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Example - Arithmetic

Natural numbers as Peano numerals: 0, s(0), s(s(0)), etc.
Rewrite system

a(x,0)

a(x,s(y))  — s(a(x,y))
m(x, 0) — 0
m(x,s(y)) — a(m(x,y),x)

Reduction sequence

242" = a(s(s(0)), 5(s(0))) — s(a(s(s(0)), 5(0)))
— s(s(a(s(s(0)),0)))
— s(s(s(s(0))))
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Example - Negation Normal Form

Rewrite system

X =y — —xVy

“(xAy) — —xV-oy

-(xVy) — —xA-y

X — X

Reduction sequence
“(ox = y)vz) = ~(=(=xVy)V2z)

— ~((z=xA-y)V2)
— —|((X A\ —|y) V Z)
— (xA-y)A -z
— (—\X V —\_—|y) N~z
— (~xVy)A-z
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Example - Combinatory Logic

Rewrite system

((((S-x)-y)-2) = ((x-2)-(y-2))
(K-x)-y) — X
(I-x) — X

Reduction sequence

((5-N)-1)-x) — ((-x)-(I-x))
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Example - Functional Programming

Rewrite system

map(Ax.M, nil) —  nil
map(Ax.M, cons(X, T)) — cons(M{x/X}, map(Ax.M, T))

Reduction sequence ([n] abbreviates cons(n, nil))

map(Ax.cons(x, nil), cons(1, (cons(2, nil))))
— cons([1], map(Ax.cons(x, nil), cons(2, nil)))
—  cons([1], cons([2], map(Ax.cons(x, nil), nil)))
—  cons([1], cons([2], nil))
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Example - Object Oriented Programming

Terms
M = x variable
| [l = ¢(x;)N; €117 object
\ M.1 method invocation
| M.~ g(x)N method update

Rewrite system (o = [l; = ¢(x;)N; "€{1-"}] and j € 1..n)

o ~ Nix/o) -
O-Ij A C(X)N — [/ = g(x)N’ I = C(Xi)Ni ’6{1“”}\{!}]

Reduction sequence

[ = sl A = [ =5 G0 A s()x
— =50

v
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An Aside

Definitions )

Examples

Highlights or comments

Thm/Lemma/Proof

Statement of Thm/Lemma and proofs

e S S
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Structure of Today's Talk

@ Abstract Reduction Systems
@ First-Order Rewriting

© Lambda Calculus
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Introduction

An Abstract Reduction System (ARS) is a structure (A, {—, |a € I})
where

@ Ais a set

{—a |a € 1} is a family of binary relations on A indexed by /

The relations —,, are called reduction relations

@ In the case of just one reduction relation we write —
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Examples

(1)
B
o<~ X o
(e} S~ —— 7
o

Q@ A={e o}t and u— v foru,veAif
u=uiluy and v = uyru
(I, r) is one of

.O, O O O.>
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o~ o~ o~~~

0o, o)
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Reduction

@ A reduction sequence or derivation w.r.t. —, is a finite or infinite
sequence ag —q a1 —a A2 —q - - -

@ A reduction step is an occurrence of —, in a reduction sequence

Recall from above
(e0, 00 0e)

’.>

, 00 00)

’o>

ce
{ 000300008 30000000 —>—>—3—3—3>—> O
(o0
(oo
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Notation

reflexive closure of —,
transitive closure of —,
reflexive, transitive closure of —,

1l
Q R4Rl

Note: a —», b iff there is a finite reduction sequence

a=ay)—adl —a---—adn=2>b

@0 e —» O since

0O > 000C@0e® > 0O0OO0OO0O0O0O0 —5——>—>—>— O
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Confluence

Diamond Property (DP)

ZN

d

Weak Church Rosser (WCR)

SN\,

R
d

Va,b,cst. a— banda— c, Va,b,cst. a— banda— c,

ddst. b—dand c — d

dd st. b—» dand c - d

W

o
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Confluence

Confluence or Church-Rosser (CR)

7N

o
d

Va,b,cst. a—» banda—c,ddst. b—» dand c - d
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Normalization

Consider an ARS (A, —).
@ a € Ais a normal form if there exists no bs.t. a— b

@ a € Ais weakly normalizing if a — b for b a normal form; — is
weakly normalizing (WN) if every a € A is weakly normalizing

@ a € A is strongly normalizing if every reduction sequence starting
from a is finite; — is strongly normalizing (SN) if every a € A'is
strongly normalizing

WN, —-SN
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Interrelation between Properties

CR = WHCR (trivial) }

Lemma
WCR = CR

Proof (counterexample - Hindley)
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Interrelation between Properties

