification in A2 (P based on (-reduction).

Higher order generalization and its application in program verifica-
tion, Lu et al., 2000, AMAI
» Pattern Anti-unification in simply-typed A-calculus.

Higher-order pattern anti-unification in linear time, A. Baumgartner
et al., 2017, JAR
» Top-maximal shallow, simply-typed A-calculus.

A generic framework for higher-order generalization, D. Cerna and
T. Kutsia, 2019, FSCD
» \-calculus with recursive let expressions.

Towards Fast Nominal Anti-unification of Letrec-Expressions, M.
Schmidt-SchauB, D. Nantes-Sobrinho et al., 2023, CADE

slide 18/41




Rules: Pattern Anti-unification

Dec: Decomposition
{X(x) : (ﬁ) 2 h(sy) WA S 0=
{Ym(X) : tm = sm} UA'S; G{X = AX.h(Y (X))},

where h is constant or h € X, and Y,, are fresh variables of the
appropriate types.

Abs: Abstraction Rule

{(X(X): Ayt = Azs}WA; S, 0= {X'(X,y) : t=
s{z= v UA S G{X = A%,y X/ (X, y)},

where X’ is a fresh variable of the appropriate type.

slide 19/41



Extensions: Lambda Terms

Sol: Solve Rule

(X(X):t2s}WA; S, 0 =

A Y () t2sIUS; G{IX = ALY ()},

where t and s are of a base type, head(t) # head(s) or

head(t) = head(s) = h ¢ X. The sequence y is a subsequence of X

consisting of the variables that appear freely in t or in s, and Y is
a fresh variable of the appropriate type.

Mer: Merge Rule
A X)) 1 2 6,Y(Y): a1 2)8WS 0= A {X(X):t1 =
}US; G{Y — Ay X(xm)},

where 7 : {X} — {y} is a bijection, extended as a substitution with
tim = 51 and T = 5.

slide 20/41



Pattern Anti-unification: Example

{X 0,y f(u(g(x),y), u(g(y), x)) = Ay F(h(y', g(X)), h(x', g(y")))}:
0; X = pbsx2

{(X'(x,y) : Fu(g(x),y), ulg(y), x)) = f(h(y,&(x)), h(x,g()))}: ;

Ax, y. X' (X, y) = Dec

{Yi(x,y) s u(g(x).y) £ hly, g(x)), Ya(x.y) : u(g(y), x) = h(x,g(¥))}; ;
A,y F(Yi(x,y), Ya(x, y)) =sol

{Ya(x,y) s u(g(y),x) = h(x,g(¥))}: {Yalx,¥) : u(g(x),y) = hly,g(x)};
A,y f(Yi(x,y), Ya(x, ¥)) =sol

0; {Vi(x,y) : u(g(x),y) = h(y,g(x)), Ya(x,y) : u(g(y),x) = h(x,g(y))}:
Ax, ¥ F(Yi(x,¥), Ya(Xx, ¥)) = Mer

0; {Yi(x,y) - u(g(x),y) = h(y,g(x))}; Ax,y-f(Yi(x,y), Yi(y, x))

slide 21/41



Friends of Patterns

» While useful, patterns are quite inexpressive.

Functions-as-Constructors Higher-Order Unification, T. Libal and
D. Miller, 2016, FSCD

P Restricted terms occur as arguments to free variables.

> Restricted terms are inductively constructed from bound

variables and constant symbols with arity > 0.
» Arguments cannot be subterms of each other.

> X(f(x),y) is ok, but not X(f(x), x).
» Arguments cannot be proper subterms of each other.
> g(X(f(x),y), Y(f(x),z)) is ok, but not g(X(f(x),y), Y(x)).
» Unitary, but is Finitary without variable restrictions.
» Anti-unification is Unitary without most restrictions.

slide 22/41



Friends of Patterns

» Rules construct Top-maximal Shallow Generalizations.

> Ax.f(X(x)) is preferred to Ax.X(f(x)) when possible.
> Ax.f(X(X(x))) or Ax.f(X(Y(x))) not allowed.

» Only the Solve rule changes:

Sol: Solve

(X(X): t2s}WA S, r=A {Y(y1,---,¥n):
(Ceyr--yn) = (Gyr--ya)}US; r{X = AXY(q1, -, qn)},
where t and s are of a basic type, head(t) # head(s),

gi,...,Qn are distinct subterms of t or s,C; and Cs are terms
such that (Gt q1---gn) =t and (Csq1---qn) =5, Ctand G
do not contain any x € X, and Y, y1,...,y, are distinct fresh

variables of the appropriate type.
» Pattern if the g1,...,q, € X, and C; = AX.t and (5 = A\X.s.

slide 23/41



Anti-Unification beyond Patterns

» Not every choice of Cs and C; will result in a Unitary variant.

» Inconsistent choices for Cs and C; can result in the
computation of non-lggs.

» In particular how the g;s are chosen matters:

» g;s must match a selection condition.
» g;s must occur in both terms.
P g;s must not be positionally ordered within the terms.