Thm (Newman's Lemma)
WCR and SN = CR

Proof [Huet1980]

By well-founded induction o
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@ Abstract Reduction Systems

© First-Order Rewriting
o Terms

© Lambda Calculus
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Terms

Y set of function symbols equipped with an arity n (n € IN)
X set of variables
T (X) set of X-terms over X

xeX feXofarityn My,...,M,eT(X)
x€T(X) f(My,...,M,) € T(X)

@ Var(M) denotes the variables in M
e Mis closed if Var(M) =0
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Terms - Example

Signature

0 (arity 0) s (arity 1)
a (arity 2) m  (arity 2)

Terms

s(0) a(s(0),0) a(m(x,y),0)
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Terms as Trees

The term tree of a(m(x,y),0)
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Positions

@ IN* set of positions, where a position is a sequence of natural
numbers ij i> ... i, (Note: we use e for the empty sequence)

e Example: ¢, 13, 249 (Note: We only use sequences of single digit
numbers to avoid ambiguities)

@ pos(M): Positions of the term tree of M

M = a(m(x,y),0)
a pos(M) = {¢,1,2,11,12}
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Positions - Concatenation

Concatenation of positions

€-q = (g
(ip)-a = i(p-q)
Prefix preorder

p=gq(“pisaprefixof ¢")iff Ire N* p-r=gq

e <X p, forall p

1 <122

21 <213

21 || 22 (disjoint positions)
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Subterms at a position

M |p: Subterm of M at position p € pos(M)

Milg=N i€{l.n}
M =M F(My, ..., My) |iq= N

a(m(x,y),0) 1= m(x,y) a(m(x,y),0) [12=y
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@ Abstract Reduction Systems

© First-Order Rewriting

@ Unification

© Lambda Calculus
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Substitution

A substitution is a map o : 7(X) — 7 (X) which satisfies

o(f(My,...,My,)) = f(a(Mi),...,a(Mp))

o We usually write M instead of o(M)

e 0 ={x3/My,...,x,/Mp,} determines a unique substitution (the
expected one)

If M= f(x,g(y)) and o = {x/g(a),y/f(x, x)}, then

M = f(g(a)ag(f(xvx)))
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Unification

Terms M, N are said to be unifiable iff there exists a substitution o
(unifier) s.t. M7 = N?

© x is always unifiable with any M (provided that x ¢ Var(M))
@ f(x,g(x,a)) is unifiable with f(f(a), y) with unifier

o ={x/f(a),y/&(f(a),a)}
Q f(x,g(x,a)) and f(f(a), g(b,a)) are not unifiable
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Preorder on Substitutions

Composition of substitutions o, 7, written o o 7,

MO'OT — (MT)O’

Subsumption (o is more general than 7)

c<7iff ust. voo=71

Note: < is a preorder on substitutions (upto renaming)
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Most General Unifier

Thm

If M, N are unifiable, then there exists a most general unifier (MGU) of
M, N. Furthermore, this MGU is unique upto renaming.
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Unification Algorithm (Martelli-Montanari)

E finite set of matching equations

if x € Var(My, ..., M,)
{x =M} U EX/M}
if x ¢ Var(M) A x € Var(E)

(F(My, ..., My) = f(Ny,... . N)DYUE = {My=Ny,...,My=N,} UE
(F(My,...,My) = g(Ne,...,N) ) UE = fail
{x=x}UE = E
{f(My,...,Mp) =x}UE = {x=f(My,...,M,)} UE
{x=f(My,....,M,)} UE = fail

.

{x=M}UE

@ To compute MGU of M and N, begin with {M = N} and apply rules
repeatedly

@ This process is CR and SN
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@ Abstract Reduction Systems

© First-Order Rewriting

@ Rewrite Systems

© Lambda Calculus
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Example

a(x, 0) — X

a(x,s(y)) — s(a(x,y))
m(x,0) — 0

m(x,s(y)) — a(m(x,y),x)
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Reduction Rule

A reduction rule for a signature X is a pair (/, r) of terms in 7 (X) such
that

© the left-hand side / is not a variable

@ every variable occurring in the right-hand side r occurs in / as well

o We often write | — r
@ We sometimes give rules a name and write p: [ — r

o We say p is left-linear if / contains at most one occurrence of any
variable
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Context

Context: Term over X U {(J}. Special symbol [J denotes a hole.
If C is a context containing exactly n holes, then C[Mj, ..., M,| denotes

the term resulting from replacing the holes of C from left to right with
My, ..., M,

@ Unless stated, we restrict to contexts with exactly one occurence of [J
@ The p in C[M], indicates C |,= 0

Q a(m(s(0), x),0)
Q a(0,0)
(3 Il
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Redex

M (source)

A p-redex is an instance /? of the left-hand side of rule p: / — rin a termJ

We use letters r, s for redexes

A redex is determined by
© Pair of terms (source,target)
@ Rule name
© Position
@ Substitution

In some cases, not all items are necessary

Redexes that have the same source are called coinitial
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Redex - Example

p:f(x)— x
Consider the term f(f(y)); it has two p-redexes

Source f(f(y)) f(f(y))
Target f(y ) f(y )
Rule P P

Position €

1
Subst  {x/f(y)} {x/y}
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Redex Patterns

The pattern of a rule p : [ — r is I where x¢ = [ for all variables x. The
pattern of a p-redex is the pattern of p.
Let P be the pattern of a p-redex s. Then

Q s=17=P[x{,...,x7] (note multiple holes) and

@ x7,...,x7 are the arguments of s

Pattern of

23, 5(1)) = s(a(%,)) ;
O / \ S

O
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Nested, Disjoint, Overlapping

Two coinitial redexes s and r are said to be
@ Disjoint: if their positions are disjoint
@ Nested (say s nests r): if r occurs in an argument of s

© Overlapping: if their patterns share at least one symbol occurrence

v

Consider the TRS

overlapping nested

f(g(e(2))) f(g(e(a)))
We say f(g(g(a))) nests g(a)
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Reduction Step

A reduction step according to the rule p : | — r consists of contracting a
redex within an arbitrary context

ClI7] —, C[r”)

@ Occasionally we write C[/?] —s C[r?] (or even s) for this reduction
step, where s is the p-redex /7 in C[/7]

o If s1,...,s, are composable redexes we write s1;...;s, for the
resulting derivation

@ We sometimes give derivations names d : si;...; s,

@ We write |d| for the number of steps in d
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Example

p: a(x,0) — X
alx,s(y))  — s(alx,y))
m(x, 0) — 0
m(x,s(y)) — a(m(x,y),x)

Reduction step (C = s(0d), 0 = {x/s(s(0))})

s(a(s(s(0)),5(0))) —» s(s(a(s(s(0)),0))) ]
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Term Rewrite System

A Term Rewrite System is a pair R = (¥, R) of a signature ¥ and a set of

reduction rules R for X
The one-step reduction relation of R is defined as the union

—=J{—s |[M —s N, sapredexin M,p € R}

Note:
e (T(X),—) is an ARS
@ Thus all concepts of ARS are applicable to TRS
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@ Abstract Reduction Systems

© First-Order Rewriting

@ Confluence

© Lambda Calculus
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Confluence - Reminder

Confluence (CR)

7N

o
d

Va,b,cst. a—» banda—c,ddst. b—» dand c - d
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Techniques for Proving Confluence

@ Abstract: Formulated for Abstract Reduction Systems

o Concrete: Formulated for Term Rewrite Systems
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Techniques for Proving Confluence

@ Abstract: Confluence by

» Strong confluence

» Equivalence
>

e Concrete: Confluence by

» Critical pairs
» Orthogonality

> O
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Strong Confluence [Huet1980]

. f(x,x) — &(x)
/ \ fix,y) — &y)
. . g) — f(xa)
lﬂ.k:
Beware of asymmetry! J
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Equivalence

(A, —a).(B,—8) ARS
Q@ —4C—pC—»4 and
@ —p strongly confluent

Then — 4 is confluent

Proof
O (1) implies »4=—p
@ (2) implies —p confluent
© Result follows from (1),(2)
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Equivalence

Let R be the TRS

fx) — &lxx)
gx,y) — f(y)

Define = as
M= M

S ) 1)

M=M N=N
g(M,N) = g(M',N')

© Show —rC=C—p

@ Show = is strongly
confluent

@ Conclude R is confluent
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Techniques for Proving Confluence

@ Abstract: Confluence by

» Strong confluence

» Equivalence
>

@ Concrete: Confluence by

» Critical pairs
» Orthogonality

L
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Critical Pairs

Overlap between two left-hand sides of rewrite rules

| — r and g — d variable disjoint rewrite rules. A critical pair between

them is a pair (/17[d?]p, ro) where
@ p € pos(/) and I |, is not a variable
Q@ oisaMGUof /|, and g

Note:

1 = 1lgp

N

17[d%]p

Eduardo Bonelli (LIFIA,CONICET)

, Explicit Substitutions and Norma February, 2006

54 /73



Example

Rewrite system

—(true) —  false
—(false) —  true
=(=(x)) - X
and(true,x) — x
and(false,x) — false
Critical pairs (are there others?)
—(—(true)) —(—(false))
—(false) true —(true) false
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Example

Rewrite system

xO(y®z) — (x®y)oz )

Critical pairs

x®(yd(zow))

T

x®((y®z)ow) xoy)o(zow)
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WCR by Critical Pairs

Thm
R is WCR iff every critical pair is joinable

Proof
=) Trivial
<) Take an arbitrary peak M and consider all possible cases
7 N
Po P1

in which this arises
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sp and s; are disjoint - Direct

N
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sp and s; are nested - Direct

e N

AN

The bottom-right arrow may have to perform multiple steps if the rewrite
rules are not left-linear
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sp and s; overlap - Use hypothesis

A

e
A
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Decidable Case of Confluence

Thm
Let R be finite and SN. Then confluence is decidable.