» These conditions allowed us to define 4 Unitary variants.

slide 24 /41



Anti-Unification beyond Patterns

» Projection Anti-Unification:
> g =t qg=s5s, C =Mz, .70, Cs = Az1,22.25.
» Common Subterms Anti-Unification:
P g;s position maximal common subterms.
> Co=My1,-- o Ya-tlpr = oyl [pm =yl
> Co=M, .. Y- S[h = yil [In = al
» Restricted Function-as-constructor Anti-Unification:

P g;s position maximal common subterms minus those which
break the Local variable condition.
» (C; and C; are the same.

» Function-as-constructor Anti-Unification:

P g;s position maximal common subterms minus those which
break the Local/Global variable conditions.
» (C; and C; are the same.

» Other variants are definable (based on the selection condition).

slide 25/41



Anti-Unification beyond Patterns: Example

), a. b), h2(g(g(x)))) =

{X : Mx.f(hi(g(g(x)),
Ay f(h(g(gly

—Abs

{X'(x) : f(h(g(g(x)), a, b), ha(g(g(x)))) =
f(h3(g(g(x)), &(x), a), ha(g(g(x))))}: 0 Ax.X'(x)

—Dec

0
=
&
=
2
&
Pl
S
=
=
x

{Z1(x) : m(g(g(x)), a, b) £ h3(g(g(x)), g(x), a),
Z>(x) = ha(g(g(x))) = ha(g(g(x))}: 0;

Ax.f(Z1(x), Zo(x))

==Sol-RFC

slide 26/41



Anti-Unification beyond Patterns: Example

{Z2(x) - ha(g(g(x))) = ha(g(g(x))};
{Yiln) : m(g(y1). 2

Ax.f(Yi(g(x)), Z2(x))

=—Sol-RFC

0; {Y1(y1) : hi(g(x1), a, b) = ha(g(y.

Ya(y2) : ha(y2) £ ha(y2)};
Ax.f(Y1(g(x)), Y2(g(g(x))))-

,b) = h3(g(y1).y1.a)}

1), Y1,d),

» Extending this idea to higher-type theories such as the
calculus of constructions (COC) has yet to be considered?
> Beneficial for proof generalization.

» What happens when the terms are no longer shallow?
slide 27/41



Deep Lambda Terms: Nullarity

g
o 5,
97T 7
5 -l s
3 - IA
3 y
GASP (g’, Z, ch,a'g) T-el 92
& \;\\\\ I
< -A IA
n ““\
Oy (g2 Yor 02)p Galg'.Z,Y,01,0%)
s, )
Tte. L >

Galg'.Z,Y, 01, 02)p

> Ax.\y.f(x) = Ax.\y.f(y) has no solution set.
> A Ay f(Z(x,y)) < Ax Ay . f(Z(Z(x,y), Z(x,y))) < ---

slide 28/41



Deep Lambda Terms: Nullarity

» Its pattern generalization is gP = Ax.\y.f(Z(x,y)).
» A generalization more specific gP is pattern-derived
Definition
Let g be pattern-derived. Then g is tight if for all W € FV(g):

1) g{W > Aby.b;} € G(s,t), if W has type Fx — ~; and for
1<i<kand~ €B,and

2) For (01,02) € GS(s,t,g), g{W — t1},g{W — t2} & G(s, t) where
t1 = Woyq, th = Woo.

slide 29/41



Deep Lambda Terms: Nullarity

Definition
Let g = Ax.\y.f(Z(5m)) be a tight generalization of s = t where
1) Z has type 6, — a for 1 < i < m, and s; has type §;.
2) (01,02) € GS(s,t,g) such that Zo; = r; and Zop = 1,
3) r; and rp are of type 6, — «, and
4) Y such that Y &€ FV(g) and has type a — a — a.
Then the g-pseudo-pattern, denoted G(g,Z, Y, 01,02), is

g{Z = Abm.Y (r1(bm), r2(bm)))} = AxAy £ (Y (r1(qm), r2(qm))))
where for all 1 < i < m, q; = 5;{Z + Abp.Y (ri(bm), r2(bm)))}.

» Essentially, we regularized the structure of the generalizations.

slide 30/41



Deep Lambda Terms: Nullarity

Theorem
For anti-unification of simply-typed lambda terms is nullary.

Proof.

Let us assume that C C G(s, t) is minimal and complete. We
know C contains a pattern-derived generalization g. Observe that
g can be transformed into an tight generalization g’ that is also
pattern-derived. We can derive a pseudo-pattern generalization g’
of g’. Finally, g* = g"{Y = Aw1. mo. Y (Y (w1, w2), Y (w1, w2))}
is strictly more specific than g”. This implies that g <, g*,
entailing that C is not minimal. O

!

» Result extendable to non-shallow fragments.

One or nothing: Anti-unification over the simply-typed lambda cal-
culus, D. Cerna and M. Buran, 2022, Arxiv (under-review).

slide 31/41



Equational Anti-unification

» Anti-unification over commutative theories.

Unification, weak unification, upper bound, lower bound, and gen-
eralization problem, F. Baader, 1991, RTA

» Grammar for a complete set of E-generalizations:

E-generalization using grammars, J. Burghardt, 2005, Al

» Minimal complete set of AC-generalizations.