Proof
© Generate all critical pairs

@ For each critical pair (u, v) reduce u and v to their normal forms @, v
@ if T # v for some (u, v) then fail
@ Otherwise, the system is confluent

Eduardo Bonelli (LIFIA,CONICET) , Explicit Substitutions and Norma
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Orthogonal TRS

A TRS is called orthogonal (OTRS) if it is
Q left-linear and
@ without critical pairs

Thm
Orthogonal TRS are confluent

@ Note that, in contrast to the previous result, we do not require the
TRS to be SN

@ Proof relies on the fact that coinitial, diverging reduction steps can
always be joined

@ More on orthogonal TRS later
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@ Abstract Reduction Systems
© First-Order Rewriting

© Lambda Calculus
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What is the Lambda Calculus

@ A model of computation

@ Concise and expressive

@ Strong connections to proof theory and category theory
@ Shown to be equivalent to Turing Machines

o Considered a suitable abstract model of programming languages

Lambda calculus
_l’_
Your new programming construct

Good testbed
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Informal Introduction

@ Fundamental construction: abstraction

Ax.x+1

> Similar to f(x) = x 4+ 1 except that it is “anonymous”

@ Fundamental operation: application of functions to arguments

(Axx+1)2

@ Both of these combined in their purest form:

» Everything is a function!
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Syntax

A-terms (7 (X))
M = x variable
| M N  application
| Ax.M abstraction

@ In an abstraction

x is the (formal) parameter and M is the body

Ax binds all occurrences of x in M not under another Ax

notion of free and bound variables similar to that of first-order logic
free variables of M: fv(M)

v

v vy

@ In an application N is called an argument
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Examples of \-Terms

AX.X

X

Ax.x x (self-application!)

AX Y .X

(Ax.x)(Ax.x)

Xy

Ax.x = Ay.y (terms differing only in the name of bound variables are
considered equal; this is called a-equivalence)
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Reduction

B: (MxMN — M{x/N} J

© Substitution: M{x/N} denotes the term M where all free occurrences
of x are replaced by N

@ Substitution may need to rename bound variables in order to avoid
variable capture

(Ax.y){y/x} = Ax.x No! Variable capture
(Mx.y){y/x} = Az.x Rename. Ok!

We ignore extensionality in our presentation

n: MMx — M if x¢fy(M)
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Example

QO ly — x{x/y} =y (where | = Ax.x)

Q@ A(ly)— (Iy)(ly) (where A is Ax.x x)

Q@ A(ly) = Ay —yy

QO (M x.z)(ly)— z

Q ww— (xx){x/w} =ww (where w = Ax.x x)
0 (M x.2) (ww) — z

Eduardo Bonelli (LIFIA,CONICET) , Explicit Substitutions and Norma February, 2006 69 / 73



Two Basic Properties

Lemma
B is not WN (hence not SN)

Proof (counterexample)

Ww— ww — Www — ... (where w = Ax.x x)

Thm
[ is confluent

Proof
Use confluence by equivalence technique
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De Bruijn Indices (“I don't really like de Bruijn indices myself" (N. de
Bruijn))

@ The idea: replace variable names by reference to declaration point

AX.X becomes Al
AX.Ay.x becomes A2

e Consequence: Renaming not necessary (replaced by index adjustment)

AX.(Ay.Az.y) x —g Ax.Az.x
becomes

AMN2) T =5, M(A2){1/1}) = AX2{2/2} = AX2
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De Bruijn Indices

Bpg: (AM)N — M{{1/N}}

o M{{1/N}} is substitution on terms with indices
@ (3 is isomorphic to Bpg
@ (3 is easier for study purposes

@ (pg is easier for implementation
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Lambda Calculus vs First-Order Rewriting

o First-Order Rewriting
% natural model of computation
% concise representation of algebraic data types
X functions are not treated as data
@ Lambda Calculus
natural model for reasoning about functions
can encode programs, derivations, specifications
inefficient representation of algebraic types
more complex metatheory

X X %
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