A modular order-sorted equational generalization algorithm, M.
Alpuente et al., 2014, Inf. Comput.

» Minimal complete set of I-generalizations.

Idempotent anti-unification, D. Cerna and T. Kutsia, 2020, ACM
TOCL

» Nullarity of U2-generalization.

Unital anti-unification: Type and algorithms, M. D. Cerna and T.
Kutsia, 2020, FSCD

slide 32/41




E-generalization: Important, but Explosive

> Many equational theories are not well behaved:

Problem Theory Type
f(a, b) = f(b,a) f(x,x) = x, 00
gler f(ah(er)2e(f(h(er).a)er)  fler,x) =f(x,e7) =ef 00
021 Semirings 0
azb f(a)=a, f(b)=b 0

> Even when there are least general generalizations,
» are the majority of them useful? f(f(f(---f(x)---)))
» Though, not all theories behave badly....

slide 33/41



Equantional Anti-unification: A and C

» AC-Anti-unification is finitary.
» Though the minimal complete set may have an exponential
number generalizations.

» Assuming that f is associative:
X :f(a,a,b,b) 2 f(a,b,b) (Flattened for Readability)

» Note that there are many ways to decompose the problem:

Xi:a%a Xz (abb)—f( b) (1)
X1 :a=f(a,b) X2 (abb)éb (2)
Xi: f(a,a,b) £ a :b 2 f(b,b) (3)
Xi:f(a,a) 2 a f(b b) £ f(b,b)  (4)

slide 34/41



Equantional Anti-unification: A and C

> If we continue this decomposition the Iggs are:
81 = f(Xla ba b) 82 = f(aaX27 b)

» gy and g» are <a-incomparable, and form the minimal
complete set for the terms f(a, a, b, b) and f(a, b, b).

» To compute the minimal complete set modulo associativity we
extend the syntactic algorithm by the following rules:

slide 35/41



Equantional Anti-unification: A Rules

Dec-A-L: Associative Decomposition Left

{X: f(tl,...,tk,tk+1...,tn)é f(51,52...,5m)}HﬂA; S, 0=
{Yl : f(tl,...,l’k)ésl, Ys f(tk_;,_l...,l’n)é

f(52 ca 7Sm)} UA:; S; G{X — f(Yl, Y2)},

where f is associative, nm>2,1< k<n-—1, and Y7 and Y> are
fresh variables.

Dec-A-R: Associative Decomposition Right

(X :f(ti,to. .. tn) 2 (51, o Sk Ski1-- s Sm) WA S 0 =
{Yl:tléf(sl,...,sk), Yzif(tg...,tn)é

f(5k+1 .. ../Sm)} UA; S; G{X — f(yl, Yg)},

where f is associative, nnm>2, 1< k<m-—1,and Y7 and Y,
are fresh variables

slide 36/41



Equantional Anti-unification: A and C

» Similarly one can define Commutative anti-unification.

» We assume that f is commutative:
X : f(a,f(a,b)) 2 f(b, f(b,a))
» There are only two ways to decompose:

Xi:a2b Xz : f(a, b) = (b, a) (5)
X1 :a=f(b,a) X :f(a,b) 2 b (6)

» Furthermore, one of the possible decompositions is syntactic.

slide 37/41



Equantional Anti-unification: A and C

» Continuing this decomposition we get two Iggs:

81 = f(X7 f(a7 b)) 82 = f(Xv f(X7y))

» Observe, g1 and g» are <¢-incomparable and form the
minimal complete set.

» To computing the minimal complete set modulo
commutatively we extend the syntactic algorithm by the
following rule:

slide 38/41



Equantional Anti-unification: A and C

Dec-C: Commutative Decomposition

{X : f(tl, t2) £ f(Sl,SQ)} WA, S, 0 = {Y]_ Tk £ Si, Y2()?) :
t2 2 S mod 2)11y UA S G{X = f(Y1, Y2)},

where f is commutative, i € {1,2}, and Y7 and Y; are fresh

variables
» We can combine the A and C inference rules and construct an

even more flexible anti-unification algorithm.
» This combined anti-unification problem is still Finitary.
» f(a,a, b) = f(a, b, b) has solutions f(a, b, x) and f(x, x, y).

slide 39/41



Selection Heuristics

> How to deal with the explosion?

» Alignment and Rigidity functions
» Skeletons

> beam search

» Syntactic restriction

» Recent Direction:

» Should the preference and base relations be Crisp?
» Are most Iggs too distant from the generalized terms to be
generalizations?

> [s similarity and quantitative anti-unification a fix?

A Framework for Approximate Generalization in Quantitative The-
ories, T. Kutsia and C. Pau, 2022, FSCD

slide 40/41



Future Work

» Investigating the above questions

v

New applications for anti-unification

» Developing methods for combining anti-unification algorithms
for disjoint equational theories

» Characterization of classes of equational theories that exhibit
similar behavior and properties

» Studying computational complexity and optimizations.

slide 41/41



